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Large-scale, streaming data sets are ubiquitous in modern machine learning. Stream-

ing algorithms must be scalable, amenable to incremental training, and robust to the

presence of nonstationarity. In this work we consider the problem of learning 𝓁1 reg-

ularized linear models in the context of streaming data. In particular, the focus of this

work revolves around how to select the regularization parameter when data arrives

sequentially and the underlying distribution is nonstationary (implying the choice of

optimal regularization parameter is itself time-varying). We propose a framework

through which to infer an adaptive regularization parameter. Our approach employs

an 𝓁1 penalty constraint where the corresponding sparsity parameter is iteratively

updated via stochastic gradient descent. This serves to reformulate the choice of reg-

ularization parameter in a principled framework for online learning. The proposed

method is derived for linear regression and subsequently extended to generalized lin-

ear models. We validate our approach using simulated and real data sets, concluding

with an application to a neuroimaging data set.
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1 INTRODUCTION

We are interested in learning 𝓁1 regularized regression mod-

els in the context of streaming, nonstationary data. There has

been significant research relating to the estimation of such

models in a streaming data context [3,4]. However, a fun-

damental aspect that has been overlooked is the selection

of the regularization parameter. The choice of this parame-

ter dictates the severity of the regularization penalty. While

the underlying optimization problem remains convex, distinct

choices of such a parameter yield models with vastly different

characteristics. This poses significant concerns from the per-

spective of model performance and interpretation. It, there-

fore, follows that selecting such a parameter is an important

problem that must be addressed in a data-driven manner.

Many solutions have been proposed through which to

select the regularization parameter in a nonstreaming con-

text. For example, stability-based approaches have been pro-

posed in the context of linear regression [18]. Other popular

alternatives include cross-validation and information theo-

retic techniques [9]. However, in a streaming setting such

approaches are infeasible due to the limited computational

resources available. Moreover, the statistical properties of the

data may vary over time; a common manifestation being con-

cept drift [1]. This complicates the use of subsampling meth-

ods as the data can no longer be assumed to follow a stationary

distribution. Furthermore, as we argue in this work, it is con-

ceivable that the optimal choice of regularization parameter

may itself vary over time. It is also important to note that tra-

ditional approaches such as change-point detection cannot be

employed as there is no readily available pivotal quantity. It,

therefore, follows that novel methodologies are required in

order to tune regularization parameters in an online setting.

Applications involving streaming data sets are abundant,

ranging from finance [8] to cyber-security [11] and neuro-

science [13,14]. In this work we are motivated by the latter

application, where penalized regression models are often

employed to decode statistical dependencies across spatially
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remote brain regions, referred to as functional connectivity

[28]. A novel avenue for neuroscientific research involves

the study of functional connectivity in real-time [22,30].

Such research faces challenges due to the nonstationary as

well as potentially high dimensional nature of neuroimag-

ing data [21,24]. In order to address these challenges, many

of the proposed methods to date have employed fixed spar-

sity parameters. However, such choices are typically justified

only by the methodological constraints associated with updat-

ing the regularization parameter, as opposed to for biological

reasons.

In order to address these issues, we propose a frame-

work through which to learn an adaptive sparsity parame-

ter in an online fashion. The proposed framework, named

real-time adaptive penalization (RAP), is capable of itera-

tively learning time-varying regularization parameters via the

use of adaptive filtering. Briefly, adaptive filtering methods

are semi-parametric methods which employ information from

recent observations to tune a parameter of interest. In this

manner, adaptive filtering methods are capable of handling

temporal variation which cannot easily be modeled explicitly

[10]. The contributions of this work can be summarized as

follows:

1. We propose and validate a framework through which to

tune a time-varying sparsity parameter for 𝓁1 regularized

linear models in real-time.

2. The proposed framework is subsequently extended to the

context regularized generalized linear models (GLMs).

3. An empirical validation is provided using both synthetic

and real data sets together with an application to a neu-

roimaging data set.

The remainder of this manuscript is organized as follows.

Related work is discussed in Section 2. We formally describe

our problem in Section 3 and the proposed framework is intro-

duced in Section 4. We provide empirical evidence based on

real and simulated data in Section 5.

2 RELATED WORK

Regularized methods have established themselves as popular

and effective tools through which to handle high-dimensional

data [9]. Such methods employ regularization penalties as a

mechanism through which to constraint the set of candidate

solutions, often with the goal of enforcing specific properties

such as parsimony. In particular, 𝓁1 regularization is widely

employed as a convex approximation to the combinatorial

problem of model selection.

However, the introduction of an 𝓁1 penalty requires the

specification of the associated regularization parameter. The

task of tuning such a parameter has primarily been studied in

the context of nonstreaming, stationary data. Stability selec-

tion procedures, introduced by ref. [18], effectively look to

bypass the selection of a specific regularization parameter by

instead fitting multiple models across subsampled data. Vari-

ables are subsequently selected according to the proportion of

all models in which they are present. In this manner, stability

selection is able to provide important theoretical guarantees,

albeit while incurring an additional computational burden.

Other popular approaches involve the use of cross-validation

or information theoretic techniques. However, such methods

cannot be easily adapted to handle streaming data.

Online learning with the 𝓁1 constraints has also been

studied extensively and many computationally efficient algo-

rithms are available. A stochastic gradient descent algorithm

is proposed by ref. [3]. More generally, online learning of

regularized objective functions has been studied extensively

by ref. [4] who propose a general class of computationally

efficient methods based on proximal gradient descent. The

aforementioned methods all constitute important advances in

the study of sparse online learning algorithms. However, a

fundamental issue that has been overlooked corresponds to

the selection of the regularization parameters. As such, cur-

rent methodologies are rooted on the assumption that the

regularization parameter remains fixed. It follows that the reg-

ularization parameter may itself vary over time, yet selecting

such a parameter in a principled manner is nontrivial. The

focus of this work is to present and validate a framework

through which to automatically select and update the regular-

ization parameter in real-time. The framework presented in

this work is therefore complementary and can be employed in

conjunction with many of the preceding techniques. In a sim-

ilar spirit to the methods proposed in this manuscript, ref. [7]

propose a method for selecting the regularization parameter in

the context of sequential data but do not consider nonstation-

ary data, which is the explicit focus of this work. We further

consider the extension to general linear models, leading to a

wider range of potential applications.

More generally, the automatic selection of

hyper-parameters has recently become an active topic in

machine learning [27]. Interest in this topic has been cat-

alyzed by the success of deep learning algorithms, which

typically involve many such hyper-parameters. Sequen-

tial model-based optimization (SMBO) methods such as

Bayesian optimization employ a probabilistic surrogate to

model the generalization performance of learning algo-

rithms as samples from a Gaussian process [27], leading to

expert-level performance in many cases. It follows that such

methods may be employed to tune regularization parameters

in the context of penalized linear regression models. How-

ever, there are several important differences between the

SMBO framework and the proposed framework. The most

significant difference relates to the fact that the proposed

framework employs gradient information in order to tune

the regularization parameter while SMBO methods such as

Bayesian optimization are rooted in the use of a probabilis-

tic surrogate model. This allows the SMBO framework to

be applied in a wide range of settings while the proposed

framework focuses exclusively on Lasso regression models.
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However, as we describe in this work, the use of gradient

information makes the RAP framework ideally suited in the

context of nonstationary, streaming data. This is in contrast

to SMBO techniques, which typically assume the data is

stationary.

3 PRELIMINARIES

In this section we introduce the necessary ingredients to

derive the proposed framework. We begin formally defining

the problem addressed in this work in Section 3.1. Adaptive

filtering methods are introduced in Section 3.2.

3.1 Problem setup

In this work we are interested in streaming data problems.

Here it is assumed that pairs (Xt, yt) arrive sequentially over

time, where Xt ∈ Rp × 1 corresponds to a p-dimensional vec-

tor of predictor variables and yt is a univariate response. The

objective of this work is to learn time-varying linear regres-

sion models∗ to accurately predict future responses, yt+ 1,

from predictors, Xt+ 1. An 𝓁1 penalty, parameterized by 𝜆 ∈
R+, is introduced in order to encourage sparse solutions as

well as to ensure the problem is well-posed from an opti-

mization perspective. This corresponds to the Lasso model

introduced by ref. [29]. For a given choice of regulariza-

tion parameter, 𝜆, time-varying regression coefficients can

be estimated by minimizing the following convex objective

function:

Lt(𝛽, 𝜆) =
t∑

i=1

wi(yi − XT
i 𝛽)

2 + 𝜆‖𝛽‖1, (1)

where wi > 0 are weights indicating the importance given to

past observations [1]. Typically, wi decay monotonically in a

manner which is proportional to the chronological proximity

of the ith observation. For example, weights wi may be tuned

using a fixed forgetting factor or a sliding window. We refer

readers to ref. [10] for a detailed overview of sliding window

and forgetting factor methods.

In a nonstationary context, the optimal estimates of regres-

sion parameters, 𝛽t, may vary over time. The same argument

can be posed in terms of the selected regularization parameter,

𝜆. For example, this may arise due to changes in the under-

lying sparsity or changes in the signal-to-noise ratio. While

there exists a wide range of methodologies through which

to update regression coefficients in a streaming fashion, the

choice of regularization parameter has been largely ignored.

As such, the primary objective of this work is to propose a

framework through which to learn time-varying regulariza-

tion parameter in real-time. The proposed framework seeks

∗We note that the proposed framework will be extended to GLMs in Section

4.3. For clarity we first formulate our approach in the context of linear

regression.

to iteratively update the regularization parameter via stochas-

tic gradient descent and is therefore conceptually related to

adaptive filtering theory [10], which we introduce below.

3.2 Adaptive filtering

Filtering, as defined in ref. [10], is the process through which

information regarding a quantity of interest is assimilated

using data measured up to and including time t. In many

real-time applications, the quantity of interest is assumed to

vary over time. The task of a filter therefore corresponds

to effectively controlling the rate at which past information

is discarded. Adaptive filtering methods provide an elegant

method through which to handle a wide range of nonstation-

ary behavior without having to explicitly model the dynamic

properties of the data stream.

The simplest filtering methods discard information at a con-

stant rate, for example, determined by a fixed forgetting factor.

More sophisticated methods are able to exploit gradient infor-

mation to determine the aforementioned rate. Such methods

are said to be adaptive as the rate at which information is

discarded varies over time. It follows that the benefits of adap-

tive methods are particularly notable in scenarios where the

quantity of interest is highly nonstationary.

To further motivate discussion, we briefly review filtering

in the context of fixed forgetting factors for streaming linear

regression. In such a scenario, it suffices to store summary

statistics for the mean and sample covariance. For a given

fixed forgetting factor r ∈ (0, 1], the sample mean can be

recursively estimated as follows:

Xt =
(

1 − 1

𝜔t

)
Xt−1 +

1

𝜔t
Xt, (2)

where 𝜔t is a normalizing constant defined as:

𝜔t =
t∑

i=1

rt−i = r ⋅ 𝜔t−1 + 1. (3)

Similarly, the sample covariance can be learned iteratively:

St =
(

1 − 1

𝜔t

)
St−1 +

1

𝜔t
(Xt − Xt)T (Xt − Xt). (4)

It is clear that the value of r directly determines the adaptiv-

ity of a filter as well as its susceptibility to noise. However, in

many practical scenarios the choice of r presents a challenge

as it assumes some knowledge about the degree of nonsta-

tionarity of the system being modeled as well as an implicit

assumption that this is constant [10]. Adaptive filtering meth-

ods address these issues by allowing r to be tuned online

in a data-driven manner. This is achieved by quantifying the

performance of current parameter estimates for new observa-

tions, Xt+ 1. Throughout this work we denote such a measure

by C(Xt+ 1).

A popular approach is to define C(Xt+ 1) to be the resid-

ual error on unseen data [10]. In such a setting, it is clear

that C(Xt) depends on current estimates of sufficient statistics

such as St, and is therefore a function of the forgetting factor, r.
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Then assuming
𝜕C(Xt+1)

𝜕r
can be efficiently calculated, our

parameter of interest can be updated in a stochastic gradient

descent framework:

rt+1 = rt − 𝜀
𝜕C(Xt+1)

𝜕r
||||r=rt

(5)

where 𝜀 is a small step-size parameter which determines the

learning rate. The objective of this work therefore corre-

sponds to extending adaptive filtering methods to the domain

of learning a time-varying regularization parameter for Lasso

regression models.

4 METHODS

As noted previously, the choice of parameter 𝜆 dictates the

severity of the regularization penalty. Different choices of

𝜆 result in vastly different estimated models. While several

data-driven approaches are available for selecting 𝜆 in an

offline setting, such methods are typically not feasible for

streaming data for two reasons. First, limited computational

resources pose a practical restriction. Second, data streams

are often nonstationary and rarely satisfy iid assumptions

required for methods based on the bootstrap [1]. Moreover, it

is important to note that traditional methods such as change

point detection cannot be employed due to the absence of a

readily available pivotal quantity for 𝜆.

We begin by outlining the RAP framework in the lin-

ear regression setting in Section 4.1. Section 4.2 outlines

the resulting algorithm and computational considerations. In

Section 4.3 we extend the RAP framework to the setting

of GLMs.

4.1 Proposed framework

We propose to learn a time-varying sparsity parameter in

an adaptive filtering framework. This allows the proposed

method to relegate the choice of sparsity parameter to the

data. Moreover, by allowing 𝜆t to vary over time the proposed

method is able to naturally accommodate data sets where the

underlying sparsity may be nonstationary.

We define the empirical objective to be the look-ahead

negative log-likelihood, defined as:

Ct+1 = C(Xt+1, yt+1) = ‖yt+1 − Xt+1𝛽t(𝜆t)‖2
2
, (6)

where we write 𝛽t(𝜆t) to emphasize the dependence of the

estimated regression coefficients on the current value of the

regularization parameter, 𝜆t. Following Section 3.2, the regu-

larization parameter can be iteratively updated as follows:

𝜆t+1 = G(𝜆t) = 𝜆t − 𝜀
𝜕Ct+1

𝜕𝜆t
. (7)

We note that for convenience we write
𝜕Ct+1

𝜕𝜆t
to denote

the derivate of Ct+ 1 with respect to 𝜆 evaluated at 𝜆= 𝜆t
(i.e,

𝜕Ct+1

𝜕𝜆

|||𝜆=𝜆t
). We note that 𝜆t is bounded below by zero,

in which case no regularization is applied, and above by

𝜆max
t = maxj

{|∑t
i=1 wiyiXi,j|} , in which case all regression

coefficients are zero [6].

The proposed framework requires only the specification

of an initial sparsity parameter, 𝜆0, together with a stepsize

parameter, 𝜀. In this manner the proposed framework effec-

tively replaces a fixed sparsity parameter with a stepsize

parameter, 𝜀. This is desirable as the choice of a fixed sparsity

parameter is difficult to justify in the context of streaming,

nonstationary data. Moreover, any choice of 𝜆 is bound to be

problem specific. In comparison, we are able to interpret 𝜀 as

a stepsize parameter in a stochastic gradient descent scheme.

As a result, there are clear guidelines which can be followed

when selecting 𝜀 [2].

Once the regularization parameter has been updated, esti-

mates for the corresponding regression coefficients can be

obtained by minimizing Lt+ 1(𝛽, 𝜆t+ 1), for which there is a

wide literature available [3,4]. The challenge in this work

therefore corresponds to efficiently calculating the deriva-

tive in Equation (7). Through the chain rule, this can be

decomposed as:

𝜕Ct+1

𝜕𝜆t
= 𝜕Ct+1

𝜕𝛽t
⋅
𝜕𝛽t

𝜕𝜆t
. (8)

The first term in Equation (8) can be obtained by direct

differentiation. In the case of the second term, we leverage

the results of refs. ([5,26] who demonstrate that the Lasso

solution path is piecewise linear as a function of 𝜆. By impli-

cation,
𝜕𝛽t

𝜕𝜆t
must be piecewise constant. Furthermore, there is

a simple, closed-form solution for
𝜕𝛽t

𝜕𝜆t
.

Proposition 1. [Adapted from ref . [26]] In the context of
𝓁1 penalized linear regression models, the derivative 𝜕𝛽t

𝜕𝜆t
is

piecewise constant and can be obtained in closed form.

Proof. For any choice of regularization parameter, 𝜆, we

write 𝛽t(𝜆) to denote the minimizer of Equation (1). Recall

that the objective, Lt(𝛽, 𝜆), is nonsmooth due to the presence

of the 𝓁1 penalty. As a result, the subgradient of Lt(𝛽, 𝜆) must

satisfy:

𝛻𝛽(Lt(𝛽, 𝜆))|𝛽=𝛽t(𝜆)
= −XT

1∶t 𝑊 𝑦1∶t + XT
1∶tW X1∶t𝛽t(𝜆)

+ 𝜆 sign(𝛽t(𝜆)) ∋ 0, (9)

where we W is a diagonal matrix with elements wi and we

write X1:t to denote a matrix where the ith row is Xi. It is

important to note that Equation (9) holds for any choice of

𝜆; however, the corresponding estimate of regression coef-

ficients, 𝛽t(𝜆), will necessarily change. Further, taking the

derivative with respect to the regularization parameter 𝜆

yields:
𝜕

𝜕𝜆
(𝛻𝛽Lt(𝛽, 𝜆)|𝛽=𝛽t(𝜆)

) = 0

= 𝜕𝛽t(𝜆)
𝜕𝜆

𝛻2
𝛽Lt(𝛽t(𝜆), 𝜆) + sign(𝛽t(𝜆))

= 𝜕𝛽t(𝜆)
𝜕𝜆

(XT
1∶tW X1∶t) + sign(𝛽t(𝜆)).
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Rearranging yields:

𝜕𝛽t(𝜆)
𝜕𝜆

= −(XT
1∶tW X1∶t)−1 sign(𝛽t(𝜆))

= −(St)−1 sign(𝛽t(𝜆)). (10)

From Proposition 1 we have that the derivative,
𝜕Ct+1

𝜕𝜆t
, can

be computed in closed form.

Moreover, we note that the derivative in Equation (10) is

only nonzero over the active set of regression coefficients,

𝒜t = {i ∶ (𝛽t(𝜆t))i ≠ 0}, and zero elsewhere. In practice we

must therefore consider two scenarios:

• The active set is nonempty (ie, 𝒜t ≠ ∅). In this case

Equation (10) is well-defined.

• The active set is empty. In this case we follow the LARS

algorithm and take a step in the direction of the most cor-

related predictor: ĵ = argmax
j

{|∑t
i=1 wiyiXi,j|} . As such,

we define the gradient as follows:(
𝜕𝛽(𝜆)
𝜕𝜆

)
k

= 𝛿k,̂j sign

([ t∑
i=1

wiyiXi,k

])
,

where 𝛿 is the dirac-delta function. As such, all entries of
𝜕𝛽(𝜆)
𝜕𝜆

will be zero except for the entry corresponding to the most

correlated predictor.

4.2 Streaming Lasso regression

At each iteration, a new pair (Xt+ 1, yt+ 1) is received and

employed to update both the time-varying regularization

parameter, 𝜆t, as well as the corresponding estimate of

regression coefficients, 𝛽t(𝜆t). The former involves comput-

ing the derivative
𝜕Ct+1

𝜕𝜆1

as outlined in Section 4.1. The latter

involves solving a convex optimization problem which can

be addressed in a variety of ways. In this work we look

to iteratively estimate regression coefficients using coordi-

nate descent methods [6]. Such methods are easily amenable

to streaming data and allow us to exploit previous esti-

mates as warm starts. In our experience, the use of warm

starts leads to convergence within a handful of iterations.

Pseudo-code detailing the proposed RAP framework is given

in Algorithm 1.

4.2.1 Computational considerations
With respect to the computational and memory demands,

the major expense incurred when calculating
𝜕𝛽t(𝜆)
𝜕𝜆t

involves

inverting the sample covariance matrix. The need to compute

and store the inverse of the sample covariance is undesir-

able in the context of high-dimensional data. As a result, the

following approximation is also considered:

𝜕𝛽t(𝜆)
𝜕𝜆t

≈ −(diag(St))−1 sign(𝛽t(𝜆)). (11)

Such approximations are frequently employed in stream-

ing or large data applications [4]. The approximate update

therefore has a time and memory complexity that is propor-

tional to the cardinality of the active set, 𝒜t. In practice, we

find that the empirical performance between the use of the

exact and approximate gradients to be small (eg, Figure 2 and

Table 1). This may be due to the fact that in the context of

highly nonstationary data it is often difficult to obtain a reli-

able estimate of the sample covariance, St, implying that a

diagonal approximate may suffice.

4.3 Extension to GLMs

While the preceding sections focused on linear regression,

we now extend the proposed framework to a wider class of

GLM models. As such, we assume that observations yt fol-

low an exponential family distribution such that [yt]=𝜇t and

Var(yt)=Vt. In the context of GLMs, it is assumed that a

(potentially nonlinear) link function is employed to relate the

mean, 𝜇t, to a linear combination of predictors:

𝜂t = g(𝜇t) = XT
t 𝛽t−1. (12)

We note that when yt is assumed to follow a Gaussian dis-

tribution we recover linear regression as described in Section

4.1. Conversely, if yt follows a Binomial distribution we

obtain streaming logistic regression. The log-likelihood of an

observed response, yt, can be expressed as ref. [15]:

l(yt; 𝜃t) =
yt𝜃t − b(𝜃t)

a(𝜙)
+ c(yt, 𝜙), (13)

where a(⋅), b(⋅), and c(⋅) are functions which vary according

to the distribution of the response and 𝜃t = 𝜃(𝛽 t) is the cor-

responding canonical parameter. Throughout this work it is

assumed that the dispersion parameter, 𝜙, is known and fixed.

Analogously to Equation (1), we estimate 𝓁1 regularized

regression coefficients by minimizing the reweighted nega-

tive log-likelihood objective:

Lt(𝛽, 𝜆) = −
t∑

i=1

wi[yi 𝜃(𝛽i) − b{𝜃(𝛽i)}] + 𝜆‖𝛽‖1, (14)

where wi are weights as before. In the remainder of this

manuscript we focus on two popular cases, detailed below,

but we note that the proposed framework can be employed in

a much wider range of settings.
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TABLE 1 Detailed results for simulation involving nonstationary data over N = 500 independent

iterations. We report the mean negative log-likelihood, Ct, as well as the mean F-score, Ft. Standard
errors are provided in brackets

Linear regression Logistic regression

Algorithm ACt Ft Ct Ft

Fixed (CV) 0.58 (0.05) 0.49 (0.05) 0.25 (0.07) 0.49 (0.04)

Fixed (SMBO) 0.63 (0.05) 0.50 (0.07) 0.26 (0.08) 0.49 (0.05)

Stepwise Oracle 0.51 (0.04) 0.56 (0.04) 0.21 (0.06) 0.53 (0.04)

RAP (No forget) 0.63 (0.03) 0.47 (0.05) 0.28 (0.05) 0.46 (0.04)

RAP 0.47 (0.04) 0.64 (0.06) 0.19 (0.04) 0.58 (0.03)

RAP (Approx) 0.48 (0.05) 0.63 (0.07) 0.20 (0.04) 0.55 (0.05)

SMBO, Sequential model-based optimization; CV, cross-validation. Bold values are for performance which

is more than 1 standard deviation better than alternative methods.

Case 1. Normal linear regression. In the case of linear

regression we have that g(⋅) is the identity such that 𝜃t+1 =
XT

t+1
𝛽t(𝜆t) and Ct + 1 is defined as in Section 4.1.

Case 2. Logistic regression. In this case we have that g(⋅)
is the logistic function. As before 𝜃t+1 = XT

t+1
𝛽t(𝜆t) and the

negative log-likelihood is defined as:

Ct+1 = C(Xt+1, yt+1) = −yt+1Xt+1𝛽t(𝜆t) + log(1 + eXT
t+1

𝛽t(𝜆t)).

Proposition 2. [Adapted from ref . [25]] In the context of 𝓁1

penalized GLM models, the derivative 𝜕𝛽t(𝜆)
𝜕𝜆t

is also available
in closed form as follows:

𝜕𝛽t(𝜆)
𝜕𝜆t

= −(XT
1∶t𝑊𝑋1∶t)−1 sign(𝛽t(𝜆)) (15)

where W is a diagonal matrix with entries wiV−1
i

(
𝜕𝜇i

𝜕𝜂i

)
.

Proof. The proof is closely related to that of Proposition 1. A

full derivation is provided in Appendix A.

Remark 1. We note that applying the RAP framework in the

context of GLMs requires only minor modifications from the

procedure detailed Algorithm 1.

5 EMPIRICAL RESULTS

In this section we empirically demonstrate the capabili-

ties of the proposed framework via a series of simula-

tions. We begin by considering the performance of the

RAP algorithm in the context of stationary data. This sim-

ulation serves to demonstrate that the proposed method is

capable of accurately tracking the regularization parame-

ter. We then study the performance of RAP algorithm in

the context of nonstationary data. Throughout this simula-

tion study the RAP algorithm is benchmarked against two

offline methodologies: cross-validation and SMBO. In the

context of SMBO methods, we study the performance against

Bayesian optimization methods. Here a Gaussian process

with a square exponential kernel was employed as a surrogate

model together with the expected improvement acquisition

function.

5.1 Simulation settings

In order to thoroughly test the performance of the RAP

algorithm, we look to generate synthetic data were we are

able to control both the underlying structure as well as the

dimensionality of the data. In this work, the covariates Xt were

generated according to a multivariate Gaussian distribution

with a block covariance structure. This introduced significant

correlations across covariates, thereby increasing the diffi-

cultly of the regression task. Formally, the data simulation

process followed that described by ref. [16]. This involved

sampling each covariate as follows:

Xt ∼ 𝒩 (0,Σ),

where Σ ∈ Rp× p is a block diagonal matrix consisting of

five equally sized blocks. Within each block, the off-diagonal

entries were fixed at 0.8, while the diagonal entries were fixed

to be one. Having generated covariates, Xt, a sparse vector

of regression coefficients, 𝛽, was simulated. This involved

randomly selecting a proportion, 𝜌, of coefficients and ran-

domly generating their values according to a standard Gaus-

sian distribution. All remaining coefficients were set to zero.

Given simulated covariates, Xt, and a vector of sparse regres-

sion coefficients 𝛽, the response was simulated according

to an exponential family distribution with mean parameter

𝜇t = g−1(Xt𝛽). In this manner, data was generated from both

a Gaussian as well as Binomial distributions. In case of the

former, we therefore have that yt ∼ 𝒩 (XT
t 𝛽, 1), while in the

case of logistic regression we have that yt follows a Bernoulli

distribution with mean 𝜎(XT
t 𝛽) where 𝜎(⋅) denotes the logistic

function.

In this manner, it is possible to generate piecewise sta-

tionary data, {(yt, Xt): t= 1, … , T}. When studying the

performance of the RAP algorithm in the context of station-

ary data, it sufficed to simulate one such data set. In order to

quantify performance in the context of nonstationary data, we

concatenate multiple piece-wise stationary data sets, result-

ing in data sets with abrupt changes. We note that for each

piece-wise stationary data set distinct regression coefficients,

with varying sparse supports, were simulated. We note that

in the nonstationary setting the block structure was randomly
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FIGURE 1 Violin plots visualizing the difference in selected regularization parameters as a function of the dimensionality, p, for linear (A) and logistic

regression (B). We note that the difference in estimated 𝓁1 norms is both small and centered around the origin, indicating the absence of large systematic bias.

Note the difference in y-axis across panels

permuted at each iteration to avoid covariates sharing the

same set of correlated variables.

5.2 Performance metrics

In order to assess the performance of the RAP algorithm we

consider various metrics. In the context of stationary data,

our primary objective is to demonstrate that the proposed

method is capable of tracking the regularization parame-

ter when benchmarked against traditional methods such as

cross-validation. As a result, we consider the difference in 𝓁1

norms of the regression model estimated by each algorithm.

This is defined as:

Δ = ‖𝛽(𝜆𝐶𝑉 )‖1 − ‖𝛽(𝜆𝑅𝐴𝑃 )‖1, (16)

where we write 𝜆CV and 𝜆RAP to denote the regularization

parameters selected by cross-validation and RAP algorithms,

respectively. We choose to employ the 𝓁1 norm (as opposed

to directly considering the sparsity parameter, 𝜆) as there is

a one-to-one relationship between 𝜆 and the 𝓁1 norm. This

serves to bypass any potential issues arising from scaling or

other idiosyncrasies.

In the context of nonstationary data we are interested in

two additional metrics. The first corresponds to the negative

log-likelihood of each new unseen observations, Ct+ 1, ini-

tially defined in Equation (6). Secondly, we also consider the

correct recovery of the sparse support of 𝛽 t. In this context,

we treat the recovery of the support of 𝛽 t as a binary clas-

sification problem and quantify the performance using the F
score; defined as the harmonic mean between the precision

and recall of a classification algorithm.

5.3 Stationary data

We begin by demonstrating that the RAP framework is capa-

ble of accurately tracking the regularization parameter in

the context of stationary data. In particular, we study the

performance of the RAP algorithm as the dimensionality of

regression coefficients, p, increases.

Data was generated as described in Section 5.1 and the

dimensionality of the covariates, Xt, was varied from p= 10

through to p= 100. For each value of p, data sets consist-

ing of n= 300 observations where randomly generated. The

regularization parameter was first estimated using K = 10

fold cross-validation. The RAP algorithm was subsequently

employed and the difference in 𝓁1 norm, defined in Equation

(16), was then computed. In case the of the RAP algorithm,

each observation was studied once in a streaming fashion. Due

to the stationary nature of the data, it was not imperative to

discard past observations in this setting. As a result, the sam-

ple covariance matrix was estimated using a fixed forgetting

factor of r = 1 in these experiments. Given such a choice of

r, the updates for the regularization parameter are equivalent

to those proposed by ref. [7] in the case of linear regres-

sion. The initial choice for the regularization parameter, 𝜆0,

was randomly sampled from a uniform distribution, 𝒰[01].
Both normal linear and logistic regression were studied in this

manner.

The difference in selected regularization parameters over

N = 500 simulations is visualized in Figure 1. It is reassuring

to note that, for both linear and logistic regression, the differ-

ences are both small in magnitude as well as centered around

the origin. This serves to indicate the absence of a large sys-

tematic bias. However, we note that there is higher variance

in the context of logistic regression.

5.4 Nonstationary data

While Section 5.3 provided empirical evidence demonstrat-

ing that the RAP framework can be effectively employed to

track regularization parameters in a stationary setting, we are

ultimately interested in streaming, nonstationary data sets. As

a result, in this simulation we study the performance of the

proposed framework in the context of nonstationary data. As
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in Section 5.3 we study the properties of the RAP algorithm

in the context of linear and logistic regression.

While there are a multitude of methods through which

to simulate nonstationary data, in this simulation study we

chose to generate data with piece-wise stationary covari-

ance structure. As a result, the underlying covariance alter-

nated between two regimes: a sparse regime where the

response was driven by a reduced subset of covariates and

a dense regime where the converse was true. Thus, pairs

(yt, Xt) of response and predictors were simulated in a

piece-wise stationary regimes. The dimensionality of the

covariates was fixed at p= 20, implying that Xt ∈ R20.

Changes occurred abruptly every 100 observations and two

change points were considered, resulting in 300 observations

in total.

Covariates, Xt, were simulated as described in Section

5.1 within two alternating regimes; dense and sparse. The

block-covariance structure remained fix within each regime

(ie, for 100 observations). Within the dense regime, a propor-

tion 𝜌1 = .8 of regression coefficients were randomly selected

and their values sampled from a standard Gaussian distribu-

tion. All remaining coefficients were set to zero. Similarly, in

the case of the sparse regime, 𝜌2 = .2 regression coefficients

were randomly selected with remaining coefficients set to

zero. The regression coefficients remained fixed within each

regime.

In order to benchmark the performance of the proposed

RAP framework, streaming penalized Lasso models were

also estimated using a fixed and stepwise constant sparsity

parameters. As a result, the RAP algorithm was benchmarked

against three distinct offline methods for selecting the regu-

larization parameter. In the case of a fixed sparsity parameter,

K = 10-fold cross-validation as well as Bayesian optimization

were employed. Finally, cross-validation was also employed

to learn a stepwise constant regularization parameter. This

was achieved by performing cross-validation for the data

within each regime. Such an approach requires knowledge of

the piece-wise stationary nature of the data that would not

typically be available, and we therefore refer to it as the Step-
wise Oracle method. Moreover, the offline nature of each

of these methods, dictated that the entire data set should

be analyzed simultaneously (as opposed to in a streaming

fashion by the RAP algorithm). As such, they serve to pro-

vide a benchmark but would be infeasible in the context of

streaming data.

Further, we also study the performance of the RAP frame-

work in three distinct settings. First, we study the use of the

exact gradient update provided in Equation (10) as well as

the approximate gradient update described in Equation (11).

These two settings both employ a fixed forgetting factor

to iteratively estimate the covariance matrix as detailed in

Equation (4) where we set the fixed forgetting factor to be

r = .95. Finally, we also consider the scenario where past

information is not discarded. This corresponds to setting r = 1

as in Section 5.3 and is equivalent to the update described

by ref. [7] in the case of linear regression. This benchmark

serves to demonstrate the importance of discarding past

observations.

Results for N = 500 simulations are shown in Figure 2.

The estimated time-varying regularization parameter for both

the linear and logistic regression models is shown on the

left panels. These results provide evidence that the RAP

algorithm is able to reliably track the piece-wise constant reg-

ularization parameters selected by the Stepwise Oracle using

cross-validation (shown in red). We note that there is some

lag directly after each change occurs, however, the estimated

regression parameters are able to adapt thereafter. However,

this is not the case when past information is not discarded,

corresponding to the use of r = 1 as a forgetting factor. This

is to be expected as information is averaged across several

distinct regimes meaning the regression model is misspeci-

fied. Figure 2 also shows the mean negative log-likelihood

over unseen samples, Ct+ 1. We note there are abrupt spikes

every 100 observations, corresponding to the abrupt changes

in the underlying dependence structure. Detailed results are

provided in Table 1. We note that the proposed framework

is able to outperform the alternative offline approaches. In

the case of the offline cross-validation and SMBO, this is to

be expected as a fixed choice of regularization parameter is

misspecified.

6 APPLICATION TO FMRI DATA

In this section we present an application of the RAP algorithm

to task-based functional MRI (fMRI) data. This data corre-

sponds to time series measurements of blood oxygenation,

a proxy for neuronal activity, taken across a set of spatially

remote brain regions. Our objective in this work is to quan-

tify pairwise statistical dependencies across brain regions,

typically referred to as functional connectivity within the

neuroimaging literature [28].

While traditional analysis of functional connectivity was

rooted on the assumption of stationarity, there is growing

evidence to suggest this is not the case [12]. This partic-

ularly true in the context of task-based fMRI studies. Sev-

eral methodologies have been proposed to address the non-

stationary nature of fMRI data [21], many of which are

premised on the use of penalized regression models such as

those studied in this work. While such methods have made

important progress in the study of nonstationary connectiv-

ity networks, they have typically employed fixed regulariza-

tion parameters. This is difficult to justify in the context

of nonstationary data and plausible biological justifications

are not readily available. The RAP algorithm is therefore

ideally suited to both accurately estimating nonstationary

connectivity structure as well as providing insight regard-

ing whether the assumption of a fixed sparsity parameter is

reasonable.
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FIGURE 2 Simulation results when estimating regularized streaming linear and logistic regression models. Results for linear and logistic regression are shown

across the first and second rows, respectively. The left panels plot the mean regularization parameter as estimated by the RAP algorithm as well as the optimal

piece-wise constant value selected by a Stepwise Oracle using cross-validation. The right panels plot the mean negative log-likelihood, Ct+ 1, over time. We

note that the RAP algorithms outperform the offline alternatives. We note that results for SMBO are omitted for clarity. Detailed results are provided in Table 1

6.1 Estimating connectivity via Lasso regressions

Estimating functional connectivity networks is fundamentally

a statistical challenge. A functional relationship is said to exist

across two spatially remote brain regions if their correspond-

ing time series share some statistical dependence. While this

can be quantified in a variety of ways, a popular approach

is the use of Lasso regression models to infer the condi-

tional independence structure of a particular node. In such an

approach, the time series of a given node is regressed against

the time series of all remaining nodes. A functional relation-

ship is subsequently inferred between the target node and all

remaining nodes associated with a nonzero regression coef-

ficient. The connectivity structure across all nodes can then

be inferred via a neighborhood selection approach [17]. The

proposed RAP framework can directly be incorporated into

such a model, resulting in time varying conditional depen-

dence structure where the underlying sparsity parameter is

also inferred.

6.2 Human Connectome Project Emotion Task Data

Emotion task data from the Human Connectome Project was

studied with 20 subjects selected at random. During the task

participants were presented with blocks of trials that either

required them to decide which of two faces presented on

the bottom of the screen match the face at the top of the

screen, or which of two shapes presented at the bottom of the

screen match the shape at the top of the screen. The faces had

either an angry or fearful expression while the shapes rep-

resented the emotionally neutral condition. Twenty regions
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FIGURE 3 Top: the mean sparsity parameter is shown as a function of time. The background color indicates the nature of the task at hand (green indicates

neutral task while blue indicates the emotion task). Bottom: estimated networks visualizing the estimated connectivity structure at three distinct points in

time. Edge colors indicate the nature of the dependence (blue indicates a positive dependence, red a negative dependence)

were selected from an initial subset of 84 brain regions based

on the Desikan-Killiany atlas. Data for each subject therefore

consisted of n= 175 observations across p= 20 nodes.

6.3 Results

Data for each subject was analyzed independently where the

time-varying estimates of the conditional dependence struc-

ture for each node were estimated as described in Section 5.1.

A fixed forgetting factor of r = .95 was employed through-

out with a stepsize parameter 𝜀= .025. The exact gradient

was employed when updating the sparsity parameter at each

iteration.

The mean sparsity parameter over all subjects is shown

in the top panel of Figure 3. We observe decreased spar-

sity parameters for blocks in which subjects were presented

with emotional (ie, angry or fearful) faces (top panel, pur-

ple shaded areas) as compared to blocks in which subjects

were shown neutral shapes (top panel, green shaded areas).

The oscillation in sparsity parameter is highly correlated with

task onset. When inspecting the networks estimated using

the time varying sparsity parameter (bottom panel), we find

strong coupling among many of the regions during the emo-

tion processing blocks (A and C) compared to a clearly sparser

network representation for blocks that require no emotion

processing (ie, neutral shapes, block B). This is to be expected

as the selected regions are core hubs involved with emotion

processing; therefore explaining the higher network activity

during the emotion task.

7 CONCLUSION

In this work we have presented a framework through which to

learn time-varying regularization parameters in the context of

streaming GLMs. An approximate algorithm is also provided

to address issues concerning computational efficiency. We

present two simulation studies which demonstrate the capa-

bilities of the RAP framework. These simulations show that

the proposed framework is capable of tracking the regulariza-

tion parameter both in a stationary as well as nonstationary

setting. Finally, we present an application to task-based fMRI

data, which is widely accepted to be nonstationary [12].

Future work will involve extending the RAP framework

to consider alternative regularization schemes. In particular

an 𝓁2 penalty could also be incorporated as the derivative,
𝜕𝛽t(𝜆)
𝜕𝜆

, is available in closed form. Finally, the methods pre-

sented in this manuscript have been motivated by the study

of fMRI data. It is often the case that such data is collected

across multiple subjects, possibly in real-time [19]. Due to the
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high-dimensional and nonstationary nature of fMRI data, it is

imperative that share information across subjects in order to

more reliably estimate the associated networks [23] and future

work will seek to incorporate recent advances [20].
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APPENDIX A: PROOF OF PROPOSITION 2

For a given regularization parameter, 𝜆, the correspond-

ing vector of estimated regression coefficients, 𝛽(𝜆), can be

computed by minimizing the nonsmooth objective, Lt(𝛽, 𝜆),

provided in Equation (14). The subgradient is defined as:

𝛻𝛽Lt(𝛽, 𝜆) = −XT
1∶tW(y1∶t − 𝝁)

𝜕𝜼

𝜕𝝁
+ 𝜆 sign(𝛽) (A1)

We write 𝝁 to denote the vector of predicted means, 𝜇i =
g−1(𝜂i) = g−1(XT

i 𝛽) and
𝜕𝜼

𝜕𝝁
to denote a vector with entries

𝜕𝜼i

𝜕𝝁i
. Note that in the case of normal linear regression we have

that 𝜇i = 𝜂i = XT
i 𝛽 and we therefore recover Equation (9).

As in Proposition 1, we have that for any choice of regu-

larization parameter, the subgradient evaluated at 𝛽t(𝜆) must

satisfy:

𝛻𝛽Lt(𝛽, 𝜆)|𝛽=𝛽t(𝜆)
∋ 0.

We therefore compute the derivative with respect to 𝜆 in

order to obtain:

𝜕

𝜕𝜆
(𝛻𝛽Lt(𝛽, 𝜆)|𝛽=𝛽t(𝜆)

) = 0 (A2)

= 𝜕

𝜕𝜆

(
−XT

1∶tW(y1∶t − 𝝁)
𝜕𝜼

𝜕𝝁

)
+ sign(𝛽t(𝜆)) (A3)

= XT
1∶tW

𝜕𝝁

𝜕𝜆

𝜕𝜼

𝜕𝝁
+ sign(𝛽t(𝜆)) (A4)

= XT
1∶t𝑊𝑋1∶t

𝜕𝛽t(𝜆)
𝜕𝜆

+ sign(𝛽t(𝜆)) (A5)

where Equation (A5) follows from the fact that:

𝜕𝝁

𝜕𝜆
=

𝜕𝝁

𝜕𝜼

𝜕𝜼

𝜕𝛽t(𝜆)
𝜕𝛽t(𝜆)
𝜕𝜆

=
𝜕𝝁

𝜕𝜼
X1∶t

𝜕𝛽t(𝜆)
𝜕𝜆

.

Rearranging Equation (A5) yields the result.
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