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Abstract— 1t has been previously demonstrated [5] that spik-
ing activity, recorded from layers two and three of human cortex
by micro-electrode arrays, is highly stereotypical across seizures
separated by hours. Later it was shown [7] that local field
potential (LFP) and multi-unit activity (MUA) extracted from
the above micro-electrode array recordings during seizures
are organized in slow discrete states. Here we re-examine this
stereotypical discrete-state representation using hidden Markov
models (HMMs) fitted to LFPs extracted from the same micro-
electrode array recordings used in [5], [7]. We fitted different
HMMs with autoregressive (AR) observation models to LFPs
from three different 40-minutes recording blocks, each block
containing a different seizure from one subject. We found some
states of the HMMs that were active only during ictal periods,
other states were active only during post-ictal periods, and
still other states were active only during pre-ictal periods. The
AR observation models corresponding to states active during a
seizure stage (e.g., AR models corresponding to ictal states) were
similar across different blocks (e.g., ictal AR models from block
one were very similar to ictal AR models from blocks two and
three) based on their power spectrums, autocorrelation func-
tions, coefficients, and variances. This strong similarity was not
only observed during seizures, but also during pre- and post-
ictal periods. Thus, this report supports previous investigations
asserting that electrophysiological activity is highly stereotypical
across seizures and that it is organized in slow discrete states,
and extends these assertions to pre- and post-ictal periods.

I. INTRODUCTION

Using microelectrode-array recordings from cortical layers
two and three of humans, Truccolo et al. [5] have previ-
ously shown that spiking activity of isolated single neurons
is highly stereotypical across seizures separated by hours.
Figure 3ab of that article showed that not only a neuron
that fires strongly/weakly during a first seizure also fires
strongly/weakly during a subsequent seizure, but also the
precise structure of a neuron rasterplot is similar across
seizure (up to a small time warping). Subsequently, Wag-
ner, Truccolo, et al. [7] demonstrated that during epileptic
seizures dynamics of LFP and MUA evolve in discrete states,
which are consistent across seizures within each subject.

Here we revisit the stereotypicality and discrete state
hypothesis of epileptic seizures using HMMs. Because these
models represent the probability of a sample as a mixture
of conditional probabilities given discrete states, they are
well suited to study the discrete state hypothesis. Also, if the
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stereotypicality hypothesis holds, we expect to find similar
features in HMMs fitted to recordings from different seizures.
Previous research has used HMMs for seizure de-
tection/predictions in dogs [1] and rats [4]. The focus
of this manuscript is on the characterization, and not
the detection/prediction, of epileptic activity with unique
microelectrode-array recordings from human cortex.

II. RESULTS

We use recorded electrical activity from layers two and
three from a patient suffering from epilepsy. We separately
analyzed three 40-minute blocks of local field potentials
(LFPs; Section [IV)), each block containing a different spike-
and-wave seizure (Figure [I). In each block, we fitted a Hid-
den Markov model, with AR observation model (Section|IV]),
to LFPs from channel number 64'El We selected the number
of states of the HMM and the order of the AR observation
model by fitting models with different number of states and
different AR orders and selecting the model that maximized
the cross-validated log-likelihood. This procedure lead to an
HMM with 14 states and an AR order of 67.

To study the physiological relevance of these states, we
first looked at the times at which each state was most
probable during the recordings block using fractional occu-
pancy (Section [[V). A value of fractional occupancy close to
one/zero for a given state at a given time indicates that the
given state was most/least probable, given the observations,
around the given time. We say that a state is active at a given
time if its factional occupancy at the given time is different
from zero.

We found that some hidden states were active only during
the occurrence of seizures (i.e., ictal periods), others were
active only before the occurrence of seizures (i.e., pre-ictal
periods) and still others were active only after the occurrence
of seizures (i.e., post-ictal periods). In all three blocks we
found exactly three states that were active only during ictal
periods. We call these states ictal states. Figure 2] plots the
fractional occupancy versus time of the ictal states (each state
is depicted by a different color; seizure start and end times
are marked by dotted vertical lines). The factional occupancy

'As a first approximation, to expedite computations, specially those
related to model selection, we fitted our HMMs to LFPs from a single
instead of multiple channels.

2Because LFPs extracted from our high-density microelectrode array
recordings are highly correlated, similar results were obtained using other
electrodes.
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curves of all ictal states were peaked. We call state A, B, C
of a given block to the ictal state whose largest peak occurred
first, second and third, respectively.

The factional occupancies of ictal states were remarkably
similar across recording blocks. In each seizure, state A
(red curve) was most probable (i.e., has largest fractional
occupancy) around 20 seconds after seizure start, it was less
probable 15 seconds later, and became more probable by the
end of the seizure. States B and C were less probable than
state A, their factional occupancy curves were unimodal, with
peaks around the time when state A became less probable.

This shows that the timing of the three ictal states is similar
across seizures separated by more than one hour. We next
asked if statistical properties of the LFP corresponding to
samples with different most probable states were different
from each other and consistent across seizure blocks sepa-
rated by more than one hour.

For each given state, s, we calculated the set A(s) of
samples whose most probable state was s. We then studied
statistical properties of one-second-long epochs preceding
samples in set A(s). Below we considered two such prop-
erties, the power spectrum and the autocorrelation function
(Section [IV).

Figure [3] plots the power spectrum of the three ictal states
for the three recordings blocks. In any block, the power
spectrum of the different states were significantly different
from each other. For instance, the power spectrum of state
A was (frequency-wise) lower than that of state B, which in
turn was lower than the power spectrum of state C. Also, the
power spectrum of each state was similar across all recording
blocks separated by more than one hour. For example, for
all recording blocks (panels a-c) the power spectrum of state
A (red curve) peaked at 5 Hz to a value around 30 dB
and reached negative dB power at the highest frequencies.
Further, as shown in Figure 4] within blocks autocorrelation
functions were different for states with different labels and
autocorrelation functions of states with the same label were
remarkably similar between different blocks.

Another way of comparing states is by contrasting pa-
rameters of their AR models (e.g., coefficients, means and
variances). Figure [3] plots the coefficients of the AR models
associated with the ictal states in the three blocks, and gives

LFPs of spike-and-wave seizures in blocks one (a), two (b) and three (c). Click on a panel to see the its interactive version.

the mean and variance of each state in the corresponding
legend. Across blocks, coefficients tended to be similar, with
maximum amplitude at lags around 150 ms and negligible
magnitude for lags larger than 500 ms. Another regularity
is that coefficients associated with state C had considerable
larger magnitude than coefficients from states A and B, and
that the AR model variance corresponding to state C was
significantly larger than that of states B and C.

For brevity, the main body of this manuscript reports
findings in ictal periods, and supplemental information [6]
describes similar findings on pre- and post-ictal periods.

III. DISCcUSSION

Using HMMs we have found discrete states in epileptic
seizures with statistical properties (e.g., autocorrelation func-
tion, power spectrum, coefficients and variance of HMMs)
that are consistent across epileptic seizures separated by more
than one hour (Figure [3] @] ).

Although appealing, our findings are very preliminary.
Future research includes validating the generality of these
first results in other subjects and seizure types, use an HMM
observation model with combined LFP and MUA observa-
tions, model multiple channels, and handle longer duration
recordings times (extending to several days or weeks).

These findings support previous observations in [5], [7]
by showing that epileptic seizures are stereotypical and
can be represented as sequences of discrete states. They
extend these observations by revealing that discreetness and
stereotypicality do not only hold in ictal periods, but also in
pre- and post-ictal ones (supplementary information [6]).

Methodologically, the current investigation is substantially
different from that in [7]. The semi-automatic segmentation
algorithm used in this previous study operates on features
extracted from LFPs and MUAs. Differently, our HMMs
were fitted to raw LFPs, without feature engineering. Another
difference is the the findings in [7] resulted from and ad-hoc
non-probabilistic segmentation algorithm, while the current
findings followed from a widely-used probabilistic model.
That investigations using so different methodologies arrive
to so similar findings suggests that the discreteness and
stereotypicality of intra-cortical micro-array recordings of
epileptic activity in humans are robust features and that they
are not an artifact of the methodology used to observe them.
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Fig. 2. Fractional occupancies of ictal states for blocks one (a), two (b) and three (c). Click on a panel to see its interactive version. For any ictal state,
the shapes of its fractional occupancy curves were similar across the three recording blocks.
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Fig. 3. Power spectrum of ictal states in blocks one (a), two (b) and three (c).
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Fig. 4. Autocorrelation of ictal states in blocks one (a), two (b) and three (c).
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IV. METHODS

Recordings: We used broadband intracortically recorded
field potentials (0.3 Hz-7.5 kHz; sampling at 30 kHz) from
a 10 x 10 (4 x 4 mm?) microelectrode array (96 recording
electrodes plus 4 references) from cortical layers two and
three of a person with focal epileptic seizures [5]. We
characterized three 40-minute recordings blocks, each block
contained one seizure. Seizure two occurred one hour and
fifty minutes after seizure one and seizure three occurred
two hours and fifty minutes after seizure two.
Pre-processing: We extracted LFPs by low-pass filtering the
broadband field potentials (Butterwordth filter, order nine,
cutoff frequency 500 Hz) and downsampling the result at a
frequency of 2 kHz.

Hidden Markov model: To each block, we fitted a univari-
ate HMM using expectation maximization [2] with an AR
observation model [3ﬂ

Fractional occupancy: After fitting HMMs to LFPs we
used the Viterbi algorithm [2] to find, for each sample time,
the most probable state given the LFP observations. These
most probable states can change rapidly among neighboring
samples, making their visualization difficult. We overcame
this difficulty using fractional occupancy, which for a given
state, is the fraction of samples in a sliding window with
most probable state equal to the given state. In this study we
used a sliding window of length four seconds slid every two
seconds.

State-dependent power spectrum and autocorrelation
function: We used the Viterbi algorithm [2] to estimate the
most probable state for each sample. For each state s, we
built the set A(s) of all samples at which s was the most
probable state. Then, for each sample g5 € A(s) we build
an epoch e, of all samples preceding g, by less than one
second. To compute the power spectrum of a state s we
averaged the square of the normalized Fourier transform of
all epochs e, Ps(w) = median,, ¢ (s (FT{eq, }(w))*. To
compute the autocorrelation of a state s, we first removed
from each sample s the mean of all samples with the same
most probable state as s. Then, for each epoch e, , with

3https://github.com/joacorapela/hiddenMarkovModels see example code
under test/doTestAR.R
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Coefficients, means and variances of ictal states in blocks one (a), two (b) and three (c). Click on a panel to see the its interactive version.

gs € A(s), we computed the products between its value at lag
zero (i.e., a sample from state s) and its value at all other lags,
giving a new epoch of products p,, (7) = eq, (0)eq, (7). We
then summed all epochs of products across all samples of the
state s, giving the (not normalized) autocovariance function
for state s, K (7) = Yg ea(s)Pq. (7). The autocorrelation
function for state s is then ps(7) = K,(7)/K(0).
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