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A Appendix

A.1 Supplementary methods

A.1.1 ICA data preprocessing

For each subject, we performed an ICA decomposition on his/her EEG recorded

brain potentials (Makeig et al., 1996). Briefly, if x ∈ R
N is an N -dimensional

random vector representing EEG in N channels, we estimated a mixing matrix

A ∈ R
N×N so that

x = As (A.1)

and the components of the random vector s ∈ R
N were maximally indepen-

dent. These components are called the independent components (ICs) through

the manuscript. We used the AMICA algorithm (Palmer et al., 2007) with one

model to compute this decomposition. After ICA decomposition, ICs with ECD

location outside the brain were automatically removed, and non-brain ICs (e.g.,

components corresponding to eye blinks, lateral eye movements, muscle activa-

tions, and bad channels) were manually removed. We kept, an average, of 26

components per subject, out of the N = 33 components obtained in the ICA

decomposition.

A.1.2 Equivalent current dipole location

The scalp map of the ith IC is the ith column of the mixing matrix A in (A.1).

For each IC, the location of the electric current dipole whose projection in the

scalp best matched the IC scalp map, i.e., the equivalent current dipole (ECD)

location, was estimated using the DIPFIT2 plugin of the EEGLAB software. The

location of this dipole is the ECD location of the IC.
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A.1.3 Clustering of ICs

All ICs of all subjects were grouped into clusters according to the proximity of their

ECD locations (see Section A.1.2) using the k-means algorithm. This algorithm

groups points of a D-dimensional metric space into clusters, in such a way that

the sum of the distances between points and their corresponding cluster centroid

is minimized. We represented each IC by the three-dimensional point given by

the Talairach coordinates of its ECD location. A free parameter in k-means is

the number of clusters. We set this parameter to 17, in order to obtain clusters

of reasonable coarseness. Clusters 8, 12, and 16 were not analyzed because they

contained too few ICs, 4, 4 and 5, respectively (Table A.1).

A.1.4 Circular statistics concepts

This section introduces concepts from circular statistics (Fisher, 1996) used to

define ITC and DMP. Given a set of circular variables (e.g., phases), θ1, . . . , θN , we

associate to each circular variable a two-dimensional unit vector. Using notation

from complex numbers, the unit vector associated with variable θi is:

vec(θi) = ejθi (A.2)

The resultant vector, R, is the sum of the associated unit vectors:

R(θ1, . . . , θN) =
N
∑

i=1

vec(θi) (A.3)

The mean resultant length, R̄, is the length of the resultant vector divided by the

number of circular variables:
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R̄(θ1, . . . , θN) =
1

N
|R(θ1, . . . , θN)| (A.4)

The circular variance, CV , is one minus the mean resultant length:

CV (θ1, . . . , θN ) = 1− R̄(θ1, . . . , θN ) (A.5)

The mean direction, θ̄, is the angle of the resultant vector:

θ̄(θ1, . . . , θN) = arg(R(θ1, . . . , θN)) (A.6)

Note that the mean direction (and therefore the DMP, Section 2.5) is not defined

when the resultant vector is zero, since the angle of the zero vector is undefined.

A.1.5 ITC and Peak ITC frequency

The Inter-Trial Coherence (ITC) is a measure of ITPC resulting from averaging

phase information among multiple epochs (Tallon-Baudry et al., 1996; Delorme

and Makeig, 2004). To compute ITC we extracted epochs from one second before

to three seconds after the presentation of standards. Then, a continuous wavelet

transform was performed on these epochs, using the Morlet wavelet with three

significant cycles, eight octaves, and 12 frequencies per octave. With a 250 Hz

EEG sampling rate, the previous parameters furnished a Morlet transform with

a time resolution of 70.71 ms, and a frequency resolution of 4.5 Hz, both at 10

Hz. The function cwt in the Rwave package of the language R (R Core Team,

2012) was used to compute the continuous wavelet transform. This transform

provided the phases of every trial, for frequencies between 0.5 and 128 Hz, and

Page 3



Rapela et al. A new foreperiod effect on inter-trial phase coherence

for times between the start and end of the epoch. The ITC of a set of phases

θ1, . . . , θn (gray vectors in Figure 2) is the mean resultant length (R̄, Eq. A.4) of

these phases (length of black vector in Figure 2):

ITC(θ1, . . . , θN) = R̄(θ1, . . . , θN) (A.7)

For each IC of every subject, standard modality, and attended modality, we

used the corresponding set of epochs to calculate ITC between the start and end

times of the epochs, and between 0.5 Hz to 125 Hz. We selected the peak ITC

between 100 and 500 ms after the presentation of the standard at time zero, and

between 1 and 14 Hz. The frequency corresponding to this peak (i.e., the peak

ITC frequency) was then used to measure the single-trial phase, as described in

Section A.1.6. The median peak ITC frequency and its 95% confidence interval

were 4.93 Hz and [4.59, 5.21] Hz, respectively, and the median time of the ITC peak

and its 95% confidence interval were 215 ms and [212, 226] ms, respectively. ITC

between -200 and 500 ms around the presentation of attended visual standards,

from IC 5 of subject av130a are shown in Figure A.1. The black cross in this figure

marks the peak ITC value, occurring at peak frequency 8.15 Hz.

A.1.6 Measuring phases in single trials

After selecting the peak ITC frequency (Section A.1.5) for an IC of a subject, a

standard modality, and an attended modality, we computed a Gabor transform

of all epochs at this frequency. These epochs started one second before and ended

three seconds after the presentation of standards. For this calculation, we used

the function cgt in the Rwave package of the language R (R Core Team, 2012).

We adjusted the scale of the Gabor’s Gaussian window to obtain three significant

sinusoids at the peak ITC frequency. The phases of single trials were extracted
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Figure A.1: Example set of ITC values and selected peak from IC 5 of subject

av130a and attended visual standards. The peak ITC value (black cross) was

selected between 100 and 500 ms and between 1 and 14 Hz. The selected peak

ITC frequency, time, and value were 8.52 Hz, 148 ms, and 0.83, respectively.

Non-significant ITC (p>0.01, Rayleigh uniformity test) is masked in light blue.
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from the complex coefficients of this Gabor transform.

A.1.7 Relation between the averaged DMP and the ITC

The DMP is a measure of phase decoherence, while the ITC is a measure of phase

coherence. Here we derive an upper bound for the averaged DMP, DMP , by ITC

(Proposition 1). From this bound we infer that to minimal DMP (i.e., DMP ≃ 0)

correspond large ITC (i.e., ITC ≃ 1), and that the maximal DMP is 1/2.

Proposition 1. DMP ≤ 1
2
− ITC

2

Proof. We first rewrite DMP

DMP (θi|{θ1, . . . , θN}) = CV (θi, θ̄(θ1, . . . , θN))

= 1− R̄(θi, θ̄(θ1, . . . , θN))

= 1− 1

2
|R(θi, θ̄(θ1, . . . , θN ))|

= 1− 1

2
|vec(θi) + vec(θ̄(θ1, . . . , θN))| (A.8)

The first equality comes from Eq. 1, the second one from Eq. A.5, the third one

from Eq. A.4, and the fourth one from Eq. A.3. We also rewrite vec(θ̄(θ1, . . . , θN )):

vec(θ̄(θ1, . . . , θN)) = vec(arg(R(θ1, . . . , θN)))

=
R(θ1, . . . , θN )

|R(θ1, . . . , θN )|

=
R(θ1, . . . , θN)

NR̄(θ1, . . . , θN)|
(A.9)

The first equality comes from Eq. A.6, the second one from the fact that vec

applied to arg of any vector gives the vector normalized to unit length, the third

equality comes from Eq. A.4. Then,
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1−DMP = 1− 1

N
ΣN

i=1DMP (θi|{θ1, . . . , θN})

=
1

2N
ΣN

i=1|vec(θi) + vec(θ̄(θ1, . . . , θN))|

≥ 1

2N

∣

∣ΣN
i=1vec(θi) +N vec(θ̄(θ1, . . . , θN))

∣

∣

=
1

2N

∣

∣

∣

∣

R(θ1, . . . , θN) +
R(θ1, . . . , θN))

R̄(θ1, . . . , θN)

∣

∣

∣

∣

=
1

2N

(

1 +
1

R̄(θ1, . . . , θN)

)

|R(θ1, . . . , θN )|

=
1

2

(

1 +
1

R̄(θ1, . . . , θN)

)

R̄(θ1, . . . , θN )

=
1

2

(

R̄(θ1, . . . , θN) + 1
)

=
ITC

2
+

1

2
(A.10)

The first equality comes from the definition of DMP , the second one from Eq. A.8,

the third one from the triangle inequality, the fourth one from Eq. A.3 and Eq. A.9,

the fifth one from taking R(θ1, . . . , θN) as common factor, the sixth one from

Eq. A.4, the seventh one from distributing R̄(θ1, . . . , θN), and the eight one from

Eq. A.7. The proposition follows by re-arranging Eq. A.10.

Because 0 ≤ DMP ≤ 1 it follows that 0 ≤ DMP ≤ 1. When ITC is maximal

(i.e., ITC=1) Proposition 1 shows that DMP ≤ 0, thus DMP must achieve it

minimum (i.e., DMP = 0). Also, this proposition shows that 1/2 is an upper

bound for DMP , corresponding to zero ITC.

A.1.8 Equivalence between the minimization of the ridge regression

error function and the maximization of the log posterior of the

model coefficients

Proposition 2. Given the likelihood function in Eq. 5, and the priors in Eq. 6

and Eq. 7, the coefficients w maximizing the logarithm of the posterior distribution
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J(w) in Eq. 8 minimize the ridge-regression error function RMSE(w) in Eq. 4.

Proof. We first rewrite the joint pdf P (y,w, τ, α,Φ) as:

P (y,w, τ, α,Φ) = P (y|w, τ,Φ)P (w, τ |α)P (α)

= N(y|Φw, τ−1I)N(w|0, (τα)−1I)Gam(τ |a0, b0)Gam(α|c0, d0)

=
N
∏

n=1

N(y[n]|〈x[n, ·],w〉, τ−1)

K
∏

k=1

N(w[k]|0, (τα)−1)

Gam(a0, b0)Gam(c0, d0)

=
N
∏

n=1

1√
2πτ−1

exp

(

−(y[n]− 〈x[n, ·],w〉)2
2τ−1

)

K
∏

k=1

1
√

2π(τα)−1
exp

(

− w[k]2

2(τα)−1

)

Gam(τ |a0, b0)Gam(α|c0, d0) (A.11)

The first equality comes from applying Bayes rule, the second one from substitut-

ing Eq. 5, Eq. 6, and Eq. 7 into the first equality, the third one from the fact that

the Gaussian distributions in the second equality are independent, and the last

one from the definition of a Gaussian distribution.
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argmax
w

J(w) = argmax
w

logP (w|y, τ, α,Φ)

= argmax
w

logP (y,w, τ, α,Φ)

= argmax
w

[

N
∑

n=1

−(y[n]− 〈x[n, ·],w]〉)2
2τ−1

+
K
∑

k=1

− w[k]2

2(τα)−1

]

= argmin
w

[

N
∑

n=1

(y[n]− 〈x[n, ·],w]〉)2
2τ−1

+
K
∑

k=1

w[k]2

2(τα)−1

]

= argmin
w

[

N
∑

n=1

(y[n]− 〈x[n, ·],w]〉)2 +
K
∑

k=1

w[k]2

α−1

]

= argmin
w

[

MSE(w) + α||w||2
]

= argmin
w

RMSE(w)

The first equality comes from the definition of J(w) in Eq. 8, the second one from

the fact that, by Bayes rule, P (w|y, τ, α,Φ) equals P (y,w, τ, α,Φ) times a factor

independent of w and thus argmaxP (w|y, τ, α,Φ) = argmaxP (y,w, τ, α,Φ),

the third one by discarding the terms not including w in Eq. A.11 and taking

the logarithm, the fourth one from the fact that the maximum of a function is

the minimum of the negative of that function, the fifth one from the fact that

argmin of a function does not change by multiplying it by a constant, the sixth

one from the definition of MSE(w) in Eq. 3, and the final one from the definition

of RMSE(w) in Eq. 4.

A.1.9 Adjustment for multiple comparisons in correlation tests

We followed procedures detailed in Westfall and Young (1993) and summarized

next. For a family of hypothesis H1 vs. H ′
1, H2 vs. H ′

2, . . . , Hk vs. H ′
k, we aim to

control the Familywise Error Rate (FWE) defined as FWE=P(Reject at least one

Hi|all Hi are true). For this we define adjusted P values, p̃i, i = 1, . . . , k, and we

reject Hi at FWE=α if and only if p̃i ≤ α. We denote observed values with lower-
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case and the corresponding random variables with uppercase. The definition of the

adjusted P value, p̃i, should guarantee that FWE=α. That is, α=FWE=P(Reject

at least one Hi at level α|all Hi are true)=P(min1≤j≤k P̃j ≤ α|all Hi are true).

We define p̃i = P (min1≤j≤k Pj ≤ pi|all Hi are true), where pi is the observed

non-adjusted P value. When the P values Pj are independent it can be shown

(Westfall and Young, 1993, p. 47) that the previous definition leads to an exact

multiple comparison method (i.e., FWE=α).

In our tests of correlation, the hypothesis Hi (H
′
i) states that the correlation

coefficient between two sequences {a1, . . . , an} and {b1, . . . , bn} corresponding to

the ith cluster, standard modality, and attended modality is zero (different from

zero). To compute the adjusted P value p̃i we use a resampling procedure. We

first generate nResamples=5,000 samples of min1≤j≤k Pj under the null hypothe-

sis that all Hi are true and then estimate p̃i as the proportion of samples smaller

or equal than the observed non-adjusted P value pi. To generate a sample of

min1≤j≤k Pj under the null hypothesis, for each cluster, standard modality, and

attended modality we: (1) obtain the sequences {a1, . . . , an} and {b1, . . . , bn} to

test for significant correlation (e.g., ai=“correlation coefficient between models’

decodings and SFPDs for a subject i” and bi=“error rate for subject i” in Fig-

ure 5a), (2) shuffle the sequence {b1, . . . , bn} (to be under the null hypothesis), (3)

compute the P value of the correlation coefficient between the {a1, . . . , an} and

the shuffled {b1, . . . , bn}. The sample of min1≤j≤k Pj under the null hypothesis is

then the minimum of all P values generated in step (3) across all clusters, standard

modalities, and attended modalities.

We adjusted for multiple comparison correlation tests between (a) models’ de-

codings and SFPDs (Figure 3j-l, colored dots in Figure 4, Table A.2), and (b)

models’ decoding powers and subjects’ behavioral measures (Figure 5, daggers in

Figure 4, Tables A.3 and A.4). We begun by defining the family of hypothesis H1

vs. H ′
1, . . . , Hk vs. H ′

k in the definition of the FWE, see above. In (a) we used 19
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families of hypothesis, one per subject. The family for subject s contained hypoth-

esis concerning correlation coefficients between model decodings and SFPDs, of all

models for subject s across clusters, standard modalities, and attended modalities,

that were significantly different from the intercept-only model (p<0.01; likelihood-

ratio permutation test, Section A.1.12). The null ith hypothesis for subject s was

Hs
i={the correlation coefficient between models’ decodings and SFPDs for subject

s and the ith combination of cluster, standard modality, and attended modality is

zero}. The mean and standard deviation of the number of pairs of hypothesis in

a family of hypothesis for a subject was 29.37± 12.64. In (b) we used one family

of hypothesis for error rates and another one for mean reaction times. Each of

these families contained hypothesis regarding the correlation between models’ de-

coding powers and subjects’ behavioral measures (error rates and mean reaction

times) across all clusters, standard modalities, and attended modalities. Each

of these correlations was evaluated across all models corresponding to a cluster,

standard modality, and attended modality, as in Figure 5. The ith null hypothe-

sis for behavioral measure b was Hb
i={the correlation coefficient between models’

decoding accuracies and subjects’ behavioral measure b for the ith combination

of cluster, standard modality, and attended modality equals is zero}. Each family

contained 56 pairs of hypothesis (14 clusters × 2 standard modalities × 2 attended

modalities).

A.1.10 Calculation of robust correlation coefficients and correspond-

ing P values

We used skipped measures of correlation (Wilcox, 2012) to characterize the asso-

ciation between pairs of variables in a way that was resistant to the presence of

outliers. The calculation of these measures, and the estimation of their bootstrap

confidence intervals, followed the procedures described in (Wilcox, 2012; Pernet

et al., 2013).
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Skipped correlations were obtained by checking for the presence of outliers, re-

moving them, and applying some correlation coefficient to the remaining data (Wilcox,

2012, Chapter 9). We only considered bivariate outliers, which were selected using

the function outpro freely available from Wilcox (2017).

To estimate the association between single-trial decoding errors and SFPDs

(e.g., Figure 3j-l), we used the skipped Pearson correlation coefficient (i.e., after

outlier removal, the remaining data points were correlated using the Pearson prod-

uct moment correlation coefficient; function pcor from Wilcox (2017)). The use

of this correlation coefficient requires that the marginals of the data are approxi-

mately normal, as it was the case in the previous data.

The averaged behavioral data tended to be bimodally distributed, with a group

of subjects displaying better performance and another group showing worse per-

formance. Thus, the marginals of the averaged behavioral data were not approx-

imately normal, and it was not possible to use the skipped Pearson correlation

coefficient to asses the association between average behavioral data and mod-

els’ decodings. Instead, we quantified this association using the skipped Spear-

man correlation coefficient (i.e., after outlier removal, the remaining data points

were correlated using the Spearman rank correlation coefficient; function spear

from Wilcox (2017)). The use of this correlation coefficient does not assume that

the distribution of the correlated variables is bivariate normal, but requires that

their association be monotonic, as it was the case for our averaged data.

To compute P values corresponding to hypothesis tests of robust correlation co-

efficients we used permutation tests following the procedure given in Pernet et al.

(2013). Given a dataset of two sequences to correlate, we (1) removed bivari-

ate outliers from this dataset, (2) computed the correlation coefficient between

the sequences in the outliers-removed dataset (using functions pcor and spear

from Dr. Wilcox’s website for Pearson and Spearman correlation coefficients, re-

spectively), (3) computed nResamples=5000 correlation coefficients between the
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first sequence and a random permutation of the second sequence in the outliers-

removed dataset (again using functions pcor or spear), and (4) we calculated a

two-sided P value as the proportion of correlation coefficients computed in step (3)

whose absolute value was larger than that of the correlation coefficient computed

in step (2).

A.1.11 Construction of ERP-superposition-removed datasets

For the switch-to-vision (LOOK) and the switch-to-audition (HEAR) warning

signals of each dataset (i.e., of each subject, component, attended modality, and

standard modality) we computed ERPs by calculating the mean of their ICA-

component activations between one second before and three seconds after the

presentation of the warning signal.

For each sample time we calculated the P value of a two-sided t-test checking

whether the mean ICA-component activation at that time was different from zero.

We corrected these P values for multiple comparison using the Bonferroni method.

For each warning signal ERP we defined the last-significant lag as the last

ERP sample time with P value less than 0.05. For each dataset we built a cor-

responding ERP-superposition-removed dataset by removing standards following

the preceding warning signal by less than the last-significant lag of the ERP of

this warning signal.

A.1.12 Additional statistical information

Crossvalidated decodings All models decodings were cross validated using the

leave-one-out method with the function crossval of the package bootstrap of

R (R Core Team, 2012).

95% bootstrap CIs for regression coefficients (Figure 3m-o) We performed

2,000 ordinary bootstrap resamples of the trials (with the function boot of the

package boot of R (R Core Team, 2012)), and for each resample we estimated a
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set of regression coefficients, as described in Section 2.7. Having estimated 2,000

sets of regression coefficients, we computed 95% percentile confidence intervals

with the function boot.ci of package boot of R (R Core Team, 2012).

95% bootstrap CI for difference in paired means of correlation coefficients

obtained from the original versus a surrogate dataset (Figure 7). We performed

2,000 ordinary bootstrap resamples of the pairs of correlation coefficients obtained

from the original versus a surrogate dataset (with the function boot of the package

boot of R (R Core Team, 2012)). For each resample, and for each sample point,

we subtracted the correlation coefficient of the original minus that of the surrogate

dataset. Then we calculated the mean difference across all sample points. Having

estimate 2,000 bootstrap means of pairwise differences, we computed a 95% per-

centile bootstrap confidence interval with the function boot.ci of package boot

of R (R Core Team, 2012).

95% bootstrap CI for difference in averaged DMP between trials with the

longest and shortest SFPD (Figures 3g-i). We calculated 2,000 stratified bootstrap

resamples of the 20% of trials with the shortest and longest SFPDs, using the

function boot of the package boot of R (R Core Team, 2012) with the strata

option. For each resample, and for each sample point, we subtracted from the

mean DMP across the 20% of trials with longest SFPD the mean DMP across the

20% of trials with shortest SFP. Having estimated 2,000 bootstrap differences in

mean DMP between trials with the longest and shortest SFPD, we computed a

95% percentile bootstrap confidence interval for these differences with the function

boot.ci of package boot of R (R Core Team, 2012).

Likelihood-ratio permutation test for linear model We used it to test the

alternative hypothesis, H1, that there exists an association between the dependent

and independent variables of a decoding model against the null one, H0, that no

such association exists. The statistic for this test was the logarithm of the ratio

between the likelihood of the data given a full model and that given a null model.
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A full model associates all independent variables with the dependent one, while

a null model associates only the constant term with the dependent variable. The

likelihood of the data given a model is derived from Eq. 5. The test was conducted

as follows. We first measured the test statistic in the original dataset, Tobs. Then,

we built the distribution of the test statistic under H0, by generating R=2000

datasets where there was no association between the dependent and independent

variables (by permuting the dependent value assigned to independent values) and

measuring the test statistic in these datasets. The one-sided P value of the test is

the proportion of samples of the test statistic under H0 that are larger than Tobs.

Normalized cross-correlation (Section 3.5) We normalized the cross-correlation

(at lag zero) between two time series in such a way that it returned one when cor-

relating a time series with itself. We defined:

ncor(x, y) =
cor(x, y)

√

cor(x, x)
√

cor(y, y)

where x and y are two time series, and cor(x, y) is the unnormalized cross-

correlation (at lag zero) between these time series. The normalized cross-correlation

was computed with the function ccf of the package stats of R (R Core Team,

2012).

A.1.13 Selection of the optimal maximum SFPD

To fit decoding models we used data from standards that were presented before an

optimal maximum SFPD after the warning signal. For models fitted to data from

IC 5 of subject av130a, and unattended visual standards, Figure A.2 plots the

decoding power of models as a function on their maximum SFPD. We see that the

decoding power of models varied smoothly as a function of this maximum SFPD.

For each estimated model we selected the maximum SFPD that optimized the
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Figure A.2: Selection of the optimal maximum SFPD for the decoding model

for IC 5 of subject av130a, unattended visual standards, and phase measured at

9.4 Hz. Decoding models were estimated with maximum SFPDs between 500 ms

and the largest SFPD in a set of trials, in steps of 100 ms (abscissa), and the

correlation coefficient were computed between models’ decodings and experimental

SFPDs (ordinate). The SFPD at which this correlation coefficient was largest was

selected as the optimal maximum SFPD (red bar). To avoid possible modulations

of ITPC by the warning signal, we excluded from this selection maximum SFPDs

shorter than one second (gray bar).

decoding power of the model as the optimal maximum SFPD. We chose maximum

SFPDs between one second and the largest SFPD of any trial in the data. We

did not selected maximum SFPDs shorter than one second since ITPC following

the presentation of standards close to the warning signal may be contaminated

by evoked potentials by this warning signal. For IC 5 of subject av130a and

unattended visual standards, the optimal maximum SFP duration was 2.8 seconds

(time highlighted in red in Figure A.2).
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A.2 Controls on the SFP effect on ITPC

From the successful decoding of SFPDs from ITPC evoked by standards we in-

ferred that SFPD modulates ITPC evoked by standards. In Section A.2.1 we

presented evidence supporting the inference that in the SFP effect on ITPC the

modulated variable is the ITPC evoked by standards, and in Section A.2.2 we

support the hypothesis that the modulating variable is the SFPD.

A.2.1 Modulations of ITPC used by decoding models do not seem to

be generated by warning signals

The warning signal presented before a standard could have modulated the ITPC in

the 500 ms-long time window following the presentation of a standard, and only

this modulation could have allowed models to decode when the warning signal

was presented prior to the standard at time zero (Figure 1c). In this alternative

hypothesis, the occurrence of standards should be irrelevant and it should be

possible to decode from any 500 ms-long time window starting at any time t0

after the presentation of the warning signal that the warning signal was presented

t0 milliseconds before the start of the window.

We tested this alternative hypothesis by building surrogate datasets, identical

to the original ones, with the only exception that epochs were aligned to pseudo-

random times, instead of being aligned to the presentation time of standards

(Section 2.4.1). For each original dataset, we generated 30 surrogate datasets. For

each surrogate dataset, we fitted a decoding model (in exactly the same way as

with the original dataset), and computed the correlation coefficient between model

decodings and SFPDs. We used the median of these 30 correlation coefficients to

measure the decoding power of models fitted to surrogate datasets. For models

derived from ICs in the left parieto-occipital cluster 4 and the attended visual

standards, Figure A.3 shows that the decoding power of models fitted to original
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datasets was significantly larger than that of models fitted to corresponding sur-

rogate datasets. The median pairwise difference between the decoding power of

models fitted to original datasets minus that of models fitted to surrogate datasets

was 0.21, which was significantly larger than zero (95% confidence interval [0.17,

0.25], Section A.1.12).

Note that the estimation of the decoding power for models fitted to surrogate

datasets was computationally very expensive. For each cluster, standard modality,

and attended modality, we fitted approximately 28,500 models, corresponding to

19 subjects× around 50 maximal SFPDs to select the optimal one (Section A.1.13)

× 30 repetitions of the randomization procedure. For this reason, we limited this

control to one representative cluster, standard modality, and attended modality.

This control furnishes evidence against the possibility that the observed mod-

ulations on ITPC were evoked by the warning signal, since modulations of ITPC

by the warning signal should not be affected by the randomization of onsets of

standards.

A.2.2 The SFP duration generates the SFP effect on ITPC

It is possible that from DMP evoked by standards one could reliably decode any

variable, and not only the SFPD. This would be the case, for example, if a decoding

model was overfitted to data. To control for this possibility, we proceed as in

Section A.2.1, but with surrogate datasets with shuffled SFPDs. That is, instead

of assigning to each trial its corresponding SFPD, we assigned the SFPD of a

randomly chosen (without replacement) trial. Since the SFPD is the dependent

variable in the decoding model (Section 2.6), the surrogate dataset only shuffled

the dependent values of this model.

Figure A.4 is as Figure A.3, but for control models estimated from surrogate

datasets with shuffled SFPDs. The decoding power of models estimated from orig-

inal datasets was significantly larger than that of models estimated from surrogate

Page 18



Rapela et al. A new foreperiod effect on inter-trial phase coherence

av101aC07

av101aC12

av121aC02

av112aC07

av112aC11av113aC09

av113aC17av115aC04

av115aC20

av116aC12

av120aC10

av122aC17

av124aC07

av128aC04

av130aC05

av1039aC19

av1040aC12

av1042bC07

median original−randomized=0.21

95% CI=[0.17 0.25]

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6
Median Cor. Coef. Randomized STD Onset

C
o

r.
 C

o
e

f.
 O

ri
g

in
a

l

cluster 04, attended visual stds

Figure A.3: Control for the influence of the warning signal on the SFP effect on

ITPC. If the warning signal were generating the SFP effect on ITPC, randomizing

the start times of the epochs should not significantly change the decoding power of

models (see text). However, correlation coefficients between model decodings and

experimental SFPDs for models fitted to original datasets, with epochs aligned to

the presentation time of standards (ordinate), were significantly larger than those

for models fitted to surrogate datasets, with epochs aligned to pseudo-random

times (abscissa). Data is from the left parieto-occipital cluster 4 and attended

visual standards. This control suggests that the warning signal is not generating

the SFP effect on ITPC.
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Figure A.4: Control suggesting that the SFPD generates the SFP effect on ITPC.

Same format as in Figure A.3 but for surrogate datasets with SFPDs shuffled

among trials. Correlations for models fitted to original datasets were significantly

larger than those for models fitted to surrogate datasets, supporting the assump-

tion that that the SFPD is the modulating variable in the SFP effect on ITPC.

datasets. The median pairwise difference between the correlation coefficient for a

model estimated from an original dataset minus that for a model estimated from

the corresponding surrogate dataset was 0.18, which was significantly different

from zero (95% confidence interval: [0.15, 0.24]). Thus, Figure A.4 supports the

inference that the SFPD is the experimental variable modulating the ITPC evoked

by standards.
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A.2.3 ERPs evoked by warning signals may occlude the SFP effect on

ITPC

We hypothesized that the ERP evoked by the warning signal may complicate the

observation of the SFP effect on ITPC and be a source of noise on this effect.

To test this hypothesis we estimated models using only standards presented more

than one second after the warning signal. Since the strength of the ERP varies

across subjects and conditions (i.e., standard modalities and attended modali-

ties), we thought that the hypothetical ERP noise could vary similarly. Thus,

for each dataset (i.e., for each subject, standard modality and attended modal-

ity) we searched by brute force for an optimal minimum SFPD longer than one

second and for an optimal maximum SFPD. We estimated decoding models for

all combinations of minimum and maximum SFPDs (we used minimum and max-

imum SFPDs between one second and the maximum SFPD in each dataset in

steps of 100 ms) and selected the optimal minimum and maximum SFPDs as

the combination for which the correlation coefficient of the corresponding model

was largest. For each combination of minimum and maximum SFPD Figure A.5a

shows the correlation coefficient between model leave-one-out cross-validated de-

codings and SFPDs, for component 01 (assigned to the mid-central cluster 19) of

subject av113a and unattended visual standards. Gray points in this plot corre-

spond to combinations of minimum and maximum SFPDs for which there were

not enough standards to estimate a model (Section 2.8) or for which the estimated

mean correlation coefficient was negative (negative correlation coefficients can oc-

cur because the ridge-regression estimator is biased, Hoerl and Kennard, 1970).

Best decodings were obtained for minimum and maximum SFPDs of 3,100 and

5,600 milliseconds, respectively, with a correlation coefficient r = 0.83.

Figure A.5b plots the estimated minimum versus maximum SFPDs, maxi-

mum correlation coefficients and 95% confidence intervals for all subjects and
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components in the mid-central cluster 19 and unattended visual standards (the

point highlighted in red corresponds to the subject and component shown in Fig-

ure A.5a). Ten of the eleven estimated models with minimum SFPD selected

to be larger than one second decoded SFPDs significantly better than chance

(Figure A.5b). The mean correlation coefficient for the five models with larger

minimum SFPD was significantly larger than that of the six models with smaller

minimum SFPD (difference in mean correlation = 0.33, p=0.002; permutation

test for difference in means). The decoding power of these models was signif-

icantly larger than that of models estimated using the original procedure (i.e.,

with minimum SFPD set to zero) (median correlation coefficient difference = -

0.30, 95% confidence interval = [-0.39, -0.06]; Figure A.5c), while the decoding

power of models with minimum SFPD selected to be larger than one second re-

mained significantly correlated with error rates of subjects (r=-0.61, p=0.0215;

Figure A.5d).

That models with minimum SFPD selected to be larger than one second

achieved larger decoding power than original models with minimum SFPD set

to zero (Figure A.5c) could be due to the fact that we searched over a larger set

of models to select the optimal minimum and maximum SFPD for models with

minimum SFPD selected to be larger than one second. However, this difference

in the size of the model search space cannot explain the larger decoding power

of models with larger minimum SFPD (Figure A.5b), since the size of the model

search space was the same for all estimated models. The larger decoding power

of models with minimum SFPD selected to be larger than one second should

not reflect overfitting, because decoding power was measured using leave-one-out

crossvalidation and the estimation of model coefficients was heavily regularized.

Also, if the larger decoding power of models with minimum SFPD selected to be

larger than one second were an artifact, it would be unlikely to obtain significant

correlations between the decoding power of models and error rates of subjects (as
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in Figure A.5d).

We conjecture that superior decodings occurred because, by removing stan-

dards close to the warning signal, we eliminated uninformative (i.e., noisy) train-

ing samples for the estimation of decoding models. This late finding suggests that

the results presented in this manuscript may be further improved by selecting min-

imum and maximum SFPDs for each subject and condition (as in Figure A.5a)

instead of just selecting maximum SFPDs (as in Figure A.2).
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Figure A.5: (From previous page) Selection of minimum SFPDs larger than

one second for subjects and components in the mid-central cluster 19 and unat-

tended visual standards. (a) Example selection for subject av113a, component 01

and unattended visual standards. We estimated decoding models with minimum

and maximum SFPDs varying from 1000 ms to the maximum possible SFPD of

6,612 ms in steps of 100 ms and selected optimal minimum and maximum SF-

PDs as those corresponding to the model with largest correlation coefficient. For

this subject, component and condition the maximum correlation coefficient was

r=0.83, which was achieved by a decoding model estimated with minimum and

maximum SFPDs of 3,100 and 5,600 milliseconds, respectively. (b) Minimum

versus maximum optimal SFPDs for all models, their corresponding correlation

coefficients and 95% confidence intervals. The correlation coefficients of ten of

the eleven estimated models were significantly different from zero. The mean

correlation coefficient of the five models with the longest minimum SFPD was

significantly larger than that of the six models with the shortest minimum SFPD

(difference of means=0.33, P value=0.002). (c) Decodings of models estimated

using the original procedure (i.e., using a minimum SFPD of zero and selecting

the maximum SFPD, as in Figure A.2) versus those of models estimated using

minimum SFPDs selected to be larger than one second. On average, the latter

set of models decoded SFPDs significantly better than the former set of models

(median correlation coefficient for models estimated from original datasets minus

that for models estimated from datasets with minimum SFPD selected to be larger

than one second = -0.30, 95% confidence interval = [-0.39, -0.06]). (d) Decoding

power of models with minimum SFPD selected to be larger than one second was

significantly correlated with subjects’ error rates (r=-0.61, p<=0.0215).
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A.3 How may the brain generate the SFP effect on ITPC?

A brain mechanism generating the SFP effect on ITPC should be able to replicate

the fluctuations in ITPC shown in Figures 3 and A.11. We make three observations

about these figures: First, these fluctuations appear to oscillate at a very low

frequency (i.e., less than 1 Hz), independently of the frequency at which the phase

of trials was measured (the latter frequency is that of the cosine of the mean phase

given by the dashed curve in Figures 3d-f and A.11). Coincidentally, fluctuations

at 1 Hz in visual detectability have been reported by Fiebelkorn et al. (2011).

Also, fluctuations in somatosensory detectability (between 0.01 and 0.1 Hz) have

been described by Monto et al. (2008). Second, in some figures the phase of

the oscillations of ITPC at time zero differs between early and late trials (e.g.,

the phase of the blue curve corresponding to early trials in Figure 3d is more

advanced than that of the red curve corresponding to late trials). Third, as shown

in Figure 5, these fluctuations in ITPC are related to subjects’ behaviors.

We propose a simple model for the generation of low-frequency oscillations

that can account for the previous observations. The component of the recorded

potential corresponding to trial i, at frequency f , and time t is given by Eq. A.12:

trial(i, f, t) = cos(2πft+ θ + n(SFPD[i], t)), with (A.12)

n(SFPD, t) = M(µ = 0, κ = κ(SFPD, t)) (A.13)

κ(SFPD, t) =
maxκ−minκ

2
cos(2πfnt+ θ(SFPD)) +

minκ+maxκ

2
, and(A.14)

θ(SFPD) =
π

(maxSFPD−minSFPD)s
(maxSFPD− SFPD)s (A.15)

To account for the first previous observation, we assume that the phase of the

cosine is contaminated by an additive noise n (Eq. A.13) following a von Mises dis-

tribution with a precision parameter, κ, varying sinusoidally on time (Eq. A.14).
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When the precision of this noise is small and large we should observe decoher-

ent and coherent oscillations, respectively, and, because the noise precision varies

sinusoidally in time (Equation A.14), we should observe alternations between co-

herence and decoherence, as shown in Figures 3d-f and A.11. To account for the

second previous observation, we make the phase at time zero of the precision of

the noise vary smoothly as a function of the SFPD (Eq. A.15). To account for

the third observation, we speculate that subjects achieving better detection per-

formance were those showing larger fluctuations of the precision of the noise. For

these subjects ITPC should be more different between trials closer to and further

away from the warning signal, and models should more reliably decode SFPDs

from ITPC, in agreement with Figure 5. The parameters of the previous model

are the frequency, f , the noiseless phase, θ, and the vector of SFPDs, SFPD, in

Eq. A.12; the minimum and maximum values, minκ and maxκ, and the frequency,

fn, of the noise precision in Eq. A.14; and the steepness of the change in the noise

precision phase as a function of the SFPD, s, in Eq. A.15.

To validate the previous speculations we simulated data following the model

in Eq. A.12 (Section A.4, Figure A.7) and fitted a decoding model to this data,

as we did with the neural recordings (Section 2.7). With this simulated data

we obtained oscillations of mean DMP (Figures A.6c,d, as in Figure 3d-f), in

the difference between the averaged DMP between trials closer to and further

away from the warning signal (Figures A.6e,f, as in Figure 3g-i), and in estimated

model coefficients (Figures A.6g,h, as in Figure 3m-o). In addition, we verified

that a model fitted to data with larger fluctuations of the precision of the noise

generated more accurate decodings than those of a model fitted to data with

smaller modulations of this precision, supporting the previous argument on the

relation between fluctuation of ITPC and subjects’ behaviors.

These results show that a simple sinusoidal oscillation with a noise process

added to its phase captures salient features of the SFP effect on ITPC, suggesting
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that this model may be a good first approximation to how the SFPD modulates the

ITPC of neural oscillations. Key features of this noise are its precision oscillating

in time with a phase depending on the SFPD.

A.4 Simulations of the SFP effect on ITPC

We simulated the model in Eq. A.12 twice, with the precision of the phase noise n

displaying larger (maxκ=5.00, minκ=0.01) and smaller (maxκ=3.50, minκ=1.51)

oscillations and with parameters f = 7Hz, θ = π, fn = 3Hz, and s = 2. For these

simulations we used the SFPDs, SFPD in Eq. A.12, from one experimental session

(subject av124a and attended visual standards). The simulated oscillations are

shown in Figure A.7 as an erpimage (Makeig et al., 2004) sorted by SFPDs (black

curve to the left of time zero). Figure A.7a and A.7b correspond to larger and

smaller fluctuations in the precision of the phase noise, respectively. Figure A.6

is as Figure 3 but for the simulated data. The fluctuations in averaged DMP in

trials closest to and furthest from the warning signal, those in their difference,

and fluctuations in the estimated model coefficients are similar for simulated and

experimental data. The correlation coefficient for the model fitted to data with

smaller fluctuations of the precision of the noise was r = 0.23 (95% CI=[0.12,

0.34]), which was significantly smaller than that for the model fitted to data with

larger fluctuations of the precision of the noise, r = 0.51 (95% CI=[0.43, 0.59]).

A.5 Problematic 2D visualization of 3D ECDs

Our study only characterized ICs with equivalent current dipole (ECD) inside

the brain (Section A.1.1 ICA data preprocessing). The appearance that some

ECDs lie outside the brain is due to the difficult two-dimensional visualization of

three-dimensional ECDs.

Some ECDs appear to lie outside the brain because it is difficult to display
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Figure A.6: Average DMP in trials furthest from and closest to the warning

signal and regression coefficients for data simulated from Eq. A.12. Same format

as Figure 3. That the panels in this figure capture salient features of those in

Figure 3, generated from neural recordings, suggests that the simple oscillatory

model in Eq. A.12 is a good first approximation to how the SFPD modulates the

phase of neural oscillations.

Page 28



Rapela et al. A new foreperiod effect on inter-trial phase coherence

−0.5

0.0

0.5

Time (ms)

T
ri

a
l 
in

d
e
x

50

100

150

200

250

300

0 100 200 300 400

Time (ms)

50

100

150

200

250

300

0 100 200 300 400

−0.5

0.0

0.5

(a) (b)

−0.5

0.0

0.5

V
o

lt
a

g
e

 (
m

V
)

simulated av124, attended visual stds

Figure A.7: Oscillations simulated according to Eq. A.12 with phase noise n having

small (minκ = 1.51, maxκ = 3.5, panel (a)) and large (minκ = 0.01, maxκ = 5.0,

panel (b)) fluctuations in precision (Eq. A.14). Bottom panels: each row represents

a trial color coded according the simulated voltage; trials are sorted from bottom

to top by increasing SFPD. We used the SFPDs from subject av124a and attended

visual standards. The black curves at negative times plot the presentation times of

the warning signal scaled so that the earliest presentation time fits in the 100 ms-

long pre-stimulus window. Top panels: ERPs calculated from trials in the bottom

panels.
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three-dimensional ECDs locations on two-dimensional images. Figure 4 shows

projections of ECDs locations on an axial slice of the brain at z = 0, while Fig-

ure A.9 displays projections of ECDs on axial, coronal, and sagital slices at z = 0,

x = 0, and y = 0, respectively. It is not possible to judge from these projections

if an ECD is located in gray matter, in white matter, or in the ventricles. For

example, an ECD at location (x, y, z) could be in gray matter but the projected

location (x, y, 0) could be in the ventricles, thus in its axial projection (as in Fig-

ure 4 and the left panels in Figure A.9) the ECD would appear to be located in the

ventricles. In addition, the previous figures display brain slices from the Montreal

Neurological Institute (MNI) standard brain that does not exactly represent the

brain of any subject in our study. Therefore, one should only expect that the

location of an ECD should be close to, but not exactly in, gray matter.

A.6 Supplementary figures

Figure A.8 plots examples of deviant foreperiod effects on reaction times and

detectability. Figure A.9 plots axial, coronal, and sagital views of all clusters.

Figure A.10 shows the number of significant models estimated for each subject,

standard modality and attended modality as a function of subjects’ error rates.

Figure A.11 shows average DMPs for the 20% trials with the shortest and longest

SFPDs in ICs from the left parieto-occipital cluster 4. Figure A.12 shows that the

ERP variability at its peak value and the peak ITC value are both uncorrelated

with subjects’ error rates for the mid-central cluster 19 and unattended visual

standards.
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(a) av112a, auditory attention (b) av124a, auditory attention

Figure A.8: Examples of significant deviant foreperiod effects on reaction time (a)

and on stimulus detectability (b). (a) Deviant foreperiod durations as a function of

reaction times, for subject av112a and the auditory attended modality. The signif-

icant correlation coefficient indicates a deviant foreperiod effect on reaction times.

Points colored in green mark outliers detected in the computation of the robust

correlation coefficient (Section A.1.10). (b) Median deviant foreperiod duration

for hits and misses, for subject av124a and the auditory attended modality. The

significantly larger median foreperiod duration for hits than for misses indicates a

foreperiod effect on stimulus detectability.
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Figure A.9: Clusters of ICs. Left, center, and right columns correspond to axial,

coronal, and sagital views, respectively.
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Figure A.10: Distribution of the SFP on ITPC among subjects. For each subject

panels plot the number of models with significant correlations between models’

decoding and experimental SFPDs (as in Figure 3g-i) versus the subject error

rate, for the visual and auditory standard modalities (top and bottom rows, re-

spectively) and for the visual and auditory attended modalities (left and right

columns, respectively). The SFP on ITPC was evident in most subjects and for

the auditory attended modality it tended to be stronger for subjects attaining

lower error rates. Green points indicate outliers detected in the calculation of

robust correlation coefficients (Section A.1.10).
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Figure A.12: Additional evidence for the lack of correlation between features of

the warning signal ERP and subjects’ error rates in the mid-central cluster 19 and

unattended visual standards. (a) Variability of the ERP at its peak value versus

subjects’ error rates. Variability was quantified as the width of the 95% confidence

interval of the mean of trials. (b) Peak ITC value versus subjects’ error rates.

Figure A.11: (From previous page) Mean DMP for trials with the shortest and

longest SFPDs. Each panel corresponds to a different IC from the left parieto

occipital cluster 4 and attended visual standards; the top plot shows the ERP

from all trials and the bottom the average DMPs from the 20% trials with the

shortest (blue traces) and longest (red traces) SFPDs. Panels are sorted from left

to right and from top to bottom by decreasing decoding power of the corresponding

models. Dotted and dashed lines plot the ITC and the cosine of the mean phase

(Equation A.6), respectively. For most ICs there is a significant SFP effect on

ITPC (i.e., a significant difference between the red and blue curves).
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Table A.1: Information about clusters of ICs. The anatomical labels associated

with the Talairach coordinates of the clusters’ centroids were extracted using the

Talairach client (Lancaster et al., 1997, 2000)

Cluster No. No. Talairach Hemisphere Lobe Gyrus Brodmann
Subjects ICs X Y Z Area

3 12 17 45 -13 43 Right Frontal Lobe Precentral Gyrus 4

4 14 18 -19 -74 9 Left Occipital Lobe Cuneus 17

5 11 14 -14 -42 33 Left Limbic Lobe Cingulate Gyrus 31

6 12 17 43 -39 34 Right Parietal Lobe Supramarginal Gyrus 40

7 8 9 -38 -18 1 Left Sub-lobar Claustrum *

8 3 4 56 -1 12 Right Frontal Lobe Precentral Gyrus 6

9 12 14 3 -62 7 Right Limbic Lobe Posterior Cingulate 30

10 9 10 6 17 18 Right Limbic Lobe Anterior Cingulate 33

11 12 13 8 -46 28 Right Parietal Lobe Precuneus 31

12 3 4 7 18 -50 No Gray Matter found

13 11 12 30 10 34 Right Frontal Lobe Middle Frontal Gyrus 8

14 10 13 -35 -25 53 Left Frontal Lobe Precentral Gyrus 4

15 16 20 23 -87 10 Right Occipital Lobe Middle Occipital Gyrus 18

16 4 5 14 45 -3 Right Limbic Lobe Anterior Cingulate 32

17 7 9 48 -33 4 Right Temporal Lobe Superior Temporal Gyrus 22

18 12 15 -6 21 31 Left Limbic Lobe Cingulate Gyrus 32

19 12 14 2 -7 42 Right Limbic Lobe Cingulate Gyrus 24

A.7 Supplementary tables

Table A.1 provides the Talairach coordinates and anatomical labels of the cen-

troids of the clusters in Figure 4. For each cluster, standard modality, and at-

tended modality, Table A.2 gives the number of models with decodings significant

correlated with SFPDs, and Tables A.3 and A.4 give the correlation coefficient,

r, between the decoding power of models and subjects’ detection error rates and

mean reaction times, respectively, as well as the corresponding unadjusted, p, and

adjusted, adj p, P values.
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Table A.2: Number (n) and proportion (%) of models with significant correlations

(adj p<0.05) between models’ decodings and experimental SFPDs. Cells high-

lighted in blue correspond to clusters, standard modalities, and attended modal-

ities where for more than 40% of models decodings were significantly correlated

with SFPDs.

Cluster Standard Visual Attention Auditory Attention
Modality n % n %

03 Visual 05 0.29% 06 0.35%
Auditory 02 0.12% 02 0.12%

04 Visual 08 0.44% 08 0.44%
Auditory 02 0.11% 05 0.28%

05 Visual 04 0.29% 02 0.14%
Auditory 01 0.07% 03 0.21%

06 Visual 04 0.24% 03 0.18%
Auditory 05 0.29% 06 0.35%

07 Visual 01 0.11% 01 0.11%
Auditory 00 0.00% 03 0.33%

09 Visual 06 0.43% 05 0.36%
Auditory 03 0.21% 05 0.36%

10 Visual 01 0.10% 02 0.20%
Auditory 00 0.00% 05 0.50%

11 Visual 06 0.46% 03 0.23%
Auditory 03 0.23% 04 0.31%

13 Visual 03 0.25% 02 0.17%
Auditory 03 0.25% 03 0.25%

14 Visual 04 0.31% 05 0.38%
Auditory 04 0.31% 02 0.15%

15 Visual 11 0.55% 07 0.35%
Auditory 01 0.05% 07 0.35%

17 Visual 02 0.22% 02 0.22%
Auditory 03 0.33% 03 0.33%

18 Visual 01 0.07% 03 0.20%
Auditory 06 0.40% 03 0.20%

19 Visual 04 0.29% 02 0.14%
Auditory 03 0.21% 04 0.29%
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Table A.3: Correlations between the strength of the SFP effect on ITPC and sub-

jects’ detection error rates. The strength of the SFP effect on ITPC is quantified

with the correlation coefficient between decodings of the model and experimental

SFPDs (Section 3.3). Each cell shows the correlation coefficient, r, and P values

unadjusted, p, and adjusted, adj p, for multiple comparisons. Blue cells highlight

correlations with p<0.05 and the red cell corresponds to adj p=0.05.

Cluster Standard Visual Attention Auditory Attention
Modality r p adj p r p adj p

03 Visual 0.29 0.3054 1.00 0.30 0.2714 1.00
Auditory -0.07 0.8022 1.00 -0.20 0.4766 1.00

04 Visual -0.64 0.0048 0.38 0.16 0.5212 1.00
Auditory 0.06 0.8360 1.00 -0.12 0.6572 1.00

05 Visual -0.50 0.0916 1.00 -0.70 0.0162 0.77
Auditory -0.22 0.4846 1.00 -0.10 0.7612 1.00

06 Visual -0.54 0.0336 0.95 -0.33 0.2068 1.00
Auditory 0.15 0.5650 1.00 -0.23 0.3694 1.00

07 Visual -0.74 0.0444 0.98 0.36 0.3490 1.00
Auditory -0.17 0.6548 1.00 -0.59 0.1016 1.00

09 Visual -0.20 0.4902 1.00 -0.43 0.1456 1.00
Auditory -0.34 0.2412 1.00 -0.25 0.3942 1.00

10 Visual -0.29 0.4274 1.00 0.49 0.1706 1.00
Auditory -0.18 0.6250 1.00 -0.05 0.8794 1.00

11 Visual 0.47 0.1218 1.00 -0.29 0.3104 1.00
Auditory -0.43 0.1388 1.00 -0.34 0.2586 1.00

13 Visual -0.19 0.5626 1.00 0.26 0.4390 1.00
Auditory -0.23 0.5264 1.00 0.11 0.7402 1.00

14 Visual -0.20 0.4964 1.00 0.34 0.2938 1.00
Auditory 0.36 0.2404 1.00 -0.21 0.5538 1.00

15 Visual 0.23 0.3648 1.00 -0.08 0.7376 1.00
Auditory -0.38 0.1298 1.00 -0.09 0.7108 1.00

17 Visual 0.06 0.8684 1.00 -0.29 0.4408 1.00
Auditory 0.11 0.7900 1.00 -0.08 0.8194 1.00

18 Visual -0.10 0.7612 1.00 -0.11 0.7054 1.00
Auditory 0.07 0.8038 1.00 -0.25 0.3922 1.00

19 Visual -0.07 0.8098 1.00 -0.91 0.0004 0.05
Auditory -0.62 0.0216 0.85 -0.07 0.8002 1.00
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Table A.4: Correlations between the strength of the SFP effect on ITPC and

subjects’ mean reaction times. Same format as Table A.3.

Cluster Standard Visual Attention Auditory Attention
Modality r p adj p r p adj p

03 Visual -0.30 0.2574 1.00 0.02 0.9392 1.00
Auditory -0.25 0.3218 1.00 0.16 0.5410 1.00

04 Visual -0.15 0.6102 1.00 0.22 0.3654 1.00
Auditory -0.04 0.8712 1.00 0.14 0.5598 1.00

05 Visual 0.13 0.6412 1.00 -0.57 0.0318 0.84
Auditory 0.09 0.7596 1.00 -0.24 0.4150 1.00

06 Visual -0.15 0.5712 1.00 -0.14 0.5892 1.00
Auditory 0.48 0.0534 0.96 -0.16 0.5414 1.00

07 Visual 0.20 0.5940 1.00 -0.12 0.7456 1.00
Auditory 0.11 0.7720 1.00 -0.03 0.9420 1.00

09 Visual -0.01 0.9686 1.00 0.09 0.7458 1.00
Auditory 0.13 0.6486 1.00 0.11 0.6886 1.00

10 Visual -0.40 0.2706 1.00 0.54 0.1098 1.00
Auditory 0.36 0.3294 1.00 -0.12 0.7308 1.00

11 Visual 0.13 0.6674 1.00 -0.02 0.9430 1.00
Auditory -0.45 0.1306 1.00 0.14 0.6354 1.00

13 Visual 0.12 0.6910 1.00 0.58 0.0524 0.95
Auditory -0.01 0.9682 1.00 0.35 0.2622 1.00

14 Visual -0.34 0.2598 1.00 -0.03 0.9210 1.00
Auditory -0.25 0.4040 1.00 -0.07 0.7996 1.00

15 Visual -0.04 0.8536 1.00 -0.00 0.9890 1.00
Auditory -0.07 0.7526 1.00 -0.06 0.8010 1.00

17 Visual -0.23 0.5416 1.00 -0.07 0.8538 1.00
Auditory 0.03 0.9172 1.00 -0.10 0.7754 1.00

18 Visual -0.56 0.0270 0.80 0.14 0.6256 1.00
Auditory 0.01 0.9728 1.00 -0.13 0.6502 1.00

19 Visual -0.57 0.0336 0.86 -0.35 0.2044 1.00
Auditory -0.16 0.5780 1.00 0.18 0.5258 1.00
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