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At the forefront of neuroimaging is the understanding of the functional architecture of the human brain. In most
applications functional networks are assumed to be stationary, resulting in a single network estimated for the
entire time course. However recent results suggest that the connectivity between brain regions is highly non-
stationary even at rest. As a result, there is a need for new brain imaging methodologies that comprehensively
account for the dynamic nature of functional networks. In this work we propose the Smooth Incremental
Graphical Lasso Estimation (SINGLE) algorithm which estimates dynamic brain networks from fMRI data. We
apply the proposed algorithm to functional MRI data from 24 healthy patients performing a Choice Reaction
Task to demonstrate the dynamic changes in network structure that accompany a simple but attentionally
demanding cognitive task. Using graph theoretic measures we show that the properties of the Right Inferior
Frontal Gyrus and the Right Inferior Parietal lobe dynamically change with the task. These regions are frequently
reported as playing an important role in cognitive control. Our results suggest that both these regions play a key
role in the attention and executive function during cognitively demanding tasks and may be fundamental in
regulating the balance between other brain regions.

© 2014 Published by Elsevier Inc.
Introduction

The discovery of non-invasive brain imaging techniques has greatly
boosted interest in cognitive neuroscience. Specifically, the discovery
of functional Magnetic Resonance Imaging (fMRI) has instigated a
revolution by providing a non-invasive and readily accessible method
by which to obtain high quality images of the human brain. While
traditional fMRI studies focused exclusively on reporting the behaviour
of individual brain regions independently, there has been a recent shift
towards understanding the relationships between distinct brain
regions, referred to as brain connectivity (Lindquist, 2008). The study
of brain connectivity has resulted in fundamental insights such as
small-world architecture (Sporns et al., 2004; Bassett and Bullmore,
2006) and the presence of hubs (Eguiluz et al., 2005).

A cornerstone in the understanding brain connectivity is the notion
that connectivity can be represented as a graph or network composed of
a set of nodes interconnected by a set of edges. This allows for connec-
tivity to be studied using a rich set of graph theoretic tools (Newman,
2003; Fornito et al., 2013) and has resulted in widespread use of
tics, Imperial College London,

ana).
graph theoretic techniques in neuroscience (Fair et al., 2009; Achard
et al., 2006). The first step when looking to study brain connectivity is
to define a set of nodes. This can be achieved in many ways; in the
case of fMRI nodes are often defined as spatial regions of interest
(ROIs). Alternatively, Independent Component Analysis (ICA) can be
employed to determine independent components which are subse-
quently used as nodes (Calhoun et al., 2009). It follows that each node
is associated with its own time course of imaging data. This is subse-
quently used to estimate the connections between nodes, defined as
the edge structure of the network. In particular, functional connectivity
estimates of the edge structure can be obtained by studying the statisti-
cal dependencies between each of the nodes (Strother et al., 1995; Lowe
et al., 1998; van der Heuvel and Hulshoff Pol, 2010; Friston, 2011). The
resulting networks, referred to as functional connectivity networks,
are the primary focus of this work.

Traditionally functional connectivity networks have been estimated
by measuring pair-wise linear dependencies between nodes, quantified
by Pearson's correlation coefficient (Hutchinson et al., 2013; Fornito
et al., 2013). This corresponds to estimating the covariance matrix
where each entry corresponds to the correlation between a distinct
pair of nodes. Partial correlations, summarised in the precision or in-
verse covariance matrix (Whittaker, 1990), have also been employed
extensively (Huang et al., 2010; Liu et al., 2009; Marrelec et al., 2006;
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Sun et al., 2004; Pandit et al., 2013; Hinne et al., 2013). In this case, the
correlations between nodes are inferred once the effects of all other
units have been removed. Partial correlations are typically preferred to
Pearson's correlation coefficient as they have been shown to be better
suited to detecting changes in connectivity structure (Smith et al.,
2011; Marrelec et al., 2009).

Intrinsically linked to the problem of estimating the functional
connectivity structure is the issue of estimating the true sparsity of the
networks in question. There are numerous studies reporting brain net-
works to be of varying levels of sparsity. For example, Bullmore and
Sporns (2009) suggest that connectivity networks have evolved to
achieve high efficiency of information transfer at a low connection
cost, resulting in sparse networks. On the other hand, Markov et al.
(2013) propose a high-density model where efficiency is achieved via
the presence of highly heterogeneous edge strengths between nodes.
Here we pose the level of sparsity as a statistical question to be
answered by the data. Due to the presence of noise, it follows that
every entry in the estimated precision or covariance matrices will be
non-zero. This results in dense, unparsimonious networks which are
potentially dominated by noise. The two most common approaches to
addressing this problem involve the use of multiple hypothesis tests
or regularisation. The former involves testing each edge for statistical
significance (Nichols and Hayasaka, 2003) while the latter involves
the formulation of an objective function which contains an additional
regularisation penalty to encourage sparsity. A popular example of
such a penalty is the Graphical Lasso penalty (Friedman et al., 2008).
This penalises the sum of the off-diagonal elements in the precisionma-
trix thus balancing a trade-off between sparsity and goodness-of-fit.
Furthermore, in many neuroimaging studies it is often the case that
the number of parameters to estimate exceeds the number of observa-
tions. In such scenarios the use of regularisation is required for the for-
mulation of a well-posed problem.Moreover, regularisation in the form
of the Graphical Lasso penalty encourages only the presence of edges
which are best supported by the data.

The aforementioned methods are based on the underlying assump-
tion that functional connectivity networks are not changing over time.
However, there is growing evidence that fMRI data is non-stationary
(Hutchinson et al., 2012; Hellyer et al., 2014); this is especially true in
task-based fMRI studies (Chang and Glover, 2010). As a result there is
a clear need to quantify dynamic changes in network structure over
time. Specifically, there is a need to estimate a network at each observa-
tion in order to accurately quantify temporal diversity. To date themost
commonly used approach to achieve this goal involves the use of sliding
windows (Hutchinson et al., 2013). Here observations lying within a
timewindowoffixed length are used to calculate the functional connec-
tivity. This window is then shifted, allowing for the estimation of
dynamic functional networks. Examples include Handwerker et al.
(2012) who use slidingwindows to quantify dynamic trends in correla-
tion as well as Allen et al. (2012) who propose a temporal clustering of
covariance matrices and study the Fourier representation of edges. It
follows that sliding windows can also be combined with approaches
such as ICA (Esposito et al., 2003) and principal component analysis
(Leonardi et al., 2013).

While sliding windows are a valuable tool for investigating high-
level dynamics of functional connectivity networks there are two
main issues associated with its use. First, the choice of window length
can be a difficult parameter to tune. It is advised to set the window
length to be large enough to allow for robust estimation of network sta-
tistics without making it too large, which would result in overlooking
interesting short-term fluctuations (Sakoglu et al., 2010). Second, the
use of slidingwindowsneeds to be accompanied by an additionalmech-
anism to determine if variations in edge structure are significant. This
would result in estimated networks where the edge structure is only
reported to change when substantiated by evidence in the data. We
refer to this quality as temporal homogeneity. One way this can be
achieved is via the use of hypothesis tests, as in the recently proposed
Dynamic Connectivity Regression (DCR) algorithm (Cribben et al.,
2012).

In this work we are concerned with multivariate statistical methods
for inferring dynamic functional connectivity networks from fMRI data.
We are particularly interested in two aspects. First, we wish to obtain
individual estimates of brain connectivity at each time point as opposed
to a network for the entire time series. This will allow us to fully charac-
terise the dynamic evolution of networks over time and provide valuable
insight into brain organisation and cognition. Second, wewish to encour-
age our estimation procedure to produce estimates with the two proper-
ties discussed previously; sparsity and temporal homogeneity

In order to achieve these goals we propose a newmethodology, the
Smooth Incremental Graphical Lasso Estimation (SINGLE) algorithm.
SINGLE can be seen as an extension of sliding windows where the two
issues mentioned previously — sparsity and temporal homogeneity —

are addressed. First, we propose an objective method for estimating
the window length based on cross-validation. We then introduce the
SINGLE algorithm which is capable of accurately estimating dynamic
networks. The proposed algorithm is able to estimate dynamic net-
works by minimising a penalised loss function. This function contains
a likelihood term for each observation together with two penalty
terms. Sparsity is achieved via the introduction of a Graphical Lasso pen-
alty while temporal homogeneity is achieved by introducing a penalty
inspired by the Fused Lasso (Tibshirani et al., 2005) which effectively
penalises the difference between consecutive networks.

Throughout a series of simulations, we study the ability of the
SINGLE algorithm to accurately estimate dynamic random networks
resembling fMRI data and benchmark its performance against sliding
window based algorithms and the DCR algorithm. We then apply the
SINGLE algorithm to data collected from 24 healthy subjects while
performing a ChoiceReaction Time (CRT) task. During the CRT task, sub-
jects were required to make a rapid visually-cuedmotor decision. Stim-
ulus presentation was blocked into five on-task periods, each preceding
a period where subjects were at rest. As a result, we expect there to be
an alternating network structure depending on the task. This makes
the data set particularly suitable for demonstrating the limitations in-
volved with the assumption of stationarity as well as the capabilities
of the SINGLE algorithm.

The remainder of this paper is structured as follows: inMethods sec-
tionwe introduce and describe the SINGLE framework and optimisation
algorithm in detail. In Experimental results section we present the re-
sults of our simulation study and in Application to a choice reaction
time (CRT) task fMRI dataset section we then apply the proposed algo-
rithm to fMRI data collected for 24 healthy subjects while performing a
Choice Reaction Time (CRT) task.

Methods

We assume we have observed fMRI time series data denoted
by X1,…, XT, where each vector Xi ∈ ℝ1× p contains the BOLD measure-
ments of p nodes at the ith time point. Throughout the remainder
we assume that each Xi follows a multivariate Gaussian distribution,
Xi∼N μ i;Σið Þ . Here the mean and covariance are dependent on time
index in order to accommodate the non-stationary nature of fMRI data.

We aim to infer functional connectivity networks over time by
estimating the corresponding precision (inverse covariance) matrices
{Θi} = {Θ1, …, ΘT}. Here, Θi encodes the partial correlation structure at
the ith observation (Whittaker, 1990). It follows that we can encode
Θi as a graph or network Gi where the presence of an edge implies a
non-zero entry in the corresponding precision matrix and can be
interpreted as a functional relationship between the two nodes in
question. Thus our objective is equivalent to estimating a sequence of
time indexed graphs {Gi} = {G1, …, GT} where each Gi summarises the
functional connectivity structure at the ith observation.

We wish for our estimated graphs {Gi} to display the following two
properties:



1 here I xð Þ is the indicator function.
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(a) Sparsity: The introduction of sparsity is motivation by two rea-
sons; first, the number of parameters to estimate often exceeds
the number of observations. In this case the introduction of
regularisation is required in order to formulate a well-posed
problem. Second, due to the presence of noise, all entries in the
estimated precision matrices will be non-zero. This results in
dense, unparsimonious networks that are potentially dominated
by noise.

(b) Temporal homogeneity: From a biological perspective, it has
been reported that functional connectivity networks exhibit
changes due to task based demands (Esposito et al., 2006;
Fornito et al., 2012; Fransson, 2006; Sun et al., 2007). As a result,
we expect the network structure to remain constant within a
neighbourhood of any observation but to vary over a larger
time horizon. This is particularly true for task-based fMRI studies
where stimulus presentation is blocked. In light of this, we wish
to encourage estimated graphs with sparse innovations over
time. This ensures that a change in the connectivity between
two nodes is only reported when is it substantiated by evidence
in the data.

We split the problem of estimating {Θi} into two independent tasks.
First we look to obtain local estimates of sample covariance matrices
S1, …, ST. This is achieved via the use of kernel functions and discussed
in detail in the Estimation of time-varying covariance matrices section
below. Assuming such a sequence exists we wish to estimate the corre-
sponding precision matrices {Θi} with the aforementioned properties
while ensuring that each Θi adequately describes the corresponding Si.
The latter is quantified by considering the goodness-of-fit:

f Θif gð Þ ¼
XT
i¼1

− log det Θi þ trace SiΘið Þ; ð1Þ

which is proportional to the negative log-likelihood. While it would be
possible to estimate {Θi} by directlyminimising f, thiswould not guaran-
tee either of the properties discussed previously. In order to enforce
sparsity and temporal homogeneity we introduce the following
regularisation penalty:

gλ1 ;λ2
Θif gð Þ ¼ λ1

XT
i¼1

Θik k1 þ λ2

XT
i¼2

Θi−Θi−1k k1: ð2Þ

Sparsity is enforced by the first penalty term which assigns a large
cost to matrices with large absolute values, thus effectively shrinking
elements towards zero. This can be seen as a convex approximation to
the combinatorial problemof selecting the number of edges. The second
penalty term, regularised by λ2, encourages temporal homogeneity by
penalising the difference between consecutive networks. This can be
seen as an extension of the Fused Lasso penalty (Tibshirani et al.,
2005) from the context of linear regression (i.e., enforcing similarities
across regression coefficients) to penalising the changes in network
structure over time.

The proposed method minimises the following loss function:

l Θif gð Þ ¼ f Θif gð Þ þ gλ1 ;λ2
Θif gð Þ: ð3Þ

This allows for the estimation of time-index precision matrices
which display the properties of sparsity and temporal homogeneity
while providing an accurate representation of the data — a schematic
representation of the proposed algorithm is provided in Fig. 1.
The choice of regularisation parameters λ1 and λ2 allow us to balance
this trade-off and these are learned from the data as described in
Parameter tuning section.

The remainder of this section is organised as follows: in Estimation
of time-varying covariance matrices section we describe the estimation
of time-varying sample covariance matrices S1, …, ST using kernel
functions. In Optimisation algorithm section we outline the optimisa-
tion algorithm used to minimise Eq. (3) as well as discuss the computa-
tional complexity of the resulting algorithm. Finally in Parameter tuning
section we describe how the related parameters can be learnt from the
data and in Experimental data section we describe the experimental
data used in our application.

Estimation of time-varying covariance matrices

The loss function (3) requires the input of estimated sample covari-
ance matrices S1, …, ST. This is itself a non-trivial and widely studied
problem. Under the assumption of stationarity, the covariance matrix
can be directly calculated as S ¼ 1

T−1∑
T
i¼1 Xi−xð Þ0 Xi−xð Þ where x is the

sample mean and we write A′ to denote the transpose of a matrix A.
However, when faced with non-stationary data such an approach is
unsatisfactory and there is a need to obtain local estimates of the covari-
ance matrix.

A potential approach involves the use of change-point detection
to segment the data into piece-wise stationary segments, as is the case
in the DCR algorithm (Cribben et al., 2012). Alternatively, a sliding win-
dow may be used to obtain a locally stationary estimate of the sample
covariance at each observation. Due to the sequential nature of the
observations, sliding windows allow us to obtain adaptive estimates
by considering only temporally adjacent observations.

A natural extension of sliding windows is to obtain adaptive
estimates by down-weighting the contribution of past observations.
This can be achieved using kernel functions.

Formally, kernel functions have the form Kh(i, j) where Kh(⋅,⋅) is
a symmetric, non-negative function, h is a specified fixed width and
i and j are time indices. By considering the uniform kernel,
Kh i; jð Þ ¼ I i− jj jbhf g1, we can see that sliding windows are a special
case of kernel functions. This allows us to contrast the behaviour of
sliding windows against alternative kernels, such as the Gaussian
kernel:

Kh i; jð Þ ¼ exp
− i− jð Þ2

h

( )
: ð4Þ

Fig. 2 provides clear insight into the different behaviour of each of the
two kernels. While sliding windows have a sharp cutoff, the Gaussian
kernel gradually reduces the importance given to observations according
to their chronological proximity. In this manner, the Gaussian kernel is
able to give greater importance to temporally adjacent observations. In
addition to this, slidingwindows inherently assume that observations ar-
rive at equally spaced intervals while the use of more general kernel
functions, such as the Gaussian kernel, naturally accommodates cases
where this assumption does not hold.

Finally, given a kernel function, adaptive estimates of the ith sample
mean and covariance can be directly calculated as follows:

xi ¼
XT

j¼1
Kh i; jð ÞX jXT

j¼1
Kh i; jð Þ

; ð5Þ

Si ¼
PT

j¼1Kh i; jð ÞðX j−xjÞ0ðX j−xjÞXT
j¼1

Kh i; jð Þ
: ð6Þ

It follows that for both the Gaussian kernel as well as the sliding
window the choice of h plays a fundamental role. It is typically advised
to set h to be large enough to ensure robust estimation of covariance
matrices without making h too large (Sakoglu et al., 2010). However,
data-driven approaches are rarely proposed (Hutchinson et al., 2013).



Fig. 1.A graphical representation of the SINGLE algorithm illustrating its various components. a)Gaussian kernels are used to obtain estimate local covariancematrices at each observation.
b) These are then used to obtain smooth estimates of precision matrices by combining the Graphical Lasso (blue) and Fused Lasso (purple) penalties. c) Finally the estimated precision
matrices can be represented as graphs.
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This is partly because the choice of hwill depend on many factors, such
as the rate of change of the underlying networks, which are rarely
known a priori. Here we propose to estimate h using cross-validation.
This is discussed in detail in the Parameter tuning section.

Optimisation algorithm

Having obtained estimated sample covariance matrices, we turn to
the problem of minimising the loss function (3). While this loss is con-
vex (see Appendix A) it is not continuously differentiable due to the
presence of the penalty terms. In particular, the presence of the Fused
Lasso penalty poses a real restriction. Additional difficulty is introduced
by the structured nature of the problem: we require that each Θi be
symmetric and positive definite.

The approach taken here is to exploit the separable nature of Eq. (3).
As discussed previously, the loss function is composed of two compo-
nents; the first of which is proportional to the sum of likelihood terms
0−2 2−1 1−3 3

Fig. 2. Example demonstrating the difference between a Gaussian kernel and a sliding
window. We note that the sliding window gives zero weighting to observations at ±3
while this is not the case for the Gaussian kernel. We also note that the Gaussian kernel
gives greater importance to chronologically adjacent observations while the sliding win-
dow gives an equal weighting to all observations within its width.
and the second containing the sum of the penalty components. This
separability allows us to take advantage of the structure of each
component.

There has been a rapid increase in interest in the study of such sep-
arable loss functions in the statistics, machine learning and optimisation
literature. As a result, there are numerous algorithms which can be
employed such as Forward-Backward Splitting (Duchi and Singer,
2009) and Regularised Dual Averaging (Xiao, 2010). Here we capitalise
on the separability of our problem by implementing an Alternating Di-
rections Method of Multipliers (ADMM) algorithm (Boyd et al., 2010).
The ADMM is a form of augmented Lagrangian algorithm2which is par-
ticularly well suited to dealing with highly structured nature of the
problem proposed here. Moreover, the use of an ADMM algorithm is
able to guarantee estimated precisionmatrices, {Θi}, that are symmetric
and positive definite as we outline below.

In order to take advantage of the separability of the loss function (3)
we introduce a set of auxiliary variables denoted {Zi} = {Z1, …, ZT}
where each Zi ∈ ℝp × p corresponds to each Θi. This allows us to
minimise the loss with respect to each set of variables, {Θi} and {Zi} in
iterative fashion while enforcing an equality constraint on each Θi and
Zi respectively. Consequently, Eq. (3) can be reformulated as the follow-
ing constrained minimisation problem:

minimise
Θif g; Zif g

XT
i¼1

− log det Θi þ trace SiΘið Þð Þ þ λ1

XT
i¼1

Zik k1 þ λ2

XT
i¼2

Zi−Zi−1k k1

ð7Þ

subject to Θi ¼ Zii ¼ 1;…; T ð8Þ
2 See Bertsekas (1999, chap. 4) for a concise description of augmented Lagrangian
methods.
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where we have replaced Θi with Zi in both of the penalty terms. As a
result, {Θi} terms are involved only in the likelihood component of
Eq. (7) while {Zi} terms are involved in the penalty components. This
decoupling allows for the individual structure associated with the {Θi}
and {Zi} to be leveraged.

The use of an ADMM algorithm requires the formulation of the
augmented Lagrangian corresponding to Eqs. (7) and (8). This is defined
as:

Lγ Θif g; Zif g; Uif gð Þ ¼ −
XT
i¼1

log det Θi−trace SiΘið Þð Þ þ λ1

XT
i¼1

Zik k1

þλ2

XT
i¼2

Zi−Zi−1k k1 þ γ2
XT
i¼1

Θi−Zi þ Uik k22− Uik k22
� �

;

ð9Þ

where {Ui} = {U1, …, UT} are scaled Lagrange multipliers such that
Ui ∈ ℝp × p. Eq. (9) corresponds to the Lagrangian for Eqs. (7) and (8)
together with an additional quadratic penalty term (see Appendix B
for details). The latter is multiplied by a constant stepsize parameter
γ which can typically be set to one. The introduction of this term is
desirable as it often facilitates the minimisation of the Lagrangian;
specifically in our case it will make our problem substantially easier as
we outline below.

The proposed estimation procedure works by iteratively minimising
Eq. (9) with respect to each set of variables: {Θi} and {Zi}. This allows us
to decouple the Lagrangian in such a manner that the individual struc-
ture associated with variables {Θi} and {Zi} can be exploited.

We write {Θi
j} = {Θ1

j , …, ΘT
j} where Θi

j denotes the estimate of Θi in
the jth iteration. The same notation is used for {Zi} and {Ui}. The algo-
rithm is initialised with Θi

0 = Ip, Zi0 = Ui
0 = 0 ∈ ℝp × p for i = 1, …, T.

At the jth iteration of the proposed algorithm three steps are performed
as follows:

Step 1: Update {Θi
j}

At the jth iteration, each Θi is updated independently by
minimising Eq. (9). At this step we treat all {Zi

j}, {Ui
j} and Θk

j,
for k ≠ i as constants. As a result, minimising Eq. (9) with
respect to Θi corresponds to setting:

Θ j
i ¼ argmin

Θi

− log det Θi þ trace SiΘið Þ þ γ=2 Θi−Z j−1
i þ U j−1

i

��� ���2
2

� �
:

ð10Þ

From Eq. (10) we can further understand the process occurring
at this step. If γ is set to zero only the negative log-likelihood
terms will be left in Eq. (10) resulting in Θi

j = Si
−1, the maxi-

mum likelihood estimator. However, thiswill not enforce either
sparsity or temporal homogeneity and requires the assumption
that Si is invertible. Setting γ to be a positive constant implies
that Θi will be a compromise between minimising the negative
log-likelihood and remaining in the proximity of Zi

j − 1. The
extent to which the latter is enforced will be determined
by both γ and Lagrange multiplier Ui

j − 1. As we will see in
step 2, it is the {Zi} termswhich encode the sparsity and tempo-
ral homogeneity constraints.
Differentiating the right hand side of Eq. (10) with respect to Θi

and setting the derivative equal to zero yields:

Θ−1
i −γΘi ¼ Si−γ Z j−1

i −U j−1
i

� �
ð11Þ

which is a matrix quadratic in Θi (after multiplying through by
Θi). In order to solve this quadratic, we observe that both Θi

and Si − γ(Zi
j − 1 − Ui

j − 1) share the same eigenvectors (see
Appendix C). This allows us to solve Eq. (10) using an
eigendecomposition as outlined below. Now letting θr and sr
denote the rth eigenvalues of Θi and Si − γ(Zi

j − 1 − Ui
j − 1)

respectively we have that:

θ−1
r −γθr ¼ sr: ð12Þ

Solving the quadratic in Eq. (12) yields

θr ¼
1
2γ

−sr þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2r þ 4γ

q� 	
; ð13Þ

for r = 1, …, p. Due to the nature of Eq. (13) it follows that all
eigenvalues, θi will be great than zero. Thus Step 1 involves an
eigendecomposition and update

Θi ¼ Vi
eDiV

0
i ð14Þ

for each i=1,…, T. Here Vi is a matrix containing the eigenvec-
tors of Si − γ(Zi

j − 1 − Ui
j − 1) and eDi is a diagonal matrix con-

taining entries θ1, …, θp. As discussed, all of the entries in eDi

will be strictly positive, ensuring that each Θi will be positive
definite. Moreover, we also note from Eq. (14) that each Θi

will also be symmetric.
Step 2: Update {Zi

j}
As in step 1, all variables {Θi

j} and {Ui
j} are treated as constants

when updating {Zi} variables. Due to the presence of the Fused
Lasso penalty in Eq. (9) we cannot update each Zi

j separately
as was the case with each Θi

j in step 1. Instead, at the jth itera-
tion the {Zi

j} variables are updated by solving:

Z j
i

n o
¼ argmin

Zif g

(
γ=2

XT
i¼1

Θ j
i−Zi þ U j−1

i

��� ���2
2
þ λ1

XT
i¼1

Zik k1

þλ2

XT
i¼2

Zi−Zi−1k k1
)
;

ð15Þ

where we note that only element-wise operations are applied.
As a result it is possible to break down Eq. (15) into element-
wise optimisations of the following form:

argmin
Zif gk:l

(
γ=2

XT
i¼1

Θ j
i−Zi þ U j−1

i

� �
k;l

���� ����2
2
þ λ1

XT
i¼1

Zið Þk;l
��� ���

1

þλ2

XT
i¼2

Zi−Zi−1ð Þk;l
��� ���

1

) ð16Þ

where we write (M)k,l to denote the (k, l) entry for any square
matrixM. This corresponds to a Fused Lasso signal approximator
problem (Hoefling, 2010) (see Appendix D). Moreover, due to
the symmetric nature of matrices {Θi}, {Zi} and {Ui} we require
p pþ1ð Þ

2 optimisations of the form shown in Eq. (16). Thus by
introducing auxiliary variables {Zi} and formulating the
augmented Lagrangian we are able to enforce both sparsity
and temporal homogeneity penalties by solving a series of
one-dimensional Fused Lasso optimisations.

Step 3: Update {Ui
j}

Step 3 corresponds to an update of Lagrange multipliers {Ui
j} as

follows:

U j
i ¼ U j−1

i þ Θ j
i−Z j

i for i ¼ 1;…; T ð17Þ

Convergence criteria
The proposed algorithm is an iterative procedure consisting of

Steps 1–3 described above until convergence is reached. In order to
guarantee convergence we require both primal and dual feasibility: pri-
mal feasibility refers to satisfying the constraint Θi = Zi while dual
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feasibility refers to minimisation of the Augmented Lagrangian. That is
we require both that ∇ΘL(Θ, Z j, Uj) = 0 and ∇ZL(Θ j + 1, Z, Uj) = 0.
We can check for primal feasibility by considering ‖Θi

j − Zi
j‖2
2 at each

iteration. As detailed in Appendix E, step 3 ensures that {Zi} are always
dual feasible and it suffices to consider ‖Z j − Z j − 1‖2

2 to verify dual
feasibility in {Θi} variables. Thus the SINGLE algorithm is said to con-
verge when ‖Θi

j − Zi
j‖2
2 b ϵ1 and ‖Zi

j − Zi
j − 1‖2

2 b ϵ2 for i = 1, …, T
where ϵ1 and ϵ2 are user specified convergence thresholds. The com-
plete procedure is given in Algorithm 1.

Computational complexity
As discussed previously the optimisation of the SINGLE objective

function involves the iteration of three steps. In step 1 we perform n
eigendecompositions, each of complexityO p3


 �
where p is the number

of nodes (i.e., the dimensionality of the data). Thus step 1 has a compu-
tational complexity ofO np3


 �
. We note that step 2 requires p pþ1ð Þ

2 itera-
tions of the Fused Lasso3 where each iteration is O n log nð Þð Þ (Hoefling,
2010). Thus the computational complexity of step 2 is O p2n log nð Þ
 �

.
Finally step 3 only involvesmatrix addition implying that the final com-
putational complexity of the SINGLE algorithm is O p2n log nð Þ þ np3


 �
.

This is dominated by the number of nodes, p, not the number of obser-
vations. As a result the limiting factor is likely to be the number of nodes
in a study.

Parameter tuning

The SINGLE algorithm requires the input of three parameters which
can be tuned using the available data: λ1, λ2 and h. Each of these param-
eters has a direct interpretation. Parameter h is the width of the Gauss-
ian kernel. Following from our discussions in the Introduction section,
similar considerations should be made when tuning h as when tuning
the width of a sliding window. Parameters λ1 and λ2 affect the sparsity
and temporal homogeneity respectively. In particular, increasing λ1 will
result in network estimateswith a higher degree of sparsitywhereas in-
creasing the value of λ2will encourage the fusion of temporally adjacent
estimates. We discuss each of these three parameters in turn.

The choice of parameter h describes certain assumptions relating to
the nature of the available data which are often not formally discussed.
The use of a kernel (be it in the form of a sliding window or otherwise)
also reflects an assumption of local, as opposed to global, stationarity.
This assumption is that it is possible to obtain time dependent parame-
ter estimates that accurately reflect the correlation structure within a
neighbourhood of any observation but possibly not over an arbitrarily
long time horizon. The choice of h can therefore be seen as an assump-
tion relating to the extent of non-stationarity of the available data (for
an attempted definition of the degree of non-stationarity see Haykin
(2002, chap. 16)).

On the one hand, the choice of a large value of h is indicative of an
assumption that the data is close to stationary. If this is the case, a
large choice of h allows for the accurate estimation of sample covariance
matrices by incorporating information across a wide range of observa-
tions. However, if this assumption is incorrect, the choice of a large h
can result in overly smoothed estimates where short term variation is
overlooked. On the other hand, the choice of a small h implies an
assumption of a higher degree of non-stationarity. Here the choice of a
small h can allow for the accurate estimation of sample covariance ma-
trices by correctly discarding irrelevant information. However reducing
the value of hwill result in an increase in the variance of the estimators
as it implies that a smaller sample size is used to estimate parameters.
This effect is more dramatic for large values of p as a greater number
of parameters must be estimated. Overall, the best performing value
of h in any given setting will depend on the difficulty of the estimation
task, in particular the dimensionality of p, as well as the rate of change
3 p p−1ð Þ
2 edges and p more along the diagonal.
of the underlying networks. The latter is not known a priori in many
fMRI applications.

Algorithm 1. Smooth Incremental Graphical Lasso Estimation (SINGLE)
algorithm.

To avoid making specific assumptions about the nature of the tem-
poral variability we rely on an entirely data-driven technique when
choosing h that best describes the observations. The approach taken
here is to use cross-validation (Silverman, 1986). As before, goodness-
of-fit is employed to quantify how well estimated sample covariance
matrices describe the observed time series. We define the leave-one-
out (LOO) log-likelihood for the ith observation and some fixed choice
of h as follows:

L−i hð Þ ¼ −1
2
log det S hð Þ

−i

� �
−1

2
Xi−μ hð Þ

−i

� �0
S hð Þ
−i

� �−1
Xi−μ hð Þ

−i

� �
; ð18Þ

where both μ−i
(h) and S−i

(h) are estimatedwith the ith observation removed
for a given h. ThusL−i(h) allows us to estimate the goodness-of-fit at Xi
for any fixed h. We subsequently choose h in order to maximise the
following score function:

CV hð Þ ¼
XT
i¼1

L−i hð Þ: ð19Þ

Parameters λ1 and λ2 determine the sparsity and temporal homoge-
neity of the estimated networks respectively. Therefore λ1 and λ2

directly affect the degrees of freedom of the estimated networks. In
this case we can employ a more sophisticated parameter tuning tech-
nique based on the Akaike Information Criterion (AIC). The use of AIC
allows us to estimate the in-sample prediction error for each choice of
parameters λ1 and λ2, allowing for a clear comparison across different



Table 1
Regions and MNI coordinates.

Number Name MNI coordinates (mm)

1 Left lateral parietal (DMN) −46 −62 24
2 Right lateral parietal (DMN) 50 −54 16
3 Posterior cingulate cortex (DMN) −2 −46 20
4 Ventromedial PFC (DMN) 2 54 8
5 Ventromedial PFC (FPCN) −2 54 20
6 Dorsal anterior cingulate/preSMA (FPCN) 2 26 56
7 Left inferior frontal gyrus (FPCN) −46 22 −12
8 Right inferior fronal gyrus (FPCN) 54 22 −4
9 Left inferior parietal (FPCN) −54 −54 20
10 Right inferior parietal (FPCN) 54 −54 16
11 Left superior temporal sulcus (FPCN) −50 −26 −12
12 Right superior temporal sulcus (FPCN) 54 −22 −12
13 Posterior cingulate cortex (FPCN) −2 −50 24
14 Left motor −38 −22 52
15 Left primary auditory −54 −18 0
16 Primary visual 2 −74 4
17 Right motor 34 −22 52
18 Right primary auditory 62 −18 8
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values of each parameter (Hastie et al., 2009, chap. 7). For any pair λ1, λ2
we define the AIC as:

AIC λ1;λ2ð Þ ¼ 2
XT
i¼1

− log det Θið Þ þ trace SiΘið Þð Þ þ 2K ð20Þ

where K is the estimated degrees of freedom. For a given range of λ1 and
λ2 values an extensive grid-search is performed with the resulting
choices of λ1 and λ2 being the pair that minimises AIC.

Following Tibshirani et al. (2005) we define K to be the number of
non-zero coefficient blocks in {(Θi)r,s}i = 1,…,T for 1 ≤ r ≠ s ≤ p. That is,
we count a sequence of one or more consecutive non-zero and equal
estimates of partial correlations as one degree of freedom. This can be
formally written as:

K ¼
X
r;s

XT
i¼2

1 Θið Þr;s≠ Θi−1ð Þr;s∩ Θið Þr;s≠0
� �

: ð21Þ

Comparison to related work
There are currently limited methodologies available for estimating

dynamic functional connectivity networks. A novel approach has re-
cently been proposed in the form of the DCR algorithm (Cribben et al.,
2012). The DCR is able to estimate functional connectivity networks
by first partitioning time series into piece-wise stationary segments.
This allows the DCR to exploit the vast literature relating to stationary
network estimation. Formally, the DCR algorithm detects statistically
significant change points by applying a block bootstrap permutation
test. The use of a block bootstrap allows the DCR algorithm to account
for autocorrelation present in fMRI data.

A common approach involves the use of a sliding window (Esposito
et al., 2003; Allen et al., 2012; Leonardi et al., 2013). This involves recur-
sively estimating covariance matrices Si by re-weighting observations
according to a sliding window or kernel. Subsequently, analysis can
be performed directly on Si to infer the network structure at the ith
observation. This approach is studied in detail by Zhou et al. (2010).
However slidingwindow approaches face the potential issue of variabil-
ity between temporally adjacent networks. This arises as a direct conse-
quence of the fact that each network is estimated independently
without any mechanism present to encourage temporal homogeneity.
We believe this additional variability can jeopardise the accuracy of
the estimation procedure and can result in networks which do not
reflect the true network structure over time. The SINGLE algorithm
addresses precisely this problem by introducing an additional Fused
Lasso penalty. In this way, changes in the connectivity structure are
only reported when strongly validated by the data. The effect of the
additional Fused Lasso penalty is studied extensively in the simulation
study provided in Experimental results section.

Finally, the SINGLE algorithm is formally related to the Joint Graph-
ical Lasso (JGL) (Danaher et al., 2013). The JGL was designed with the
motivation of improving network inference by leveraging information
across related observations and data sets. However, while the JGL focus-
es on stationary network estimation the SINGLE algorithm is designed
to estimate dynamic networks. This manifests itself in two main differ-
ences to the overall objective functions of each of the algorithms. Firstly,
the SINGLE algorithm only employs the Fused Lasso penalty as the
Group Lasso penalty proposed in Danaher et al. (2013) cannot be used
in the context of temporal homogeneity. This is due to the fact that
the Group Lasso penalty encourages all coefficients to either be zero or
non-zero in unison and therefore ignores temporal behaviour. Secondly,
while both algorithms contain a Fused Lasso penalty the nature of these
penalties are vastly different. In the case of the JGL there is no natural
ordering to observations and therefore fusions are present between all
networks (i.e., the penalty is of the form ∑ i ≠ j ‖Θi − Θj‖1). This is
not the case in the SINGLE algorithm where there is a chronological
ordering. This results in a penalty of the form ∑ i = 2

T ‖Θi − Θi − 1‖1.

Software

The SINGLE algorithm is freely available as an R package, and can be
downloaded along with its documentation from the Comprehensive R
Archive Network (CRAN) (Monti et al., 2014).

Experimental data

The datawas collected from24healthy subjects performing a simple
but attentionally demanding cognitive task. This fMRI data set is
particularly challenging as the BOLD time series has a length of 126
and corresponds to 18 ROIs, implying a low ratio of observations to
dimensionality. We expect there to be a change in correlation structure
approximately every 15 time points. Thus the number of observations
available to estimate each connectivity structure is small relative to
the number of ROIs.

In the CRT task, 24 subjects were presented with an initial fixation
cross for 350 ms. This was followed by a response cue in the form
of an arrow in the direction of the required response and lasting
1400 ms. The inter-stimulus interval was 1750 ms. Finger-press
responses were made with the index finger of each hand. Subjects
were instructed to respond as quickly and as accurately as possible. To
maximise design efficiency, stimulus presentation was blocked, with
five repeated blocks of 14 response trials interlaced with five blocks of
14 rest trials, and four response trials at the start of the experiment.
This resulted in a total of 74 response trials per subject.

Image pre-processing involved realignment of EPI images to remove
the effects of motion between scans, spatial smoothing using a 6 mm
full-width half-maximum Gaussian kernel, pre-whitening using FILM
and temporal high-pass filtering using a cut-off frequency of 1/50 Hz
to correct for baseline drifts in the signal. The cut-off frequency was
determined based on the combined length of task and rest (Smith
et al., 2004; Poldrack et al., 2011). FMRIB's Linear Image Registration
Tool (FLIRT) (Smith et al., 2004) was used to register EPI functional
data sets into standard MNI space using the participant's individual
high-resolution anatomical images.

The nodes were eighteen cortical spherical regions based on Pandit
et al. (2013). Briefly, these nodes were defined based on peak regions
from a spatial group independent components analysis of resting state
fMRI. The regions were chosen for the nodes to encompass a wide
range of cortical regions including regions within two well recognised
functional connectivity networks, the fronto-parietal cognitive control
network (FPCN) and default mode network (DMN) regions, as well as
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motor, visual and auditory cortical regions (see Table 1). For each sub-
ject and node the mean time-course from within a 10 mm diameter
sphere centred on each of the 18 peaks was calculated. Six motion
parameters, estimated during realignment, were filtered out of each
time-course, using linear regression. The resulting 18 time-courses
were subsequently used.
Experimental results

Simulation settings

In this sectionwe evaluate the performance of the SINGLE algorithm
through a series of simulation studies. In each simulation we produce
simulated time series data giving rise to a number of connectivity pat-
terns which reflect those reported in real fMRI data. The objective is
then to measure whether our proposed algorithm is able recover the
underlying patterns. That is, we are interested primarily in the correct
estimation of the presence or absence of edges.

There are twomain properties of fMRI data whichwe wish to recre-
ate in the simulation study. The first is the high autocorrelationwhich is
typically present in fMRI data (Poldrack et al., 2011). The second and
main property we wish to recreate is the structure of the connectivity
networks themselves. It is widely reported that brain networks have
a small-world topology as well as highly connected hub nodes
(Bullmore and Sporns, 2009) and we therefore look to enforce these
properties in our simulations.

Vector Autoregressive (VAR) processes are well suited to the task of
producing autocorrelatedmultivariate time series as they are capable of
encoding autocorrelations within components as well as cross correla-
tions across components (Cribben et al., 2012). The focus of these simu-
lations is to study the performance of the proposed method in the
presence of non-stationarity data. As a result the simulated datasets
are only locally stationary. This is achieved by concatenating multiple
VAR process which are simulated independently.

Moreover, when simulating connectivity structures we study the
performance of the proposed algorithm using three types of random
graphs; Erdős–Rényi random graphs (Erdos and Renyi, 1959), scale-
free random graphs obtained by using the preferential attachment
model of Barabási and Albert (1999) and small-world random graphs
obtained using theWatts and Strogatz (1998) model. Erdős–Rényi ran-
dom graphs are included as they correspond to the simplest and most
widely studied type of random network while the use of scale-free
and small-world networks is motivated by the fact that they are each
known to each resemble different aspects of fMRI networks.

When simulating Erdős–Rényi random networks we maintain the
edge strength of the connectivity between nodes fixed at 0.6. However,
when simulating scale-free and small-world networks we randomly
sample the edge strengths uniformly from −1

�
2;−1

�
4

 �
∪ 1

�
4;

1
�
2

 �
. This

additional variability in the edge strength together with the reduced
expected magnitude of each edge further increases the difficulty of the
estimation task.
Table 2
A summary of simulation settings and motivation behind each simulation.

Simulation Network Interval length Edge strength

Ia Erdős–Rényi n = 100 0.6
Ib Scale-free n = 100 [−12, − 14] ∪ [14, 12]
Ic Small-world n = 100 [−12, − 14] ∪ [14, 12]
IIa Erdős–Rényi n = 100 0.6
IIb Scale-free n = 100 [−12, − 14] ∪ [14, 12]
IIc Small-world n = 100 [−12, − 14] ∪ [14, 12]
IIIa Scale-free n ∈ {10, …, 100} [(−12, − 14] ∪ [14, 12]
IIIb Small-world n ∈ {10, …, 100} [(−12, − 14] ∪ [14, 12]
Each of the simulations considered in this section is aimed at study-
ing the performance of the proposed algorithm in a different scenario.
We begin by considering the overall performance of the SINGLE algo-
rithm by generating connectivity structures according to Erdős–Rényi,
scale-free and small-world networks in simulations Ia, Ib and Ic respec-
tively. In many task-based experiments it is the case that the task is re-
peated several times, thuswe expect there to be cyclic behaviourwithin
the true functional connectivity structure (i.e., connectivity alternates
between two structures) and we study this scenario in simulations IIa,
IIb and IIc. In simulation III we study the performance of the algorithm
as the ratio of observations, n, to nodes, p, decreases. This simulation is
critical as it is often the case that there is a low ratio of observations to
nodes, especially when considering subject specific fMRI data. In simu-
lation VI we quantify the computational cost of the SINGLE algorithm.
Throughout each of these simulations we benchmark the performance
of the SINGLE algorithm against both the DCR algorithm and two sliding
window based algorithms. Here a slidingwindow is employed to obtain
time-dependent estimates of the sample covariance matrices and the
Graphical Lasso is subsequently used to estimate a sparse connectivity
structure. In order to ensure a fair comparison, the sliding window ap-
proach is employed using both a uniform kernel as well as a Gaussian
kernel. A summary of all simulations can be found in Table 2. Finally,
in each simulation the parameters for the SINGLE algorithmwhere esti-
mated as discussed in Parameter tuning section; thus kernel width h
was estimated by maximising leave-one-out log-likelihood and λ1 and
λ2 were estimated by minimising AIC. The same approaches were
used to estimate the kernel width and sparsity parameter, λ1, for the
sliding window and Gaussian kernel algorithms respectively. In the
case of the DCR algorithm the block size was set to be ξT where ξ =
0.05 as suggested in Cribben et al. (2012) and T is the total number of
observations.

Performance measures

We are primarily interested in the estimation of the functional
connectivity graphs at every time point. In our setting this corresponds
to correctly identifying the non-zero entries in estimated precision ma-
trices, Θ̂i, at each i=1,…, T. An edge is assumed to be present between

the jth and kth nodes if Θ̂iÞ j;k≠0
�

. At the ith observation we define the

set of all reported edges as Di ¼ j; kð Þ : Θ̂iÞ j;k≠0
� on

. We define the

corresponding set of true edges as Ti = {( j, k) : (Θi)j,k ≠ 0} where we
write Θi to denote the true precision matrix at the ith observation.
Given Di and Ti we consider a number of performance measures at
each observation i.

First we measure the precision, Pi. This measures the percentage of
reported edges which are actually present (i.e., true edges). Formally,
the precision is given by:

Pi ¼
Di∩Tj j
Dij j :
Properties & motivation

Simplest and most widely used random network
Networks with highly connected hub nodes present
Networks with small-world topology and high local clustering
Cyclic network structure which may be expected in task-based fMRI studies

The ratio of observations, n, to the number of ROIs, p, is decreased in order to
study performed in the presence of rapid changes
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Second we also calculate the recall, Ri, formally defined as:

Ri ¼
Di∩Tij j
Tij j :

This measures the percentage of true edges which were reported by
each algorithm. Ideally we would like to have both precision and recall
as close to one as possible. Finally, the Fi score, defined as

Fi ¼ 2
PiRi

Pi þ Ri
; ð22Þ

summarises both the precision and recall by taking their harmonic
mean.

Simulation Ia — Erdős–Rényi random networks
In order to obtain a general overview of the performance of the

SINGLE algorithm we simulate data sets with the following structure:
each data set consists of 3 segments each of length 100 (i.e., overall du-
ration of 300). The correlation structure for each segmentwas randomly
generated using an Erdős–Rényi random graph. Finally a VAR process
for each corresponding correlation structure was simulated. Thus each
data set consists of 2 change points at times t=100 and 200 respective-
ly resulting in a network structure that is piece-wise constant over time.
For this simulation the random graphs were generated with 10 nodes
and the probability of an edge between two nodes was fixed at θ = 0.1
(i.e., the expected number of edges is θ p p−1ð Þ

2 ).
In the case of the SINGLE algorithm the value of hwas estimated by

maximising the leave-one-out log-likelihood given in Eq. (19). Values of
λ1 and λ2 were estimated byminimising AIC. For the DCR algorithm, the
block size for the block bootstrap permutation tests to be 15 and one
thousand permutations where used for each permutation test. In the
case of the sliding window and Gaussian kernel algorithms the kernel
width was estimated using leave-one-out log-likelihood and λ1 was
estimated by minimising AIC.

In Fig. 3 shows the average Ft scores for each of the four algorithms
over 500 simulations. We can see that the SINGLE algorithm performs
competitively relative to the other algorithms. Specifically we note that
the performance of the SINGLE algorithm mimics that of the Gaussian
kernel algorithm. We also note that all four algorithms experience a
dramatic drop in performance in the vicinity of change points. This effect
is most pronounced for the sliding window algorithm.
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Fig. 3. Mean F scores for Simulation Ia (shaded regions represent 95% confidence inter-
vals). Here the underlying network structure was simulated using Erdős–Rényi random
networks and a change occurred every 100 time points. We note that all four algorithms
experience a drop in performance in the vicinity of these change points.
Simulation Ib — Scale-free networks
It has been reported that brain networks are scale-free, implying

that their degree distribution follows a power law. From a biological
perspective this implies that there are a small but finite number of
hub regions which have access to most other regions (Eguiluz et al.,
2005). While Erdős–Rényi random graphs offer a simple and powerful
model from which to simulate random networks they fail to generate
networks where the degree distribution follows a power law. In this
simulation we analyse the performance of the SINGLE algorithm by
simulating random networks according to the Barabási and Albert
(1999) preferential attachment model. Here the power of preferential
attachment was set to one. Additionally, edge strength was also simu-
lated according to a uniform distribution on −1
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introducing further variability in the estimated networks.
In Fig. 4 we see the average Ft scores for each of the four algorithms

over 500 simulations. We note that the performance of the SINGLE
and DCR algorithms is largely unaffected by the increased complexity
of the simulation. This is not true in the case of the sliding window
and Gaussian kernel algorithms, both of which see their performance
drop. We attribute this drop in performance to the fall in the signal-
to-noise ratio and to the increased complexity of the network structure.
Similar results confirming that networks with skewed degree distribu-
tions (e.g., power-law distributions) are typically harder to estimate
have also been described in Peng et al. (2009). Finally,
Simulation Ic — Small-world networks
It has been widely reported that brain networks have a small-world

topology (Stephan et al., 2000; Sporns et al., 2004; Bassett and Bullmore,
2006). In this simulation, multivariate time series were simulated such
that the correlation structure follows a small-world graph according to
the Watts–Strogatz model (Watts and Strogatz, 1998). Starting with a
regular lattice, this model is parameterised by β ∈ [0, 1] which quan-
tifies the probability of randomly rewiring an edge. This results in net-
works where there is a tendency for nodes to form clusters, formally
referred to as a high clustering coefficient. Both anatomical (Sporns
et al., 2004) aswell as the functional brain networks have been reported
as exhibiting such a network topology (Bassett and Bullmore, 2006).
Throughout this simulation we setβ ¼ 3

�
4 and edge strength was simu-

lated according to a Uniform distribution on −1
�
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Fig. 4. Mean F scores for Simulation Ib (shaded regions represent 95% confidence
intervals). Here the underlying network structure was simulated using scale-free random
networks according to the preferential attachment model of Barabási and Albert (1999).
A change occurred every 100 time points. We note that all four algorithms experience a
drop inperformance in the vicinity of these changepoints. A full description of simulations
is provided in Table 2.
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Fig. 6. Mean F scores for Simulation IIa (shaded regions represent 95% confidence
intervals). Here the underlying network structure was simulated using Erdős–Rényi
random networks with the additional constraint that the first and third correlation struc-
ture be identical. This gives rise to cyclic correlation structures which may be present in
task-based studies.
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In Fig. 5 we see the average Ft scores for each of the four algorithms
over 500 simulations. We note that there is a clear drop in the perfor-
mance of all the algorithms relative to their performance in simulations
Ia and Ib. We believe this is due to the increased complexity of small-
world networks compared to theprevious networkswehad considered.
Formally, due to the high local clustering present in small-world net-
works, the path length between any two nodes is relatively short. As a
result, we expect there to be a large number of correlated variables
that are not directly connected. It has been reported that the Lasso
(and therefore by extension the Graphical Lasso) cannot guarantee con-
sistent variable selection in the presence of highly correlated predictors
(Zou and Hastie, 2005; Zou, 2006). Since all four algorithms are related
to the Graphical Lasso, we conjecture that this may be the cause of the
overall drop in performance.

Simulation IIa — Cyclic Erdős–Rényi networks
In task related experiments subjects are typically asked to alternate

between performing a cognitive task and resting. As a result, we expect
the functional connectivity structure to alternate between two states: a
task related state and the resting state. In order to recreate this scenario,
network structures are simulated in a cyclic fashion such that the first
and third correlation structures are identical.

We note from Fig. 6 that the performance of the SINGLE slidingwin-
dow and Gaussian kernel algorithms is largely unaffected. However the
DCR algorithm suffers a clear drop in performance relative to simulation
Ia. The drop in performance of the DCR algorithm is partly due to the
presence of the recurring correlation structure.More specifically, we be-
lieve the problem to be related to the use of block bootstrapping permu-
tation test to determine the significance of change points in the DCR.
This test assumes that local data points are correlated but expects data
points that are far away to be independent. Typically this assumption
holds. However when there is a recurring correlation structure, points
that are far away may follow the same underlying distribution. As a
result the power of the permutation test is heavily reduced.

Simulation IIb — Cyclic scale-free networks
In this simulation we simulate multivariate time series where the

underlying correlation structure is cyclic and follows a scale-free distri-
bution. The results are summarised in Fig. 7. As in simulation Ib there is
no noticeable difference in the performance of the SINGLE algorithm.
There is however a drop in the performance of the sliding window,
Gaussian kernel and DCR algorithms. This is particularly evident in the
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Fig. 5. Mean F scores for Simulation Ic (shaded regions represent 95% confidence inter-
vals). Here the underlying network structure was simulated using small-world random
networks according to the Watts–Strogatz model. A change occurred every 100 time
points. We note that all four algorithms experience a drop in performance in the vicinity
of these change points. A full description of simulations is provided in Table 2.
case of the DCR algorithm. As mentioned previously the drop in perfor-
mance of the sliding window and Gaussian kernel algorithms is due to
the increased complexity of the network structure as well as the fall in
the signal to noise ratio. In the case of the DCR the drop in performance
can be partly explained by the fact the assumptions behind the use of
the block bootstrap no longer hold (see simulation IIa for a discussion)
and the increased complexity of the network structure. These two
factors combine to greatly affect the performance of the DCR algorithm.
Simulation IIc — Cyclic small-world networks
In this simulation we look to assess the performance of the SINGLE

algorithm in a scenario that is representative of the experimental data
we use in this work. As described previously, the experimental data
used in this study corresponds to fMRI data from a Choice Reaction
Time (CRT) task. Here subjects are required to make rapid visually-
cued motor decisions. Stimulus was presented in five on-task blocks
each preceding a period where subjects were at rest. As a result we
expect there to be a cyclic network structure.
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Fig. 7. Mean F scores for Simulation IIb (shaded regions represent 95% confidence
intervals). Here the underlying network structure was simulated using scale-free random
networks with the additional constraint that the first and third correlation structure
be identical. This gives rise to cyclic correlation structures which may be present in task-
based studies.
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Fig. 9. Results for Simulation IIIa for the SINGLE, DCR and sliding window algorithms
respectively over 500 simulations. Here networkswere simulated using scale-free random
networks and the performance of each algorithmwas studied as the ratio of observations,
n, to the number of nodes, p, decreased. Here p = 10 was fixed as n decreased.

Table 3
Detailed results from Simulation IIIa. For each algorithm the mean F score, μ, is reported
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Thus in this simulation network structures are simulated in a cyclic
fashion where each network structure is simulated according to a
small-world network as in Simulation Ic. This simulation gives us a
clear insight into the performance of the SINGLE algorithm in a scenario
that is very similar to that proposed in the experimental data.

The results are summarised in Fig. 8.We note that as in Simulation Ic
there is drop in the performance of all four algorithms relative to their
performance in simulations IIa and IIb. We believe this is due to the in-
creased complexity of the underlying networks structures, specifically
the high levels of clustering we experience in small-world networks
which are not seen in Erdős–Rényi or scale-free random networks.

Simulation IIIa — Scale-free networks with decreasing n=p ratio
Here we study the behaviour of the proposed algorithm as the ratio

of observations, n, to the number of nodes, p, decreases. This is a partic-
ularly relevant problem in the case of fMRI data as it is often the case
that the number of nodes in the study (typically the number of ROIs)
will be much larger than the number of observations.

In this simulationwe fix p=10 and allow the value of n to decrease.
Herewe simulate a data set with three segments each of length nwhere
the connectivity structure within each segment is randomly simulated
according to a scale-free network. Thus as the value of n decreases we
are able to quantify the performance of the SINGLE algorithm in the
presence of rapid changes in network structure.

In the case of the SINGLE, sliding window and Gaussian kernel algo-
rithms all parameters are estimated as discussed previously. In the case
of the DCR algorithm the value of block sizes for the block bootstrap test
was also reduced accordingly.

Results for Simulation IIIa are given in Fig. 9. Error bars have been
removed in the interest of clarity however detailed results are available
in Table 3. We note that all four algorithms struggle when n is small
relative to p. This is to be expected as the number of observations is
much smaller than the number of parameters to be estimated. Fig. 9
shows that the performance of the SINGLE algorithm quickly improves
as n increases at a rate which is similar to that of the sliding window
and Gaussian kernel algorithms.

Simulation IIIb — Small-world networks with decreasing n=p ratio
Aswith Simulation IIIa, we evaluate the performance of the proposed

algorithm as the ratio of observations, n, relative to the dimensionality of
the data, p, decreases. However, here the underlying network structure
are simulated according to small-world networks. This simulation
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Fig. 8. Mean F scores for Simulation IIc (shaded regions represent 95% confidence
intervals). Here the underlying network structure was simulated using small-world
random networks with the additional constraint that the first and third correlation
structure be identical. This gives rise to cyclic correlation structures whichmay be present
in task-based studies.
therefore provides an insight into how accurately proposed algorithm
is able to estimate networks in the presence of rapid changes.

Results for Simulation IIIb are given in Fig. 10 and detailed results are
provided in Table 4. As with the previous simulations we note that the
performance of all four algorithms is affected by the presence of
small-world networks (see simulation Ic for a discussion). Furthermore,
as in simulation IIIa, the performance of all four algorithms also deteri-
orates as the ratio n=p decreases. Moreover, as in simulation IIIa, the
performance of the SINGLE algorithm improves as n=p increases.
Computational cost
From a practical perspective we are also interested in the computa-

tional cost of the SINGLE algorithm.While this has alreadybeendiscussed
previously we look to benchmark the computational cost of the SINGLE
algorithm relative to the previously considered algorithms.

As noted in Computational complexity section, the limiting factor
in the computational cost of the SINGLE algorithm is the number of
nodes, p. We note that this is also the case for the sliding window,
Gaussian kernel and DCR algorithms (see Appendix F). As a result we
together with the sample standard deviation, σ.

l μ σ l μ σ

5 0.22 0.07 5 0.49 0.14
10 0.28 0.09 10 0.54 0.13
20 0.36 0.15 20 0.78 0.08
30 0.55 0.21 30 0.85 0.06
40 0.70 0.15 40 0.87 0.05
50 0.76 0.08 50 0.87 0.05
60 0.78 0.07 60 0.88 0.05
70 0.78 0.06 70 0.89 0.04
80 0.79 0.03 80 0.89 0.04
90 0.79 0.02 90 0.89 0.04
(a) DCR (b) SINGLE

l μ σ l μ σ

5 0.42 0.10 5 0.35 0.09
10 0.53 0.09 10 0.41 0.09
20 0.67 0.07 20 0.49 0.10
30 0.72 0.05 30 0.55 0.10
40 0.74 0.05 40 0.61 0.09
50 0.75 0.04 50 0.65 0.07
60 0.76 0.04 60 0.67 0.07
70 0.77 0.03 70 0.68 0.06
80 0.77 0.03 80 0.69 0.05
90 0.77 0.03 90 0.69 0.05
(c) Gaussian Kernel (d) Sliding window
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Fig. 10. Results for Simulation IIIb for the SINGLE, DCR and sliding window algorithms
respectively over 500 simulations. Here networks were simulated using small-world
random networks and the performance of each algorithm was studied as the ratio of
observations, n, to the number of nodes, p, decreased. Here p = 10 was fixed as n
decreased.
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compare the running times of each of the algorithms as p increases for
fixed n = 100.

Here each data set was simulated in the same manner as in Simula-
tion Ic. That is, each dataset consisted of 3 segments of length 100
(resulting in an overall duration of 300). The correlation structure
within each segment was then randomly generated according to
small-world network.

In Fig. 11 we plot the mean running time of each algorithm over 50
iterations for increasing p. It is clear that the computational cost of the
SINGLE algorithm increases exponentially with p. However we note
that for p = 75 nodes the algorithm can still be run in under 5 min,
making it practically feasible. This simulation was run on a computer
with an INTEL CORE I5 CPU at 2.8 GHz.

Application to a choice reaction time (CRT) task fMRI dataset

In this section we assess the ability of the SINGLE algorithm when
detecting changes in real fMRI data evoked using a simple cognitive
Table 4
Detailed results from Simulation IIIb. For each algorithm the mean F score, μ, is reported
together with the sample standard deviation, σ.

l μ σ l μ σ

5 0.29 0.05 5 0.35 0.08
10 0.31 0.06 10 0.37 0.08
20 0.32 0.07 20 0.49 0.07
30 0.33 0.08 30 0.56 0.07
40 0.35 0.10 40 0.59 0.07
50 0.36 0.11 50 0.61 0.07
60 0.40 0.12 60 0.62 0.07
70 0.42 0.11 70 0.64 0.07
80 0.45 0.10 80 0.65 0.06
90 0.46 0.10 90 0.65 0.06
(a) DCR (b) SINGLE

l μ σ l μ σ

5 0.35 0.06 5 0.33 0.06
10 0.40 0.06 10 0.35 0.07
20 0.48 0.05 20 0.39 0.08
30 0.52 0.05 30 0.44 0.08
40 0.54 0.05 40 0.49 0.09
50 0.56 0.05 50 0.52 0.08
60 0.57 0.05 60 0.55 0.07
70 0.58 0.05 70 0.57 0.07
80 0.58 0.05 80 0.59 0.06
90 0.58 0.05 90 0.60 0.06
(c) Gaussian kernel (d) Sliding window
task, the Choice Reaction Time (CRT) task. The CRT is a forced choice
visuo-motor decision task that reliably activates visual, motor and
many cognitive control regions. The task was blocked into alternating
task and rest periods. As a result we expect the task onset to evoke an
abrupt change in the correlation structure that is cyclical in nature.

This is a highly challenging data set for several reasons. Firstly, it
corresponds to the scenario where n=p ¼ 126

�
18 is small. Secondly, there

is a high rate of change in the correlation structure with a change in
cognitive state roughly every 15 s. Finally, given the nature of the CRT
task there is a recurring correlation structure with subjects alternating
between two cognitive states: resting and performing the CRT task. As
we have seen in the simulations the SINGLE algorithm is well equipped
to handle the aforementioned challenges.

In order to study the roles of the various ROIs during the CRT taskwe
consider the changes in betweenness centrality of each node over time.
The betweenness centrality of a node is the sum of how many shortest
paths between all other nodes pass through it (Pandit et al., 2013).
Nodes with high betweenness centralities are considered to be of
important, hub nodes in the network (Hagmann et al., 2008).

As described previously the CRT task involves subjects alternating
between performing a visual stimulus task (on task) and resting state
(off task). Fig. 12 shows the average estimated functional connectivity
networks for a patient on and off task respectively. Here the size of
each node is proportional to the sum of the betweenness centralities
of the corresponding ROI and the edge thickness is proportional to the
partial correlation between nodes. We notice that the on task network
is appears to be more focused that the off task network and this can
also be seen in the corresponding example video provided in the
Supplementary material.

We note that there are changes in the betweenness centralities of
several nodes between tasks. In order to determine the significance of
any changes betweenness centrality as a result of the changing cogni-
tive state of the subjects we study the estimated graphs for each of the
24 subjects both on and off task. Fig. 13 shows the percentage change
in betweenness centrality from off task to on task for each ROI. To deter-
mine the statistical significance of reported changes a Wilcoxon rank
sum test was employed. The resulting p-values where adjusted accord-
ing to the Bonferroni–Holm method in order to account for multiple
tests. The results indicated that at the α=5 % level there was a statisti-
cally significant increase in betweenness centrality for the 8th (Right
Inferior Frontal Gyrus) and 10th (Right Inferior Parietal) ROIs. This indi-
cates that during this simple, cognitive task the Right Inferior Frontal
Gyrus and the Right Inferior Parietal become more hub-like. This is
particularly true in the case of the Right Inferior Frontal Gyrus where
the change in betweenness centrality is particularly sizeable.
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Fig. 12.Mean estimated graphs on and off task for a given subject. Here node size is proportional to betweenness centrality and edgewidth is proportional to themagnitude of their partial
correlations. Each node corresponds to a ROI given in Table 1. A movie of the estimated networks showing the complete evolution is available in the Supplementary material.
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These findings suggest that the Right Inferior Frontal Gyrus and
Right Inferior Parietal play a key role in cognitive control and executive
functions as demonstrated by their dynamically changing betweenness
centrality throughout the task. This result agrees with the proposed
functional roles for the Right Inferior Frontal Gyrus (and adjacent right
anterior insula), which is assumed to play a fundamental role in atten-
tion and executive function during cognitively demanding tasks and
may have an important role in regulating the balance between other
brain regions (Aron et al., 2003; Hampshire et al., 2010; Bonnelle
et al., 2012). The findings also agree with the proposed function of the
Right Inferior Parietal lobe, which has been reported to play a role in
high-level cognition (Mattingley et al., 1998) and sustaining attention
(Corbetta and Shulman, 2002; Husain and Nachev, 2007).

Onepossible interpretation of the increase in betweenness centrality
is that the Right Inferior Frontal Gyrus becomes more important for
the flow of information around the brain during the more challenging
cognitive task.

At a larger scale, these results agreewith various reports of function-
al re-organisation driven by external stimuli. For example, function
connectivity has been reported to change based on task learning
(Bassett et al., 2010) and task preparation (Ekman et al., 2012).
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Fig. 13. Estimated percentage change in betweenness centrality from off task to on task
over all 24 patients. Each column corresponds to a ROI given in Table 1. The * indicates a
statistically significant difference in betweenness centrality at α = 5 % level after
correcting for multiple hypotheses.
Discussion

In this work we introduce the Smooth Incremental Graphical Lasso
Estimation (SINGLE) algorithm, a new methodology for estimating
sparse dynamic functional connectivity networks from non-stationary
fMRI data. Our approach provides two main advantages. First, the pro-
posed algorithm is able to accurately estimate functional connectivity
networks at each observation. This allows for the quantification the
dynamic behaviour of brain networks at a high temporal granularity.
The second advantage lies in the SINGLE algorithm's ability to quantify
network variability over time. In SINGLE, networks are estimated simul-
taneously in a unified framework which encourages temporal homoge-
neity. This results in networkswith sparse innovations in edge structure
over time and implies that changes in connectivity structure are only
reported when substantiated by evidence in the data. Although the
use of the SINGLE algorithm is particularly suitable for task related
experiments, there is also a growing body of evidence to suggest that
functional connectivity is highly non-stationary even in resting state,
making the SINGLE algorithm well suited for these studies as well.

The SINGLE algorithm is closely related to sliding window based
algorithms. We note that Zhou et al. (2010) have extensively studied
the combined use of kernel methods and constrained optimisation to
estimate dynamic networks and provide a theoretical guarantee that ac-
curate estimates of time varying network structure can be obtained in
such a manner under mild assumptions. The approach taken there is
to estimate sample covariancematrices at each i∈ {1,…, T} using kernel
methods with the Graphical Lasso being used subsequently to estimate
the corresponding precisionmatrices. However, given T time points this
approach corresponds directly to T independent iterations of theGraph-
ical Lasso. As a result, while smooth estimates of the sample covariance
matrix are obtained via the use of kernels, there is no mechanism in
place to enforce temporal homogeneity in the corresponding precision
matrices. Consequently the estimated partial correlationsmay not accu-
rately represent the functional connectivity over time. The SINGLE algo-
rithm addresses precisely this problem by directly enforcing temporal
homogeneity. This is achieved via the introduction an additional con-
straint inspired by the Fused Lasso. As shown in our simulation study,
this additional constraint results in higher accuracy of estimated net-
works in a vast array of scenarios. Similarly to other proposed methods
for estimating dynamic function connectivity networks the proposed
method is based on empirical covariance matrices (Allen et al., 2012;
Cribben et al., 2012; Leonardi et al., 2013). Here the use of the covari-
ance is driven by the nature of the proposed method which balances
goodness-of-fit with constraints on sparsity and temporal homogeneity.
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The former, given in Eq. (1), is defined on the covariance matrix. We
note that the use of the covariance matrix is susceptible to being domi-
nated by nodes of large relative variance, therefore care should be taken
to ensure the time series of all nodes have comparable variance.

The SINGLE algorithm requires the input of 3 parameters, λ1, λ2 and
h, each ofwhichhas a natural interpretation for theuser. Penalty param-
eters λ1 and λ2 enforce sparsity and temporal homogeneity respective-
ly. They can be tuned by minimising AIC over a given range of values.
The choice of h can be interpreted as thewindow length andwe provide
an data-driven method for tuning parameter h using the leave-one-out
log-likelihood.We note that the choice of h is a delicatematter aswell as
an active area of research in its own right. The choice of h can be seen as
a trade-off between stability and temporal adaptivity. Setting h to be too
large will result in network estimates that resemble the global mean
and omit valuable short-term fluctuations in connectivity structure.
Conversely, setting h to be too small will lead to networks that are dom-
inated by noise and may jeopardise the reproducibility of the study
(Hutchinson et al., 2013). Given this reasoning, it is often desirable to
have a kernel width which is dependent on the location within the
time series. This allows the kernel width to decrease in the proximity
of a change-point (allowing for rapid temporal adaptivity) and increase
\when data is piece-wise stationary (in order to fully exploit all
relevant data). The idea of adaptive values of h has been studied in
literature such as Haykin (2002) and Príncipe et al. (2011), however,
we leave this for future work. A limitation of sliding windows is that
the window size determines the time-scale of the analysis. As a
result, it may also be interesting to study the results over a range of
window sizes — allowing for the discovery of fluctuations over
varying time-scales. Of course, the range of window sizes must take
into consideration the aforementioned discussion and care must be
taken to ensure reported fluctuations are not spurious. One potential
alternative would be to consider a time–frequency analysis using a
Fourier or wavelet transform. Such an approach would avoid the
need for a fixed width h and provide rich description of functional
relationships across multiple time scales.

Our simulation results indicate that the SINGLE algorithm can accu-
rately estimate the true underlying functional connectivity structure
when provided with non-stationary multi-variate time series data. We
identify three relevant scenarios where the proposed method performs
competitively. The first, demonstrated by simulation I, quantifies our
claim that the SINGLE algorithm is able to accurately estimate dynamic
functional connectivity networks. In task based experiments it is often
the case that tasks are repetitively performed followed by a period of
rest, resulting in the presence of a cyclic functional connectivity struc-
ture. This scenario is studied in simulation II which serves as an indica-
tion that the SINGLE algorithm is not adversely affected in such cases.
Furthermore, we have shown that the SINGLE algorithm is relatively ro-
bust when the ratio of observations to nodes falls, meaning that the
SINGLE algorithm can be applied on a subject-by-subject basis. This is
a great advantage as it avoids the issue of subject-to-subject variability
and allows for the estimation of functional connectivity networks for
Table 5
Comparative summary of each algorithm. A derivation of the computational cost of the
DCR algorithm is provided in Appendix F where b refers to the number of bootstrap
permutation tests performed at each iteration.

SINGLE DCR Sliding window/
Gaussian kernel

Temporal adaptivity ✓ ✓ ✓

Temporal homogeneity ✓ ✓ X
Cyclic correlation structure ✓ X ✓

Parameters h, λ1, λ2 Δ, λ1 h, λ1

Computational Complexity O np3 þ p2n log nð Þ
 � O nþ bð Þp3
 � O np3

 �
each subject. This potentially allows for estimated dynamic connectivity
to be used to differentiate between subjects. Finally, the computational
cost of the proposed algorithm is studied empirically in simulation VI. A
summary of all the simulation results is provided in Table 5.

We do note that the performance of the SINGLE algorithmwas af-
fected by the presence of small-world network structure. We believe
this may be caused by the high local clustering present in such
networks. This results in the short minimum path lengths between
many nodes. This would cause there be a large number of correlated
nodes which are not directly connected. It has been reported that the
Lasso (and by extension the Graphical Lasso) cannot guarantee con-
sistent variable selection in the presence of highly correlated predic-
tors (Zou and Hastie, 2005; Zou, 2006). This issue has recently been
studied in the context of genetic networks by Peng et al. (2009)
and in future these approaches could be adapted to address such
issues.

We have presented an application showing that the SINGLE algo-
rithm can detect cyclical changes in network structure with fMRI data
acquired while subjects perform a simple cognitive task and identify
the Right Inferior Frontal Gyrus as well as the Right Inferior Parietal as
changing their graph theoretic properties as the functional connectivity
network reorganises. We find that there is a significant increase in the
betweenness centrality for both these regions. These findings suggest
that the Right Inferior Frontal Gyrus together with the Right Inferior
Parietal play a key role in cognitive control and the functional
reorganisation of brain networks. In the case of the Right Inferior Frontal
Gyrus, this result agrees with the proposed functional roles of the Right
Inferior Frontal Gyrus (Aron et al., 2003; Corbetta and Shulman, 2002;
Hampshire et al., 2010; Bonnelle et al., 2012). The Right Inferior Parietal
lobe has also been reported to play a role in high-level cognition
(Mattingley et al., 1998) and sustaining attention (Corbetta and
Shulman, 2002; Husain and Nachev, 2007). One possible interpretation
is that both the Right Inferior Frontal Gyrus and the Right Inferior
Parietal become more important to the flow of information during
the more challenging cognitive task as demonstrated by their rise in
betweenness centrality.

In conclusion, the SINGLE algorithm provides an alternative and
novelmethod for estimating the underlying network structure associat-
ed with dynamic fMRI data. It is ideally suited to analysing data where a
change in the correlation structure is expected but little more is known.
Going forward, the SINGLE algorithmcan be applied to different types of
fMRI data sets, exploring different cognitive tasks such as those with
multiple task demands, exploring how networks change with more
subtle differences in cognitive state (i.e., rather than just task on or
off). Similarly, the approach can be used to investigate spontaneous net-
work reorganisation in the resting state and compare this across differ-
ent subject groups (e.g., comparing pathological states with healthy
controls). From a methodological point of view it would be interesting
to consider variations of the SINGLE objective function, particularly
with respect to the Fused Lasso component of the penalty. For example,
this component could be exchanged with a trend filtering penalty (Kim
et al., 2009).

Appendix A

Here we formally derive some of the results discussed in the main
text. Throughout this section we assume the following results relating
to convex functions:

(1) A function f :ℝn→ℝ is convex if and only if the function g :ℝ→
ℝ where

g tð Þ ¼ f xþ tvð Þ
dom g ¼ t : xþ tv∈dom ff g

is convex in t for all x ∈ dom f and v∈ ℝn.Here we write dom f
to denote the domain of function f.
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(2) Assuming f is twice differentiable (i.e., its Hessian∇f(x) exists for
all x ∈ dom f) then f will be convex if and only if its Hessian is
positive semidefinite.

(3) The composition of convex functions is itself a convex function
(4) Any norm is convex (this follows from the definition of a norm

and the triangle inequality)
(5) The sum of convex functions is convex

We note that some of these results are taken from Boyd and
Vandenberghe (2004).

A The SINGLE objective function given in Eq. (3) is convex
Recall the SINGLE cost function was defined as:

f Θif gð Þ ¼
XT
i¼1

− log det Θi þ trace SiΘið Þ þ λ1

XT
i¼1

Θik k1

þλ2

X
ji− jjbk

Θi−Θ j

��� ���
1
;

ð23Þ

From Assumption (5) it suffices to show that each component of

f Θ̂
n o� �

is convex. Furthermore from Assumptions (5) and (5) it

follows that ‖Θi‖1 and ‖Θi − Θj‖1 are convex for all i and j. We note

that trace ðŜiΘiÞ ¼ ∑p
r¼1∑

p
q¼1 Sið Þr;q � Θið Þr;q . Therefore trace ðŜiΘiÞ

is an affine function for all i as it is a linear sum. Finally we come
to− log det Θi. It follows that showing that− log det Θi is convex
is equivalent to showing that log det Θi is concave. In order to do
so we use Assumption (5). Formally we define f : ℝ+ +

p × p → ℝ as
f(X) = log det (X), whereℝ+ +

p × p refers to the set of positive semi-
definite p by p matrices. We also define g(t) = log det (X + tV)
for all V∈ℝ+ +

p × p. Since X is positive semi-definite it follows that X

has a square root X−1
2. Thus in order to show that g is concave we

can rewrite X + tV as follows:

X þ tV ¼ X
1
2 I þ tX−1

2VX−1
2

� �
X

1
2

Thus we have that g tð Þ ¼ log det X þ tVð Þ ¼ log det Xð Þ þ log

det I þ tX−1
2VX−1

2

� �
.

Now we can take the eigendecomposition of tX−1
2VX−1

2 ¼ ΩΛΩ0

where Ω is an orthonormal matrix of eigenvectors and Λ is a
diagonal matrix where the ith entry along the diagonal is the
ith eigenvalue, λi. Finally we note that:

log det I þ tX−1
2VX−1

2

� �
¼ log det Ω I þ tΛð ÞΩ0
 �
¼

Xp
i¼1

log 1þ tλið Þ

By differentiating log (1 + tλ) and using Assumption (5) we
note that g is concave and thus conclude that f(X) = log det (X)
is concave and that the SINGLE cost function is convex.

B. The scaled augmented Lagrangian corresponding to Eqs. (7) and (8)
is given by Lγ({Θi}, {Zi}, {Ui}) as shown in Eq. (9).
In the case of Eqs. (7)–(8) the corresponding Lagrangian is given by:

L Θif g; Zif g; Yif gð Þ ¼ −
XT
i¼1

log det Θi− trace SiΘið Þð Þ þ λ1

XT
i¼1

Zik k1

þλ2

XT
i¼2

Zi−Zi−1k k1þ
XT
i¼1

vec Yið Þ0 vec Θi−Zið Þ

ð24Þ

where Y1, …, YT, Yi ∈ ℝp × p are Lagrange multipliers or dual
variables. The final term in the Lagrangian is equivalent to the sum
of all elements in the matrix Yi ⋅ (Θi − Zi).
The augmented Lagrangian is essentially composed of the original
Lagrangian and an additional penalty term. In our case the augmented
Lagrangian is given by:

L Θif g; Zif g; Yif gð Þ ¼ −
XT
i¼1

log det Θi− trace SiΘið Þð Þ þ λ1

XT
i¼1

Zik k1

þλ
XT
2i¼2

Zi−Zi−1k k1 þ
XT
i¼1

vec Yið Þ0 vec Θi−Zið Þ

þγ2
XT
i¼1

Θi−Zik k22 ð25Þ

We can simplify Eq. (25) by noting that vec(Yi)Tvec(Θi− Zi) is equiv-
alent to the elementwise sum of entries of the matrix Yi ⋅ (Θi − Zi)
where · denotes the elementwise multiplication of matrices. Thus
we can combine the linear and quadratic constraint terms as follows:

Yi � Θi−Zið Þ þ γ2jjΘi−Zijj22 ¼ γ2jjΘi−Zi þ 1γð ÞYijj22− 12γð ÞjjYijj22
ð26Þ

¼ γ2jjΘi−Zi þ Uijj22−γ2jjUijj22 ð27Þ

where Ui = 1γYi are the scaled Lagrange multipliers. This yields the
scaled augmented Lagrangian given in Eq. (25).

C. If symmetric matrices X, Y ∈ ℝp × p satisfy X−1 − αX = Y for some
constant α then it follows that X and Y have the same eigenvectors.
Furthermore it is also the case that the ith eigenvectors of X and Y,

denoted by λXi
and λYi

respectively, will satisfy λ−1
Xi

−αλXi
¼ λYi

for
i ∈ {1,…, p}
In order to prove claim 2 we begin taking the eigendecompositions
of X and Y as ΩXΛXΩX and ΩYΛYΩY respectively. Substituting these
into X−1 − αX= Ywe obtain:

ΩXΛXΩXð Þ−1−α ΩXΛXΩXð Þ ¼ ΩYΛYΩY

Expanding the left hand side yields:

ΩXΛ
−1
X ΩX−α ΩXΛXΩXð Þ ¼ ΩYΛYΩY

¼ ΩX Λ−1
X −αΛX

� �
ΩX

where we have made us of the fact thatΩX is an orthonormal matrix.
Thus it follows that ΩX = ΩY and since both ΛX and ΛY are diagonal

matrices we also have that λ−1
Xi

−αλXi
¼ λYi

for i ∈ {1,…, p}
D. Each of the p22 optimisations of the form given in Eq. (16) can be

solved by applying the Fused Lasso Signal Approximator.
The Lasso is a regularised regression method that selects a sparse
subset of predictors in least squares estimation. That is, the Lasso
minimises the following objective function:

1
2

�����jy−Xβjj2 þ λ1

Xp
i¼1

jβij

where y ∈ ℝn × 1 is the response vector, X ∈ ℝn × p is the matrix of
predictors and β ∈ ℝp × 1 is a vector of coefficients. The Fused Lasso
extends the Lasso under the assumption that there is a natural order-
ing to the coefficients β. The Fused Lasso is able to do so by adding an
additional penalty to the Lasso objective function as follows:

1
2

�����jy−Xβjj2 þ λ1

Xp
i¼1

jβij þ λ2

Xn
i¼2

jβi−βi−1j

Here only adjacent coefficients βi and βi − 1 are penalised but the
Fused Lasso objective function can be specified to as to induce sparsity
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between any subset of β. A special case of the Fused Lasso occurs
when X = Ip. In this case the λ2 penalty results in β being a piece-
wise continuous approximation to y. We note that Eq. (16) resembles
the objective function of the Fused Lasso. This can be seen by setting
yi = (Θi

j)kl + (Ui
j − 1)kl and βi = (Zi)kl for i = 1,…, T.

E. The dual update in Step 3 guarantees dual feasibility in the {Zi}
variables and dual feasibility in the {Θi} variables can be checked
by considering ||Zk + 1 − Zk||22.
This result is taken from (Boyd et al., 2010). Consider the general
(unscaled) augmented Lagrangian with arbitrary matrices A, B
and c:

Lγ Θ; Z;Yð Þ ¼ f Θð Þ þ g Zð Þ þ YT AΘþ BZ−cð Þ þ γ2jjAΘþ BZ−cjj22

All solutions must satisfy the following constraints:

Primal feasibility : AΘþ BZ−c ¼ 0
Dual feasibility : ∇Θ f Θð Þ þ A0Y ¼ 0 and ∇Zg Zð Þ þ B0Y ¼ 0

where dual feasibility is based on the unscaled, unaugmented
Lagrangian.
The ADMM algorithm iteratively minimises Θ and Z such that at
iteration k + 1 we obtain Zk + 1 that minimises Lγ(Θk + 1, Z, Yk).
From this it follows that:

0 ¼ ∇ZLγ Θkþ1
; Z; Yk

� �
¼ ∇Z

n
f Θkþ1
� �

þ g Zkþ1
� �

þ Yk AΘkþ1 þ BZkþ1−c
� �

þ γ=2
���jAΘkþ1

þBZkþ1−cjj22g

¼ ∇Zg Zkþ1
� �

þ B0Yk þ γB0 AΘkþ1 þ BZkþ1−c
� �

¼ ∇Zg Zkþ1
� �

þ B0 Yk þ γ AΘkþ1 þ BZkþ1−c
� �� �

Thus it follows that by setting Yk+ 1= Yk+γ(AΘk+ 1+ BZk+ 1− c)
dual feasibility in the Z variable is guaranteed. Finally, after rescaling
by U= 1/γY and noting that in the SINGLE algorithm A = In and
B = − In we get the update in step 3.
Now we can continue to consider criteria for confirming dual
feasibility in terms of {Θ} variables. Since we are guaranteed dual
feasibility in {Z} variables we only need to check for dual feasibility
in {Θ} variables. Since Θk + 1 minimises Lγ(Θ, Zk, Yk) we have:

0 ¼ ∇ΘLγ Θ; Zk
; Yk

� �
¼ ∇Θ f Θkþ1

� �
þ A0 Yk þ γ AΘkþ1 þ BZk−c

� �� �

¼ ∇Θ f Θkþ1
� �

þ A0 Yk þ γ AΘkþ1 þþBZkþ1−c
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ykþ1

þ γ BZk−BZkþ1
� �0BB@

1CCA
¼ ∇Θ f Θkþ1

� �
þ A0Ykþ1 þ γA0B Zk−Zkþ1

� �
Thus in order to have dual feasibility in {Θ} variables we require

γATB Zkþ1−Zk
� �

¼ ∇Θ f Θkþ1
� �

þ A0Ykþ1
:

Since in our casewe have that A= In and B=− In it follows thatwe
can check for dual feasibility by considering ||Zk + 1 − Zk||22.

F. The computational complexity of the DCR algorithm is O nþ bð Þp3
� �

where b is the number of bootstrap permutations to perform
We begin by noting that the computational complexity of the Graph-

ical Lasso is O p3
� �

. While it is possible to reduce the computational

complexity in some special cases we do not consider this below.
Prior to outlining our proof, a brief overview of the DCR algorithm is in
order. The DCR algorithm looks to estimate dynamic functional con-
nectivity networks by segmenting data into piece-wise continuous
partitions. Within each partition the network structure is assumed to
be stationary, allowing for the use of awide variety of network estima-
tion algorithms. In the case of the DCR the Graphical Lasso is chosen.
The data, {Xi ∈ ℝ1× p : i = 1, …, T}, is segmented using a greedy
partitioning scheme. Here the global network is first estimated using
the Graphical Lasso. The BIC of the global network is noted and subse-
quently used to propose change-points. The DCR algorithm then
proceeds to partition the data into subsets Aγ = {Xi : i = 1, …, γ}
and Bγ = {Xi : i = γ + 1, …, T} for γ ∈ {Δ + 1 …, T − Δ}. Thus Δ
represents the minimum number of observations between change-
points.
For each of these partitions a network is estimated for Aγ and Bγ
and their joint BIC is noted. This step therefore involves O nð Þ itera-
tions of the Graphical Lasso, resulting in a computation complexity

of O np3
� �

.

Subsequently, the value of γ resulting in the greatest reduction in
BIC relative to the global network is proposed as a change-point. In
order to check the statistical significance of the proposed change-
point a block bootstrap permutation permutation test is performed.
This step involves a further b iterations of the Graphical Lasso where
b is the number of bootstrap permutations performed. As a result

this step has a computational complexity of O bp3
� �

.

This procedure is repeated until all significant change-points have
been reported. We therefore conclude that the computational

complexity of the DCR algorithm is O nþ bð Þp3
� �

.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.07.033.
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