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ABSTRACT

Connectivity estimation is a fundamental problem in many
areas of science. However, in the context of high-dimensional
data it may be neither feasible nor useful to model the con-
nectivities between all observed variables. Grouping vari-
ables into clusters or communities is a useful preprocessing
step, but it is not clear how to do so optimally in view of con-
nectivity estimation. A further practical problem is that we
may have data from different classes (e.g. multiple subjects
in an experiment), and we need to incorporate useful con-
straints about the similarities between the classes. In this ab-
stract, we present a latent variable model to simultaneously
address both of the aforementioned challenges. The model
is essentially a factor analysis model where the factors (i.e.,
latent variables) are allowed to have arbitrary correlations.
The associated factor loading matrix is constrained to ex-
press a community structure via the introduction of non-
negativity and orthonormality constraints. Such constraints
also allow us to prove the identifiability of the model, pro-
viding a clear interpretation for latent factors. Experimental
results demonstrate the capabilities of the proposed model.

1. INTRODUCTION

Understanding the connectivity structure between observed
variables is a fundamental problem in statistics and machine
learning. Probabilistic methods are often based on estima-
tion of the covariance matrix or it inverse. However, in prac-
tice we often have very high-dimensional data, and it may
not be useful or feasible to estimate the connectivities be-
tween all of them. It is important to somehow reduce the
number of variables so that the connectivity estimation is
feasible, and furthermore, such reduction can greatly facil-
itate interpretation of the results. A relevant challenge is
how such reduction in the number of variables can explic-
itly account for connectivity over latent variables whilst also
accommodating data over multiple related classes (such as
subjects in a biomedical setting).

In this work, we propose a latent variable model which
is able to directly address the aforementioned issues1. The
proposed model consists of a low dimensional set of latent

1This abstract describes work presented in [1], where further details are
provided.

Figure 1: Visualization of the proposed covariance model.
The factor loading matrix, W , is shared across classes and
serves to denote membership into non-overlapping commu-
nities (in this example, communities encode brain modules).
The latent connectivity across modules, parameterized by
G(i), are allowed to vary across classes.

variables in a factor analytic model. The associated fac-
tor loading matrix is shared across classes and constrained
to be non-negative and orthonormal, thereby encoding mod-
ule/community membership along its columns. In this man-
ner, we may interpret the factors as activations in modules or
communities. Importantly, and in contrast to almost all re-
lated models, the latent variables have full (i.e., non-diagonal)
covariance structure which we term latent connectivities,
giving the connectivity structure of the non-overlapping mod-
ules. We allow for the connectivity structure to vary across
classes; however, the model is also applicable on data from a
single class. Thus, we model both the grouping of variables
and the connectivity between groups in a single probabilis-
tic model. Our work is motivated by applications relating to
fMRI data, where the estimation of “functional connectiv-
ity” networks are often modeled as covariance graphs. The
modular structure of such networks, where regions cluster
into non-overlapping modules, justifies the proposed model.

2. LATENT CONNECTIVITIES MODEL

In this section we describe a latent variable model to accu-
rately find modules (communities, clusters) and model their
connectivities, possibly across multiple related classes. We
assume we have access to multivariate data over N distinct
classes, but all results allow for the case N = 1 as well.
For a given class i, we write X(i) ∈ Rp to denote the p-
dimensional observed random vector. The ith class is as-
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Figure 2: Simulated data results with N = 10 classes. Left and middle panels plot the mean squared error for the estimated
loading and latent variable covariance matrices as a function of sample size, n. Right panels shows the mean negative
log-likelihood for unseen data as a function of sample size, n. Shaded regions correspond to 95% error bars.

sociated with a k-dimensional latent vector, Z(i), which is
related to observations, X(i), via a loading matrix W ∈
Rp×k. We note that the loading matrix is shared across
all classes and will serve to encode module memberships
across classes. We assume that the data for each class fol-
lows a stationary multivariate Gaussian distribution with zero
mean and covariance Σ(i) ∈ Rp×p. We further assume la-
tent variables are Gaussian, such that:

Z(i) ∼ N
(

0, G(i)
)

(1)

X(i)|Z(i) = z(i) ∼ N
(
Wz(i), v(i)I

)
. (2)

Traditional factor analysis or probabilistic PCA correspond
to the special case where G(i) are diagonal. However, by
allowing latent variables to have full (i.e., non-diagonal)
covariance structure our model is able to capture low-rank
connectivity structure as Σ(i) = WG(i)WT + v(i)I.

It follows that the loading matrix W serves to encode
reproducible covariance structure which is present across
all classes. Moreover, the loading matrix is constrained to
be non-negative and orthonormal. This leads to a loading
matrix with at most one non-zero entry per row. We may
interpret the columns of W as encoding membership to k
non-overlapping modules. Figure 1 provides an overview
of the proposed model in the context of estimating brain
connectivity networks. It is important to note that the in-
troduction of marginally dependent latent variables is not
possible in the context of traditional factor analysis, since
the effects of factor connectivity and factor loadings cannot
be distinguished. However, due to the non-negativity and
orthonormality constraints on the loading matrix, it is pos-
sible to identify the latent connectivities in our model [1].

2.1. Parameter estimation

The parameters associated with the proposed model consist
of the loading matrix, W , the latent variable covariances,
{G(i)}, and the observation noise, {v(i)}. The standard
approach to estimate such parameters would be maximum
likelihood estimation. However, this results in an iterative

algorithm where the computational cost of each parameter
update is O(p3). Instead, we propose to estimate parame-
ters by score matching [2], leading to an algorithm with a
computational cost of O(p2k) per iteration. Non-negativity
and orthogonality constraints are enforced via the introduc-
tion of Lagrange multipliers. Details are provided in [1].

2.2. Experimental results

Synthetic data was generated according to the model de-
scribed in equations (1-2). The covariance structure for
latent variables, G(i), was randomly generated. The di-
mensionality of observations and latent variables was set to
p = 50 and k = 5 respectively. The number of observa-
tions per class, n, was allowed to vary. Data was generated
in this manner for N = 10 distinct classes and each ex-
periment was repeated 500 times. Results are provided in
Figure 2, where we note that the proposed method is able to
accurately recover both the loading matrix as well as latent
variable connectivities. Alternative methods such as factor
analysis and non-negative PCA perform poorly as they do
not explicitly model the marginal dependency across latent
variables. In terms of mean negative log-likelihood over
unseen data, the proposed method out-performs alternative
methods for small and moderate sample sizes.

3. CONCLUSION

We propose an extension of factor analysis which simulta-
neously performs a grouping of variables and estimates their
latent connectivities. Experiments on synthetic data demon-
strate the capabilities of the proposed method.
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