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Abstract

The derivative of a matrix functions (e.g., F (X) : Rm×p → Rn×q) is a four-dimensional

tensor (e.g., ∂F (X);
∂X ∈ n×q×m×p). Here we present key concepts from the differential calculus

of matrix functions that allow to derive derivatives of matrix functions by only manipulating
matrices, and not four-dimensional tensors. We illustrate the use of these concepts in didactic
derivations of derivatives of two matrix functions, required to compute the derivative of the
log-likelihood function of the probabilistic principal component analysis model.
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1 Introduction

The derivation of optimal statistical signal processing algorithms frequently requires the cal-
culation of derivatives of matrix functions (e.g.; F (X) : Rm×p → Rn×q) with respect to to
their inputs. For example, these derivatives are used in the derivation of the expectation
maximization algorithm for linear dynamical systems (Shumway et al., 2016, Chapter 6).

In general, matrix derivatives are four dimensional tensors (e.g., ∂F (X);
∂X ∈ n × q ×m × p;

Dattorro, 2015, Appendix D), which complicates their manipulation. Here we present key
results from the calculus of differentials of matrix functions (Section 2; see also Magnus and
Neudecker, 2019), which allow to derive derivatives of matrix functions by only manipulating
matrices, and not tensors.

We then use this calculus to didactically derive two derivatives of matrix functions required
to compute the derivative of the log-likelihood function of the probabilistic PCA model. This
log-likelihood function and its derivative are given in Eq. 1 and 6, respectively. and the two
derivatives of matrix functions required to computer Eq 6 are derived in Claims 2 and 3.

l = −N
2

log |2πC| − N

2
Tr
[
C−1S

]
(1)

where C = ΛΛᵀ + ψI, Λ ∈ Rm×p and S ∈ Rm×m

∂l

∂Λ
=
N

2

(
− ∂

∂Λ
log |2πC| − ∂

∂Λ
Tr
[
C−1S

])
(2)

=
N

2

(
− ∂

∂Λ
log [(2π)m|C|]− ∂

∂Λ
Tr
[
C−1S

])
(3)

=
N

2

(
− ∂

∂Λ
[m log 2π + log |C|]− ∂

∂Λ
Tr
[
C−1S

])
(4)

=
N

2

(
− ∂

∂Λ
log |C| − ∂

∂Λ
Tr
[
C−1S

])
(5)

= N
(
−C−1Λ + C−1SC−1Λ

)
(6)

Notes:

• Eq. 2 holds due to the linearity of the derivative,

• Eq. 3 follows from the fact that if A ∈ Rm×m then |kA| = km|A|,
• To obtain Eq. 4 I used properties of the logarithm,

• Eq. 5 is valid because m log(2π) is a constant with respect to Λ,

• To calculate Eq. 6 I used Claim 2 and Claim 3.

2 Matrix differentials

Let φ : R→ R, then the derivative of φ at the point c can be defined using limits, as in Eq. 7,
or using the Taylor expansion of φ at the point c+ u, as in Eq. 8. Claim 1 proves that these
definitions are equivalent. The linear term of the Taylor expansion definition is the differential
of f at point c with increment u, as stated in Definition 1.

lim
u→0

φ(c+ u)− φ(c)

u
, φ′(c) (7)
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φ(c+ u) = φ(c) + φ′(c)u+ rc(u) (8)

with lim
u→0

rc(u)

u
= 0

Claim 1 (equivalence of two definitions of the derivative). A function φ : R → R satisfies
Eq. 7 if and only if it satisfies Eq. 8.

Proof. →:

φ(c+ u) = φ(c) + φ′(c)u+
(
φ(c+ u)− φ(c)− φ′(c)u

)
= φ(c) + φ′(c)u+ rc(u)

where rc(u) = φ(c+ u)− φ(c)− φ′(c)u

and lim
u→0

rc(u)

u
= lim

u→0

φ(c+ u)− φ(c)

u
− φ′(c) = φ′(c)− φ′(c) = 0 (9)

←: From Eq. 8:

φ(c+ u)− φ(c)

u
= φ′(c) +

rc(u)

u

Then

lim
u→0

φ(c+ u)− φ(c)

u
= φ′(c) + lim

u→0

rc(u)

u
= φ′(c) + 0 = φ′(c)

Definition 1 (differential of a one-dimensional function). Let φ : R→ R, the differential of
φ at point c with increment u is φ′(c)u.

Definition 2 extends the concepts of Taylor expansion, differentiability, differential and
derivative to functions of the type F : Rn×q → Rm×p.

Definition 2 (differential of a matrix function). Let F : S ⊂ Rn×q → Rm×p, let C be an
interior point of S (i.e.; ∃ r ∈ R+ such that B(C, r) ⊂ S), and let r ∈ R+ such that B(C, r) ⊂
S. If there exist a real mp×nq matrix A(C) such that for all U ∈ Rn×q with |U | < r it follows
that

vecF (C + U) = vecF (C) +A(C) vecU + vecRC(U)

with limU→0
RC(U)
||U || = 0, ||U || = (TrUᵀU)

1
2 , then the function F is said to be differentiable at

C. The m× p matrix dF (C;U) defined as

vec dF (C;U) = A(C) vecU

is called the differential of F at C with increment U , and the matrix A(C) is called the first
derivative of F at C.

We next define a few concepts necessary to prove the chain rule for differentials of matrix
functions in Theorem 3.
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Definition 3 (vector function corresponding to a matrix function). Let F : S ⊂ Rn×q →
Rm×p, the corresponding vector function f : vecS ⊂ Rnq → Rmp is

f(vecX) = vecF (X) (10)

Definition 4 (Jacobian matrix). Let F : S ⊂ Rn×q → Rm×p. The Jacobian matrix of F at
C is an mp × nq matrix whose ijth element is the partial derivative of the ith component of
vecF (X) with respect to the jth component of vecX, evaluated at X = C, that is,

DF (C) = Df(vecC) (11)

Theorem 1 (first identification theorem for matrix functions). Let F : S ⊂ Rn×q → Rm×p be
a matrix function differentiable at an interior point C of S. Then

A(C) = DF (C)

where A(C) and DF (C) are given in Definitions 2 and 4, respectively.

Proof. Because F is differentiable at C, for all 1 ≤ i ≤ m and 1 ≤ j ≤ p, Eq. 12 holds.

vecF (C + tEij) = vecF (C) +A(C) vec tEij + vecRC(tEij) (12)

vecF (C + tEij)− vecF (C) = A(C) vec tEij + vecRC(tEij)

vecF (C + tEij)− vecF (C) = A(C)t vecEij + vecRC(tEij) (13)

lim
t→0

vecF (C + tEij)− vecF (C)

t
= lim

t→0

A(C) t vecEij + vecRC(tEij)

t
(14)

DF (C) vecEij = A(C) vecEij + lim
t→0

vecRC(tEij)

||tEij ||
(15)

DF (C) vecEij = A(C) vecEij (16)

DF (C) = A(C) (17)

Notes:

• Eq. 13 holds due to the linearity of the vec function.

• the left-hand side of Eq. 15 equals that of Eq. 14 by Definition 4.

• the second term in the right-hand side of Eq. 15 equals that of in Eq. 14 because t =
||tEij ||.

• Eq. 16 follows from the fact that limt→0
vecRC(tEij)
||tEij || = limtEij→0

vecRC(tEij)
||tEij || = 0, by

Definition 2.

• Eq. 17 is true because Eq. 16 holds for all 1 ≤ i ≤ m and 1 ≤ j ≤ p.

Theorem 2 (chain rule for Jacobians of matrix functions). Assume that F : S ⊂ Rn×q →
Rm×q is differentiable at an interior point C of S. Let T ⊂ Rm×q such that F (X) ∈ T, ∀X ∈ S
and assume that G : T → Rx×s is differentiable at the interior point B = F (C) of T . Then
the composite function H : S → Rr×s defined by

4



H(X) = G(F (X)) (18)

and denoted by H = G ◦ F is differentiable at C, and

DH(C) = DG(F (C)) DF (C) (19)

Proof.

DH(C) = DG(F (C))

= Dg(vecF (C)) (20)

= Dg(f(vecC)) (21)

= D(g ◦ f)(vecC) (22)

= Dg(f(vecC))Df(vecC) (23)

= Dg(vecF (C))Df(vecC) (24)

= DG(F (C))DF (C) (25)

Notes:

• Eq. 20 follows the definition of the Jacobian matrix (Definition 4), applied to G.

• Eq. 21 uses the definition of the vector function corresponding to a matrix function
(Eq. 10), applied to F .

• Eq. 22 uses the definition of composite function.

• Eq. 23 employs the chain rule for Jacobians of vector functions (Marsden and Tromba,
2003, Theorem 11: Chain Rule).

• Eq. 24 applies the definition of the vector function corresponding to a matrix function
(Eq. 10) to f .

• Eq. 25 uses the definition of the Jacobian matrix (Eq. 4) twice, for Dg and Df .

Theorem 3 (chain rule for differentials of matrix functions). If F is differentiable at C and
G is differentiable at F (C), then the differential of the composite function H = G ◦ F is

dH(C;U) = dG(F (C); dF (C;U)) (26)

for every U ∈ Rn×q.

Proof.

vec dH(C : U) = vec d(G ◦ F )(C;U) = D(G ◦ F )(C) vecU (27)

= DG(F (C))DF (C) vecU (28)

= DG(F (C)) vec dF (C;U) (29)

= vec dG(F (C); dF (C;U)) (30)

Notes:
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• Eq. 27 follows from the definition of differential in Definition 2 and Theorem 1 applied
to d(G ◦ F )(C;U),

• Eq. 28 follows from Theorem 2,

• Eq. 29 follows from the definition of differential in Definition 2 and Theorem 1 applied
to dF (C;U),

• Eq. 30 follows from the definition of differential in Definition 2 and Theorem 1 applied
to dG(F (C); dF (C;U)).

Theorem 4 (product rule for differentials).

d(FG)(C;U) = dF (C;U)G(C) + F (C)dG(C;U) (31)

Proof. I will sketch the proof using F,G : R2×2 → R2×2. Let:

C =

[
C11 C12

C21 C22

]
U =

[
U11 U12

U21 U22

]
F (C) =

[
F11(C) F12(C)
F21(C) F22(C)

]
G(C) =

[
G11(C) G12(C)
G21(C) G22(C)

]
Let’s first calculate the entry [1, 1] of the left-hand side of Eq. 31. From Definition 2 and

Theorem 1 we have

vec d(FG)(C;U) = D(FG)(C) vec(U) (32)

and from Definition 4 we have

[D(FG)(C)]ij =
∂(vec(FG(C)))i

∂(vecC)j
(33)

To compute D(FG)(C) let’s first write (FG)(C) = F (C)G(C)

(FG)(C) =

[
F11(C)G11(C) + F12(C)G21(C) F11(C)G12(C) + F12(C)G22(C)
F21(C)G11(C) + F22(C)G21(C) F21(C)G12(C) + F22(C)G22(C)

]
From Eq. 33, the first row of D(FG)(C) is

D(FG)(C)[1, :] = [
∂(vec(FG)(C))1

∂(vecC)1
,
∂(vec(FG)(C))1

∂(vecC)2
,
∂(vec(FG)(C))1

∂(vecC)3
,
∂(vec(FG)(C))1

∂(vecC)4
]

= [
∂(FG)11(C)

∂C11
,
∂(FG)11(C)

∂C21
,
∂(FG)11(C)

∂C12
,
∂(FG)11(C)

∂C22
]

= [
∂F11(C)

∂C11
G11(C) + F11(C)

∂G11(C)

∂C11
+
∂F12(C)

∂C11
G21(C) + F12(C)

∂G21(C)

∂C11
,

∂F11(C)

∂C21
G11(C) + F11(C)

∂G11(C)

∂C21
+
∂F12(C)

∂C21
G21(C) + F12(C)

∂G21(C)

∂C21
,

∂F11(C)

∂C12
G11(C) + F11(C)

∂G11(C)

∂C12
+
∂F12(C)

∂C12
G21(C) + F12(C)

∂G21(C)

∂C12
,

∂F11(C)

∂C22
G11(C) + F11(C)

∂G11(C)

∂C22
+
∂F12(C)

∂C22
G21(C) + F12(C)

∂G21(C)

∂C22
]
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From Eq. 32, the [1, 1] entry of d(FG)(C;U) is:

dFG(C;U)[1, 1] =D(FG)(C)[1, :] vec(U)

=
∂F11(C)

∂C11
U11G11(C) + F11(C)

∂G11(C)

∂C11
U11 +

∂F12(C)

∂C11
U11G21(C) + F12(C)

∂G21(C)

∂C11
U11+

∂F11(C)

∂C21
U21G11(C) + F11(C)

∂G11(C)

∂C21
U21 +

∂F12(C)

∂C21
U21G21(C) + F12(C)

∂G21(C)

∂C21
U21+

∂F11(C)

∂C12
U12G11(C) + F11(C)

∂G11(C)

∂C12
U12 +

∂F12(C)

∂C12
U12G21(C) + F12(C)

∂G21(C)

∂C12
U12+

∂F11(C)

∂C22
U22G11(C) + F11(C)

∂G11(C)

∂C22
U22 +

∂F12(C)

∂C22
U22G21(C) + F12(C)

∂G21(C)

∂C22
U22

(34)

Having calculated the left-hand side of Eq. 31 at index [1, 1] in Eq. 34, let’s now calculate
the right-hand side or Eq. 31 at index [1, 1] and check if it coincides with the right-hand side
of Eq. 34. From Definition 4

DF (C)[1, :] =

[
∂F11(C)

∂C11
,
∂F11(C)

∂C21
,
∂F11(C)

∂C12
,
∂F11(C)

∂C22

]
(35)

DF (C)[3, :] =

[
∂F12(C)

∂C11
,
∂F12(C)

∂C21
,
∂F12(C)

∂C12
,
∂F12(C)

∂C22

]
(36)

From Definition 2 and Theorem 1

dF (C;U)[1, 1] = DF (C)[1, :] vecU

=
∂F11(C)

∂C11
U11 +

∂F11(C)

∂C21
U21 +

∂F11(C)

∂C12
U12 +

∂F11(C)

∂C22
U22

dF (C;U)[1, 2] = DF (C)[3, :] vecU

=
∂F12(C)

∂C11
U11 +

∂F12(C)

∂C21
U21 +

∂F12(C)

∂C12
U12 +

∂F12(C)

∂C22
U22

Now the first term in the right-hand side of Eq. 31 at index [1, 1] is

(dF (C;U)G(C))[1, 1] =dF (C;U)[1, 1]G11(C) + dF (C;U)[1, 2]G21(C)

=
∂F11(C)

∂C11
U11G11(C) +

∂F11(C)

∂C21
U21G11(C)+

∂F11(C)

∂C12
U12G11(C) +

∂F11(C)

∂C22
U22G11(C)+

∂F12(C)

∂C11
U11G21(C) +

∂F12(C)

∂C21
U21G21(C)+

∂F12(C)

∂C12
U12G21(C) +

∂F12(C)

∂C22
U22G21(C)

that gives all the terms in Eq. 34 with a partial derivative in Fij(C). The remainder terms in
Eq. 34 come from the second term in the right-had side of Eq. 31.
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Thus, at index [1, 1], when F,G : R2×2 → R2×2, the left-hand side and right-hand side of
Eq. 31 are equal.

3 Proofs with matrix differentials

Claim 2 (derivative of the log determinant of C). Let C = ΛΛᵀ + ψI and Λ ∈ Rm×p then

∂

∂Λ
log |C| = 2C−1Λ (37)

Proof. Note the notational difference between Eq. 37 and the definition of first derivative in
Definition 2. According to the statement of this claim ∂

∂Λ log |C| ∈ Rm×q but according to

Definition 2 ∂
∂Λ log |C| ∈ R1×mq. In this proof I will use the notation from Definition 2 and I

will show that the first derivative of log |C| is A(Λ) = (vec 2C−1Λ)ᵀ.
Define F (Λ) = ΛΛᵀ + ψI and G(M) = log |M |. Then log |C| = (G ◦ F )(Λ)

dF (Λ; dΛ) = d(ΛΛᵀ)(Λ; dΛ) (38)

= dΛ(Λ; dΛ) Λᵀ + Λ dΛᵀ(Λ; dΛ) (39)

= (dΛ) Λᵀ + Λ (dΛ)ᵀ (40)

and

dG(C; dC) = d log |C|(C; dC) (41)

Notes:

• Eq. 38 follows from the definition of F (Λ) and from the fact that Λ does not appear in
ψI.

• Eq. 39 results from the application of the product rule for differentials (Theorem 4).

• Eq. 40 is a consequence of sub claims 2 and 3.

• Eq. 41 stems from the definition of G.

d log |C|(Λ; dΛ) = d(G ◦ F )(Λ; dΛ) (42)

= dG(F (Λ); dF (Λ; dΛ)) (43)

= d log |C|(F (Λ); dF (Λ; dΛ)) (44)

= Tr(C−1dF (Λ; dΛ)) (45)

= Tr(C−1((dΛ) Λᵀ + Λ (dΛ)ᵀ)) (46)

= Tr(C−1(dΛ)Λᵀ) + Tr(C−1Λ(dΛ)ᵀ) (47)

= 2 Tr(ΛᵀC−1(dΛ)) (48)

= Tr(2ΛᵀC−1(dΛ)) (49)

= (vec 2C−1Λ)ᵀ vec dΛ (50)

Notes:

• Eq. 42 applies the definition of F and G given above,
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• Eq. 43 follows from Theorem 3,

• Eq. 44 arises from Eq 41,

• Eq. 45 results from sub claim 1,

• Eq. 46 uses Eq. 40,

• Eq. 47 is a consequence of the linearity of the Tr,

• Eq. 48 holds because Tr(C−1(dΛ)Λᵀ) = Tr(ΛᵀC−1(dΛ)), due to the circular property
of the trace, and because Tr(C−1Λ(dΛ)ᵀ) = Tr((C−1Λ(dΛ)ᵀ)ᵀ) = Tr((dΛ)ΛᵀC−1) =
Tr(ΛᵀC−1(dΛ)), due to the invariance of the trace to transposition and again due to the
circular property of the trace,

• Eq. 50 follows from the fact that Tr(AᵀB) = (vecA)ᵀB.

Therefore, from the definition of first derivative in Definition 2 and Eq. 50, the first deriva-
tive of log |C| with respect to Λ is A(Λ) = (vec 2C−1Λ)ᵀ, as required to complete the proof.

Claim 3 (derivative of the trace of a matrix inverse times a constant matrix). Let C = ΛΛᵀ+ψI
then

∂

∂Λ
Tr[C−1S] = −2C−1SC−1Λ (51)

Proof. Note the notational difference between the statement of this claim and the definition
of first derivative in Definition 2. According to the statement of this claim ∂

∂Λ Tr[C−1S] ∈
Rm×q but according to Definition 2 ∂

∂Λ Tr[C−1S] ∈ R1×mq. In this proof I will use the no-
tation from Definition 2 and I will show that the first derivative of Tr[C−1S] is A(Λ) =
(vec(−2C−1SC−1Λ))ᵀ.

dTr[C−1S](Λ; dΛ) = Tr[dC−1S(Λ; dΛ)] (52)

= Tr[dC−1(Λ; dΛ)S] (53)

= Tr[−C−1dC(Λ; dΛ)C−1S] (54)

= Tr[−C−1((dΛ)Λᵀ + Λ(dΛᵀ))C−1S] (55)

= Tr[−C−1(dΛ)ΛᵀC−1S] + Tr[−C−1Λ(dΛᵀ)C−1S] (56)

= Tr[−2ΛᵀC−1SC−1dΛ] (57)

= (vec(−2C−1SC−1Λ))ᵀdΛ (58)

Notes:

• Eq. 52 holds due to the linearity of the differential and the trace,

• Eq. 53 is a consequence of Theorem 4 and the fact that S is a constant with respect to
Λ,

• Eq. 54 follows from sub claim 4,

• Eq. 55 results from Eq. 40,

• Eq. 56 stems from the linearity of the trace,

• The first term of Eq. 56 equals Tr[−ΛᵀC−1SC−1dΛ] due to the circularity of the trace
and the second term also equals this value because, in addition, Tr[A] = Tr[Aᵀ]. Thus,
the sum of these two terms equals Eq. 57,
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• Eq. 58 arises from the fact that Tr[AᵀB] = (vecA)ᵀ vecB.

Sub Claim 1 (differential of log determinant).

d log |C|(C; dC) = Tr(C−1dC)

Proof. Define F : S ⊆ R → R+, where S is the space of positive semidefinite matrices, as
F (X) = |X| and g : R+ → R as g(x) = log x. Then H(C) := log |C| = (g ◦ F )(C) and by
Theorem 3

d log |C|(C; dC) = dg(F (C); dF (C; dC)) (59)

From Definition 1

dg(x; dx) = g′(x)dx =
dx

x
(60)

Next we calculate dF (C; dC). Expanding the determinant along the ith row we obtain

F (X) =

N∑
j=1

(−1)i+jXijMij(X)

where Mij(X) is then ijth minor of X. Then

∂F (X)

∂Xik
= (−1)i+kMik(X)

since Xik does not appear in Mij(X), 1 ≤ j ≤ N . (−1)i+kMik(X) is the ikth entry of the
cofactor matrix of X, cof(X). So

∂F (X)

∂Xik
= cof(X)ik

Next from Definition 4 the Jacobian of F (C) is

DF (C) =
∂ vecF (X)

∂(vecX)′

∣∣∣∣
X=C

=
∂F (X)

∂(vecX)′

∣∣∣∣
X=C

(61)

=

[
∂F (X)

∂X11

∣∣∣∣
X=C

,
∂F (X)

∂X12

∣∣∣∣
X=C

, . . . ,
∂F (X)

∂XNN

∣∣∣∣
X=C

]
= [cof(C)11, cof(C)12, . . . , cof(C)NN ]

= (vec cof(C)ᵀ)ᵀ = (vec adj(C))ᵀ (62)

Notes:

• Eq. 61 holds because F (X) is a scalar.
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Now by Definition 2 and Theorem 1

dF (C; dC) = vec dF (C; dC) (63)

= DF (C) vec dC (64)

= (vec adj(C))ᵀ vec dC (65)

Notes:

• Eq. 63 holds because dF (C; dC) is a scalar.

• Eq. 64 follows from Definition 2 and Theorem 1.

• Eq. 65 follows from Definition 62.

Finally,

d log |C|(C; dC) =
dF (C; dC)

F (C)
(66)

=
(vec adj(C))ᵀ vec dC

|C|
(67)

=

(
vec

adj(C)

|C|

)ᵀ

vec dC (68)

=
(
vecC−1

)ᵀ
vec dC (69)

= Tr
(
C−1dC

)
(70)

Notes:

• Eq. 66 follows from Eqs. 59 and 60.

• Eq. 67 is a due to Eq. 65.

• Eq. 68 hold by the linearity of the vec operation.

• Eq. 69 uses the linear algebra result that adj(C)
|C| = C−1

• Eq. 70 holds because Tr[AᵀB] = (vecA)ᵀ vecB.

Sub Claim 2 (differential of identity function). Let V (Λ) = Λ ∈ Rm×p then dV (Λ; dΛ) = dΛ.

Proof. From Definition 2 and Theorem 1

vec dV (Λ; dΛ) = DV (Λ) vec dΛ (71)

and from Definition 4

DV (Λ) =
∂ vecV (Λ)

∂(vec Λ)′
=

∂ vec Λ

∂(vec Λ)′
= Imp×mp (72)

Thus, from Eqs. 71 and 72

vec dV (Λ; dΛ) = Imp×mp vec dΛ = vec dΛ (73)

Therefore, from Eq. 73, dV (Λ; dΛ) = dΛ.
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Sub Claim 3 (differential of transpose function). Let W (Λ) = Λᵀ ∈ Rp×m then dW (Λ; dΛ) =
(dΛ)ᵀ.

Proof. We will sketch the proof using Λ ∈ R2×2.

W (Λ) = Λᵀ =

[
Λ11 Λ12

Λ21 Λ22

]ᵀ
=

[
Λ11 Λ21

Λ12 Λ22

]
From Definition 2 and Theorem 1

vec dW (Λ; dΛ) = DW (Λ) vec dΛ (74)

and from Definition 4

DW (Λ) =
∂ vecW (Λ)

∂(vec Λ)′
=

∂ vec Λᵀ

∂(vec Λ)′

=


∂λ11
∂λ11

∂λ11
∂λ21

∂λ11
∂λ12

∂λ11
∂λ22

∂λ12
∂λ11

∂λ12
∂λ21

∂λ12
∂λ12

∂λ12
∂λ22

∂λ21
∂λ11

∂λ21
∂λ21

∂λ21
∂λ12

∂λ21
∂λ22

∂λ22
∂λ11

∂λ22
∂λ21

∂λ22
∂λ12

∂λ22
∂λ22



=


1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0

 (75)

Thus, from Eqs. 74 and 75

vec dW (Λ; dΛ) =


1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0

 vec dΛ

=


1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0



dΛ11

dΛ21

dΛ12

dΛ22

 =


dΛ11

dΛ12

dΛ21

dΛ22

 = vec dΛᵀ (76)

Therefore, from Eq. 76, dW (Λ; dΛ) = dΛᵀ.

Sub Claim 4 (differential of inverse function).

dC−1(Λ; dΛ) = −C−1dC(Λ; dΛ)C−1 (77)

Proof.

I = CC−1 then (78)

0 = dI(Λ; dΛ) (79)

= dCC−1(Λ; dΛ) (80)

= dC(Λ; dΛ) C−1 + C dC−1(Λ; dΛ) then (81)

dC−1(Λ; dΛ) = −C−1dC(Λ; dΛ)C−1 (82)

Notes:
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1. Eq. 79 is valid because the identity matrix, I, is constant with respect to Λ,

2. Eq. 80 follows from Eq. 78,

3. Eq. 81 is a consequence of Theorem 4,

4. Eq. 82 results from solving Eq. 81 for dC−1(Λ; dΛ).

4 Discussion

The first thing that most of of us do when we need to calculate the derivative of a function
with matrix arguments is look for its formula in the Matrix Cookbook1. However, sometimes
the formula is not there, or we may be curious about the derivation of a given formula in this
cookbook.

It is fulfilling to understand concepts in exquisite levels of detail, as I tried to do it here.
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