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Abstract

Graphical models have established themselves as fundamental tools through which to un-

derstand complex relationships in high-dimensional datasets. Applications abound, a perti-

nent example being neuroimaging where Gaussian graphical models are employed to model

statistical dependencies across spatially remote brain regions. Often such models are es-

timated under regularization penalties which help to enforce properties such as sparsity.

Much of the current methodology is rooted on the assumption that the same covariance

structure characterizes all observations and may be summarized using a single graphical

model. However, such an assumption is untenable in the context of many applications. In

order to address this issue, we propose a host of algorithms through which to accurately

estimate Gaussian graphical models in the context of data with heterogeneous covariance

structure.

Formally, this thesis is focused in studying graphical models in two distinct manifes-

tations of heterogeneity in covariance structure. The first relates to the task of estimating

time-varying graphical models and two algorithms are proposed to this end. A related chal-

lenge is associated with the choice of regularization parameter: in the presence of variable

covariance structure such a parameter is both difficult to estimate and potentially time-

varying itself. In order to address these challenges, a novel framework is proposed through

which to iteratively tune this parameter. The second manifestation is related to the presence

of heterogeneity in covariance structure across multiple related graphical models. In such

a setting scientific objectives consist in inferring the covariance structure shared across all

graphs together with the idiosyncrasies of each specific graph. A related objective which is

often overlooked consists of quantifying variability across all graphs. A novel algorithm is

proposed through which to simultaneously address the aforementioned objectives.
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Chapter 1

Introduction

Undirected graphical models have established themselves as fundamental tools through

which to understand and describe complex statistical relationships in high-dimensional

data [100]. In such models, each node represents a random variable and edges encode

statistical dependencies. The popularity of graphical models arises due to their ability to

reduce complex statistical structures to simple, modular graphs [181]. Graphical models

may therefore leverage the wide literature relating to graph theory and network analysis.

There are numerous applications for such models. In finance they are employed to describe

systematic dependencies across stocks and the estimated graphical models may then be

used to optimize portfolios [101]. In the context of neuroscience, a primary focus of this

thesis, they are employed to quantify dependencies across spatially remote brain regions

[159]. This allows for the estimation of brain networks which provide novel insights into

the architecture and function of the human brain [30]. It follows that such networks pro-

vide a platform through which to further understand the effects of many neurological and

psychiatric conditions [72]. Other applications include the study of genome data [104],

cyber-security [79] and sensor networks [4].

Arguably the most widely employed class of graphical models are Gaussian graphical

models (GGMs) [100]. In this setting, data is assumed to follow a multivariate Gaussian

distribution and the edge structure encodes the conditional dependence structure across

random variables. More concretely, the edges capture the partial correlations, defined as the

correlation once the effects of all other variables has been removed [95]. Due to the unique
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interpretation of edges in GGMs, it is often desirable to learn sparse edge structures for

reasons of interpretability and data-efficiency as well as domain specific motivations [77].

Such models are often referred to as covariance selection models and can be estimated by

learning the non-zero entries of the inverse covariance (precision) matrix from data [46].

The problem of estimating a sparse inverse covariance matrix has been widely studied

in the context of statistics and machine learning. Traditional methods have involved the

use of multiple hypothesis testing. Such methods iteratively add or remove edges based

on hypothesis tests [49, 50], but cannot easily be extended to high-dimensional settings

for two fundamental reasons: first, the need to correct for multiple comparisons results in

increasingly conservative tests as the number of nodes in the graph increases. Second, in

the case of high-dimensional data the sample covariance matrix may be poorly conditioned

and potentially singular [101]. In such a setting, it is not possible to obtain estimates of the

inverse covariance thereby impeding the use of the aforementioned approaches.

In order to estimate GGMs in the context of high-dimensional data, a host of penalized

methods have been proposed. Such methods introduce regularization penalties whose pur-

pose is to enforce the estimated inverse covariance matrix to display certain properties by

constraining the set of candidate solutions. A popular form of regularization involves the

use of an `1 penalty [77], which is able to yield sparse estimates of the inverse covariance

matrix by effectively constraining the magnitude of elements in the estimated inverse co-

variance. An important advantage of the `1 penalty is that it is able to retain the convexity of

the associated optimization problem. This allows for the optimization problem to be solved

using first order (i.e., gradient) methods and has resulted in a wide range of algorithms be-

ing proposed through which to estimate `1-penalized precision matrices [10, 68, 85] as well

as computationally efficient approximations [117].

The aforementioned covariance selection methods are rooted on the assumption that the

data is such that the associated graphical model remains fixed, indicating that the condi-

tional dependence structure may be adequately summarized by a single graph. However,

there are a wide range of applications where such an assumption is tenuous. A perti-

nent example corresponds to the estimation of brain connectivity networks where there is

wide-spread evidence to suggest the data displays variation in covariance structure over

time [32, 91]. This has led to large-scale interest in quantifying the dynamic properties of
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Non-stationarity over time
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Figure 1.1: The two axes along which we study variability in covariance structure, which
for the sake of notational convenience we refer to as non-stationarity, are depicted pictori-
ally. The first axis corresponds to understanding non-stationary over time. This involves
accurately quantifying changes in edge structure over time. The second axis corresponds
to understanding non-stationarity over multiple related datasets.

brain networks and understanding how these may be modulated by distinct cognitive tasks

[31, 90].

It is important to note that variability in the covariance matrix (and hence also in its

inverse) may manifest itself in a host of different ways. In this thesis we are focused on

studying variation in the edge structure of GGMs along some covariate, for example time.

In particular, the objectives of this thesis are to quantify variability across two distinct sce-

narios depicted pictorially in Figure [1.1]. The first scenario corresponds to quantifying

temporal diversity in edge structure with a view to potentially relating such diversity to ex-

ternal circumstances. Returning to the example of brain networks, a fundamental question

of modern neuroscience relates to understanding the changes in functional connectivity

that occur during distinct cognitive tasks. To date, a wide range of methods have been

employed in order to estimate time-varying GGMs. A popular approach involves the use



Chapter 1. Introduction 13

of sliding windows in order to obtain a local estimate of the sample covariance matrix,

which may be subsequently employed to estimate the associated graphical models [187].

Alternative approaches involve the use of change-point detection [38] and hidden Markov

models [163].

The second scenario corresponds to studying heterogeneity in edge structure across

multiple related graphical models. In such a setting, the data available typically corre-

sponds to observations across several different classes. Two relevant example applications

include the study of brain connectivity across a cohort of subjects and gene-gene inter-

action networks across multiple different tissue types. In the case of the former we may

consider each subject as a distinct class. Such an approach allows for the quantification

of inter-subject variability which is known to exist. In the case of the latter example each

class may correspond to distinct tissue types (e.g., cancer tissue compared to normal tis-

sue). In such a setting, typical scientific objectives include both estimation of a GGM for

each class as well as understanding the variability in edge structure across classes. From

a methodological perspective, a potential solution involves estimating each GGM indepen-

dently. However, such an approach fails to exploit any shared edge structure across classes.

This may jeopardize the accuracy of estimated networks, especially in a high-dimensional

setting when only a reduced number of observations are available for each class. Further

complications are introduced by the fact that given multiple estimated GGMs, obtaining

a single representative graph is non-trivial and yet hugely important. For example, in the

context of neuroscience it is imperative to distinguish between the edge structure shared

across a population of subjects and subject-specific idiosyncrasies. Recently, these issues

have been partially addressed through the use of novel regularization schemes [42, 172].

Such methods propose to jointly estimate networks across classes while introducing con-

straints over the edge structure. In this manner, the edge structure of each class is informed

by the estimated structure of all remaining classes.

We conclude this section by noting that the two aforementioned examples of variability

in covariance structure correspond to two very specific manifestations of non-stationarity.

However, for the sake of notational brevity we will henceforth refer to data displaying such

properties as non-stationary data.
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Description of the thesis

The aim of this thesis is to extend traditional covariance selection methods to the domain

of non-stationary data. As a result, the remainder of this thesis describes a collection of

novel algorithms through which to estimate GGMs when faced with non-stationarity data.

The proposed methodology, which is focused on the two manifestations of non-stationarity

depicted in Figure [1.1], is rooted on the use of penalized likelihood methods. Background

on these methods is provided in Chapter 2, together with the associated convex optimization

methods. Moreover, the methodological contributions of this thesis are motivated by the

study of fMRI data and the estimation of functional connectivity networks. As a result,

Chapter 2 also provides a brief discussion of the properties of fMRI data and the role of

graphical models in modeling connectivity networks.

In Chapter 3 we consider the problem of estimating time-varying GGMs in the con-

text of functional MRI data. The methodology presented in this chapter was published

in [122] and extends traditional sliding window methods by incorporating an additional

regularization penalty which enforces sparse differences in estimated edge structure over

time. This penalty serves to ensure that changes in edge structure are only reported when

substantiated by evidence in the data, a property we refer to as temporal homogeneity. An

algorithm is proposed through which to efficiently estimate time-varying GGMs which are

both sparse and temporally homogeneous. Throughout a series of simulations the perfor-

mance of the proposed algorithm is empirically validated and benchmarked against alterna-

tive algorithms from the literature. Finally, the proposed algorithm is applied to fMRI data

collected while subjects were asked to perform a Choice Reaction Task (CRT). During the

CRT task, subjects were required to alternate between performing a cognitively demanding

task and resting. As a result, network structure was expected to alternate depending on the

underlying task.

An exciting avenue for modern neuroscientific research involves the study of fMRI

data in real-time. Potential applications include neurofeedback, where participants learn

to modulate brain activity within a specified brain region [178], and brain decoding [99],

where multivariate classification techniques are employed to predict brain states in real-

time. However, the majority of real-time fMRI studies to date have only studied mea-
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surements of individual brain regions. This fails to take into consideration the notion that

the brain is a functionally connected network [162]. As a result, Chapter 4 extends the

methodology presented in Chapter 3 to the domain of streaming data, allowing for con-

nectivity networks to be estimated in real-time. This work, published in [123], presents

important practical challenges as edge structure must be efficiently estimated using only a

reduced subset of relevant observations. In order to address this challenge, we first intro-

duce the use of adaptive filtering techniques [78]. Throughout a series of simulations, such

methods are shown to empirically out-perform traditional sliding windows. The method-

ology presented in Chapter 3 is then extended by presenting a computationally efficient

approximation which can be solved in real-time. The chapter concludes with an applica-

tion to data taken from the Human Connectome Project (HCP). While this data was not

acquired and analyzed in real-time, it may be treated as such by only considering a single

observation at a time. This serves to demonstrate that the proposed algorithm is able to

accurately estimate task-related changes in network structure in real-time.

The primary focus of Chapters 3 and 4 has been associated with the accurate estimation

of edge structure via the introduction of regularization penalties. However, one fundamen-

tal aspect which these chapters overlook corresponds to the choice and tuning of the associ-

ated regularization parameters, which dictate the degree of sparsity in estimated networks,

together with the implicit assumption that these parameters should remain fixed. While the

choice of such regularization parameters has been extensively studied in the context of sta-

tionary data, such methods cannot trivially be extended to non-stationary or streaming data

scenarios. As a result, in Chapter 5 we present a framework through which to learn a time-

varying regularization parameter in the context of streaming data. The proposed framework

effectively recasts the selection of a sparsity parameter in the context of adaptive filtering,

thereby relegating the choice of such a parameter to the data. This reformulation also al-

lows for the tracking of a time-varying regularization parameter as well as the derivation of

convergence guarantees in a non-stochastic setting. The proposed framework is developed

for streaming lasso models and then extended to GGMs via neighborhood selection tech-

niques. A series of simulation studies are employed to empirically validate the proposed

framework. Finally, the chapter concludes with an application to task based fMRI data

taken from the HCP. This work has lead to the following paper [121] which is currently



Chapter 1. Introduction 16

under review.

The preceding three chapters have addressed the challenge of accurately estimating

time-varying GGMs in the context of non-stationary data. By estimating a GGM at each

observation, such methods provide unprecedented insights relating to the dynamic restruc-

turing and temporal evolution of functional connectivity networks. However, the increased

temporal resolution also makes it difficult to obtain robust and easily interpretable in-

sights. This is particularly true in the context of high-dimensional GGMs. The objective

of methodology presented in Chapter 6 is therefore to address the challenges associated

with the interpretation of time-varying, high-dimensional networks via the use of linear

graph embedding methods. This serves to facilitate tasks such as visualization and classi-

fication by translating the problem from the graph domain into a Euclidean space, where

traditional classification and visualization techniques can be readily applied. While a wide

range of graph embedding techniques may be employed, we focus on the use of graph

embeddings which are based on linear projections over the edge structure of estimated

graphs. This allows us to obtain a clear interpretation of the embedding in the context

of functional connectivity. Two distinct graph embedding algorithms are presented; the

first based on principal component analysis and the second on regularized linear discrimi-

nant analysis. The capabilities of the proposed embeddings are quantified via an extensive

simulation study. This chapter concludes with an application of the proposed embeddings

to data taken from the HCP. The work presented in this chapter resulted in the following

publications [124, 125].

In Chapter 7 we consider a distinct manifestation of non-stationarity in the form of

heterogeneity in covariance structure across multiple related GGMs. The focus of this

chapter therefore revolves around the estimation of multiple related GGMs. The study of

neuroimaging data serves as an appropriate application given that one of the hallmarks of

fMRI data is its reproducible nature. Observed patterns in functional connectivity have

been shown to demonstrate reproducible properties across subjects [41, 191]. This moti-

vates the need for novel methodologies with two overriding objectives. First, it is impor-

tant to exploit the presence of shared connectivity structure in order to yield more accurate

network estimates for each subject. Second, there is also a critical need to understand

and quantify inter-subject variability in the context of functional connectivity. To date, the
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aforementioned challenges have not been simultaneously addressed. Instead previous work

has considered one of two main avenues which involve either learning a separate GGM for

each subject or a single GGM that is representative of the entire population. The objective

of the work presented in Chapter 7 is to reconcile the two popular approaches presented

above, thus allowing for accurate network estimation at subject-specific and population lev-

els while also quantifying variability present across a cohort. This is achieved by extending

neighborhood selection techniques to incorporate an additional random effects component.

This corresponds to learning a novel model for covariance structure across a cohort of sub-

jects which is able to distinguish between shared covariance structure and subject-specific

idiosyncrasies. The capabilities of the proposed method are demonstrated throughout an

extensive series of simulation studies. Moreover, an application to resting-state data taken

from the ABIDE consortium is presented. The methodology presented in this chapter has

lead to the following paper [120] which is currently under review.

Chapter 8 concludes the thesis with a summary of the main results as well as a discus-

sion of future work.

Notation and terminology

The notation and terminology are employed throughout this thesis is as follows:

• We write Σ,Θ and S to denote the covariance, inverse covariance and sample covari-

ance matrices respectively.

• The subscript notation is employed to denote time dependence or components of a

vector or matrix but never both. Moreover, i or t are reserved the denote time while

u, v are reserved to denote elements (or subsets) of the vertex set, V , which indexes

our set of variables. We therefore write u or v to indicate components of a vector or

columns of a matrix. By way of example, we write St to denote an estimate of the

covariance matrix at time t (or at the tth observation). Conversely, we write Sv to

denote the entries of S along the column v.

• In the context of iterative algorithms, we employ the super-script notation to denote

an estimated quantity at the kth iteration. As such, Θk denotes the estimated precision
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matrix at the kth iteration.

• Unless stated otherwise, all vectors are assumed to be column vectors. As such,

we write β ∈ Rp to denote β ∈ Rp×1. Furthermore, the superscript T notation is

reserved to denote a vector or matrix transpose.

• The bracketed superscript notation is employed when estimating graphical models

across multiple classes or subjects. As such, Θ(s) denotes the estimated precision

matrix for subject s.

• This entire thesis is focused exclusively on the use of GGMs. As a result, whenever

the term graphical model is employed this will refer to a GGM. Similarly, the terms

graph and network are used interchangeably and refer to a GGM.

• Furthermore, we use the term covariance structure to refer to the edge structure of a

GGM. Such terminology is widely used in the literature due to the mapping between

the non-zero entries of the inverse covariance matrix and the edges of a GGM.

• As mentioned previously, this thesis is also focused on the study of non-stationary

data. In an abuse of terminology, the term “non-stationary” is employed to denote

a scenario where the edge structure of a GGM varies as a function of some covari-

ate (for example as a function of time). It is also important to note that such non-

stationarity may occur both as a change in the presence of an edge, for example an

edge between two nodes may alternate between being present and absent, or in the

nature of the edge, for example the conditional dependence between two nodes may

alternative from positive to negative or may vary in magnitude.

List of publications
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works from functional MRI time series”, NeuroImage (103):427-443
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• Chapter 5 is based on the following preprint:

R. P. Monti et al., (2016). “A framework for adaptive regularization in stream-
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able online at: arXiv:1610.09127
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R. P. Monti et al., (2015). “Graph embeddings of dynamic functional connec-

tivity reveal discriminative patterns of task engagement in HCP data”, Interna-

tional workshop on Pattern Recognition in Neuroimaging

R. P. Monti et al., (2016). “Decoding time-varying functional connectivity net-

works via linear graph embedding methods”, Frontiers in Computational Neu-

roscience, (11):1-14

• Chapter 7 is based on the following preprint:

R. P. Monti et al., (2015). “Learning population and subject-specific brain con-

nectivity networks via Mixed Neighborhood Selection”, Under review at The
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Code

Freely available code is provided for all the methodology presented in this thesis. Below,

we detail some of the implementations provided.

• Chapter 3: A python implementation of the SINGLE algorithm is available at www.

github.com/piomonti/pySINGLE. The multiprocessing package is

employed to provide a multi-core implementation [114]. Furthermore, Cython [14]
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is employed to optimize a subset of computationally expensive routines within the

SINGLE algorithm.

• Chapter 4: A python implementation of the rt-SINGLE algorithm is available at

www.github.com/piomonti/RTN.

• Chapter 5: An R implementation of the RAP framework is available in the rRAP

package which can be downloaded from Comprehensive R Archive Network (CRAN)

[143].

• Chapter 6: A python implementation of the linear graph embedding methods is avail-

able at www.github.com/piomonti/pyLGE.

• Chapter 7: An R implementation of the MNS algorithm is available in the MNS pack-

age which can be downloaded from CRAN [143]. This implementation includes

multi-core capabilities via the use of the doParallel package [179]. This pack-

age also includes the network simulation algorithm discussed in Appendix C.2.
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Chapter 2

Prerequisites

The methodology presented in this thesis relies largely upon a collection of mathematical

techniques which we introduce in this chapter. The content in this chapter thereby serves to

introduce the building blocks for the remainder of this thesis. This chapter is not intended

to serve as a thorough review of the topics discussed but rather to provide the necessary

background to derive and motivate the work discussed in the remaining chapters.

We begin the chapter by introducing and discussing penalized likelihood methods in

Section 2.1, where we review maximum likelihood based parametric estimation methods

under the presence of regularization penalties. These methods will form the backbone of the

methodology discussed in this thesis and we therefore provide a justification for the use of

such regularization penalties. In Section 2.2 we introduce and discuss Gaussian graphical

models (GGMs), which are the focus of much of this thesis. After detailing some of the

properties of GGMs, this section discusses the challenges associated with their estimation

in the context of high-dimensional data and details how regularization penalties may be

introduced in order to yield graphs with sparse edge structure. This provides a segue into

Section 2.3, where several optimization techniques are introduced and discussed. Finally, in

Section 2.4, the aforementioned methods are tied into the study of functional MRI (fMRI)

data. This section serves to provide a concise background on the methodologies applied in

the context of fMRI data as well as to further motivate the introduction of regularization

penalties.
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2.1 Penalized likelihood methods

The objective of this thesis is to employ parametric methods to accurately model high-

dimensional data. The work presented in this section will focus on two associated chal-

lenges: accurately estimating the model parameters and performing model selection. We

discuss each of these challenges in turn.

Arguably the most popular and widely used method through which to estimate parame-

ters, θ ∈ Rp, in a parametric model is maximum likelihood estimation [175]. Such methods

typically assume observations are independent and identically (IID) sampled from a distri-

bution with a probability density function parameterized by unknown θ. The associated

likelihood function corresponds to the joint density of the data as a function of θ and can

be subsequently maximized as a function of parameters to obtain maximum likelihood es-

timates. As a result, given random variables X1, . . . , Xn sampled IID from a probability

density, f(x; θ), the associated likelihood is defined as:

Ln(θ) =
n∏

i=1

f(Xi; θ). (2.1)

The maximum likelihood estimator, θ̂, is subsequently defined as:

θ̂ = argmax
θ

{log Ln(θ)} (2.2)

The widespread use of maximum likelihood estimation is justified by the wealth of the-

ory available regarding the properties associated with such estimators, such as asymptotic

normality and efficiency [175].

However, in this thesis we are interested in the special case where the number of rele-

vant observations, n, in small relative to the number of parameters which must be estimated,

p. This is generally referred to as the large p, small n scenario where traditional maximum

likelihood methods are often not applicable or desirable. Formally, if p ≈ n or p > n max-

imum likelihood estimates will be poor estimates of the true parameter θ. Furthermore,

in the latter case the estimates will not be unique as the problem is over-parameterized.

This raises concerns both from the perspective of model interpretation as well as model
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performance, where overfitting is likely to occur [77]. This problem is particularly rele-

vant in the context of fMRI data as the number of parameters, p, may sometimes be in

the thousands while the number of samples remains relatively low due to the low temporal

resolution (see Section 2.4 for further discussion and examples). Furthermore, in the con-

text of non-stationary data, the number of relevant observations is further reduced as the

statistical properties vary.

The aforementioned challenges have traditionally been handled via the use of model

selection techniques. The objective of such methods is to automatically select a subset of

all candidate variables [82], thereby reducing the number of parameters to be estimated.

Formally, such methods are motivated by the following concerns:

(a) interpretability: reducing the number of parameters helps to improve model inter-

pretability. This is particularly relevant when there is reason to suspect the underlying

model is sparse, as is often the case in neuroscientific and many biological applica-

tions [77, 149].

(b) performance: reducing model complexity reduces the risk of overfitting and may

therefore lead to better performance on unseen data.

(c) computational considerations: more parsimonious models will incur a lower com-

putational cost during prediction or classification. Moreover, many of methods dis-

cussed also provide computational advantages during model estimation. Finally, it

is important to note that parsimonious models may result in significant reductions to

the memory burden.

However, while model selection yields several important advantages, it also presents

a significant methodological challenge. Formally, searching over the parameter space to

learn the optimal subset of parameters is non-trivial. Intuitive methods based on greedy al-

gorithms are known to perform poorly and may incur a large computational cost as models

are re-fitted at each iteration [53].

In this thesis, we study algorithms which perform model selection by minimizing a

penalized negative log-likelihood objective∗. Such methods effectively constrain the pa-

∗note that this is equivalent to maximizing the the log-likelihood function, as detailed in equation (2.2).
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rameter space of candidate solutions, thereby enforcing constraints on the estimated mod-

els. From an optimization perspective, the class of penalized likelihood methods solve the

following problem:

minimize
θ

{−log Ln(θ)} subject to P(θ) ≤ t, (2.3)

where P(θ) denotes a measure of model complexity which we wish to constrain. While

a vast array of penalties may be considered, in this work we focus primarily on the use

of `1 penalties where P(θ) = ||θ||1. The use of `1 regularization is widely employed as

it retains the convexity of the original objective function whilst also enforcing sparsity in

ways we will demonstrate in the next section. Convexity is a highly desirable property as it

greatly simplifies the corresponding optimization procedures and allows for the derivation

of scalable and efficient algorithms [27].

It is often convenient to re-write equation (2.3) in Lagrangian form [77]:

minimize
θ

{−log Ln(θ) + λ P(θ)} (2.4)

where λ ∈ R+ is a regularization parameter which dictates the severity of the regular-

ization. It is important to note that there is a one-to-one relationship exists between λ in

equation (2.4) and the budget constraint, t, in equation (2.3). The objective in equation

(2.4) is subsequently minimized as a function of θ using an array of convex optimization

techniques, some of which are discussed in Section 2.3.

2.1.1 Penalized linear regression

In order to provide a flavor for the penalized likelihood methods studied in this thesis we

consider the special case of penalized linear regression. This corresponds to the Least

Absolute Selection and Shrinkage Operator (lasso) model originally proposed by [166].

Given a univariate response variable, Y ∈ R, and associated p-dimensional covariate,

XT ∈ Rp, the simplest parametric model to consider is linear regression. Such a model
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assumes the response is a linear combination of the covariates†:

Y = Xβ + ε, ε ∼ N (0, σ2) (2.5)

where β ∈ Rp is a vector of regression coefficients. Such a model is parameterized by

θ = (β, σ) where σ is typically treated as a nuisance parameter. Given a dataset consisting

of multiple response-covariate pairs, {(yi, Xi) : i = 1, . . . , n}, it is possible to estimate the

regression coefficients as follows:

β̂ = minimize
β∈Rp

{
n∑

i=1

(Yi −Xiβ)2 + λ ||β||1

}
. (2.6)

The regularization parameter, λ ∈ R+, dictates the severity of the regularization penalty.

For λ = 0, the objective in equation (2.6) corresponds to traditional least squares and

β̂ will correspond to the maximum likelihood estimate. As a result, no regularization is

enforced and all regression coefficients are included in the model. As λ increases, the `1

penalty increasingly dominates the objective function leading to estimated of regression

coefficients with increasing levels of sparsity.

From a geometric perspective, the introduction of an `1 penalty forces the solution to

lie on a scaled `1-simplex, shown in the middle panel of Figure [2.1]. The remaining two

panels of Figure [2.1] visualize the constraint regions for `2 and `0.5 norms respectively and

serves to visualize the advantages of the `1 norm. Firstly, the `1 norm retains the convexity

of the optimization problem. Moreover, the irregularities which occur at the corners of the

`1-simplex serve to directly encourage sparse solutions. The reason for this is that in the

vicinity of such a corner, the objective function specified in equation (2.6) is dominated by

the `1 loss, as opposed to squared residual error. As a result, the lasso is able to perform

model selection by setting some components of β̂ to be exactly zero [29].

†We ignore the presence of an intercept as this may be absorbed into the covariate X
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Figure 2.1: Constraint regions specified by three distinct `q regularization penalties for
q = 0.5, 1 and 2. We note that as soon as q < 1 the constraint region is no longer convex.

2.2 Gaussian graphical models

The majority of this thesis is dedicated to the study of data assumed to follow a multivariate

Gaussian distribution. From a methodological perspective, this choice is motivated by the

fact that such an assumption yields graphical models over covariates which are easily inter-

pretable and for which efficient and tractable estimation algorithms can be derived [100].

In this section we provide a brief review of the methodology and algorithms associated

with Gaussian graphical models (GGMs). We provide justifications for such models in the

context of fMRI data in Section 2.4.

2.2.1 Properties of multivariate Gaussian data

The multivariate Gaussian distribution is an extension of the univariate Gaussian distribu-

tion to higher dimensions. We write X ∼ N (µ,Σ) to denote a random vector following a

multivariate Gaussian distribution with mean µ and covariance Σ. The associated proba-

bility density function is defined as:

f(X;µ,Σ) = (2π)−
p
2 |Σ|−

1
2 exp

{
−1

2
(X − µ)TΣ−1(X − µ)

}
, (2.7)

where parameters µ ∈ Rp and Σ ∈ Rp×p denote the mean and covariance respectively. No

assumptions are made with respect to these parameters expect to enforce that Σ should be

symmetric and positive-definite.
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A p-dimensional random vector X ∼ N (µ,Σ) may be partitioned in to Xv ∈ Rq,

Xu ∈ Rr with q + r = p. The mean and covariance matrix are correspondingly partitioned

into:

µ =



µv

µu


 and Σ =




Σvv Σvu

Σuv Σuu




Proposition 1 The marginal distribution of Xv is a multivariate Gaussian with mean µv

and covariance Σvv (similarly for Xu).

Proposition 2 The conditional distribution of Xv given Xu = xu follows a multivariate

Gaussian distribution with mean:

µv|u = µv − ΣvuΣ
−1
uu (xu − µu), (2.8)

and covariance:

Σv|u = Σvv − ΣvuΣ
−1
uuΣuv. (2.9)

Proposition 3 Vectors Xv and Xu are independent if and only if Σvu = 0.

Proof The proofs for Propositions 1 and 2 are standard and can be found in [100] while

the proof for Proposition 3 follows by considering the conditional mean and covariance of

Xv given Xu described in equations (2.8) and (2.9).

Proposition 4 Given X ∼ N (µ,Σ), then two distinct univariate components Xv and Xu

will be conditionally independent given all remaining variables if and only if the corre-

sponding entries in the precision matrix are zero. Moreover, we write:

Xv ⊥⊥ Xu|X\{v,u} ⇐⇒ Θvu = 0 (2.10)

to denote the conditional independence of v and u given all remaining variables. Fur-

ther, Θ = Σ−1 denotes the inverse covariance (i.e., precision) matrix and Θvu denotes the

corresponding entry in the precision matrix
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Proof We note that the precision matrix for the conditional distribution of {v, u} given

X\{v,u} is specified as:

Θ{v,u} =




Θvv Θvu

Θuv Θuu


 ∈ R2×2. (2.11)

As a result, the corresponding covariance matrix is defined as:

1

det Θ{v,u}




Θuu −Θvu

−Θuv Θvv


 . (2.12)

It therefore follows from Proposition 3 that Θvu must be zero for the associated components

to be conditionally independent.

Proposition 4 is significant as it implies that we may infer the conditional dependence

structure of a multivariate Gaussian distribution by recovering the non-zero entries of the

precision matrix.

2.2.2 Covariance selection

Graphical models, by leveraging concepts in both probability theory and graph theory,

have established themselves as important tools in applied statistics. Such methods repre-

sent random vectors, X ∈ Rp, via a set of nodes V = {1, . . . , p}. The corresponding edge

structure, E, across nodes is then used to encodes the statistical dependencies across com-

ponents of X . In this manner, we may describe high-dimensional distributions in a concise

manner.

The methods described in this thesis are focused exclusively on GGMs, where random

vectors are assumed to follow a multivariate Gaussian distribution. Following Proposition

4, estimating the edge structure for GGMs requires inferring the sparse support for the as-

sociated precision matrix, Θ. Formally, in GGMs an edge exists between random variables

if and only if the corresponding entry in the precision matrix is non-zero. Due to the sym-

metric nature of the precision matrix, the edge structure in GGMs is undirected. GGMs

thereby provide a medium through which to visualize and study the covariance structure in

an intuitive manner as demonstrated in Figure [2.2].
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Θ =




1 0 0.3 0 0

0 1 0 0.3 0.2

0.3 0 1 0 0
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a) b)

Figure 2.2: An example of a sparse precision, Θ, is shown in panel a). The graph of the
GGM associated with such a precision matrix is visualized in panel b). We note that edges
are only present if the corresponding entry in Θ is non-zero.

The challenge of estimating the sparse support of a precision matrix is widely referred

to as covariance selection [46]. Covariance selection is a difficult statistical problem. In a

high-dimensional setting, this is primarily a result of the sample covariance matrix being

poorly conditioned [86, 101]. As a result, it is often difficult to distinguish true conditional

dependence relationships from spurious correlations induced by noise. In order to address

this concern, a wide range of techniques have been proposed through which to estimate

a sparse precision matrix. For example, [49] propose a simultaneous hypothesis testing

procedure which is capable of controlling the overall error rate for incorrect edge inclu-

sion. Alternative approaches look to recover a sparse precision via the optimization of a

penalized likelihood objective [10, 68, 172], as discussed in Section 2.1. In this work, we

focus on the latter approach. This is motivated by the fact that such methods correspond

to solving convex optimization problems, for which there is a wide range of highly effi-

cient and scalable algorithms. Moreover, such methods can be easily adapted to handle

non-stationary data and provide the additional advantage of allowing for the introduction

of further regularization penalties, for example Chapters 3 and 4 consider the introduction

of an additional Fused lasso penalty [167].

As a result, the methodology detailed in the remainder of this thesis is primarily con-

cerned with the estimation of sparse precision matrices via the introduction of regulariza-

tion constraints, typically in the form of `1 penalization. As demonstrated in Figure [2.2],

the estimated precision matrix can be represented as an undirected graph or network.

In the remainder of this section we detail two penalized likelihood methods for estimat-

ing sparse edge structure in a GGM. The first method corresponds to the Graphical lasso,
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proposed by [68]. We then introduce neighbourhood selection, proposed by [117].

Graphical lasso

The Graphical lasso seeks to recover a sparse GGM by imposing an `1 regularization

penalty on the entries of the precision matrix. Following from Section 2.2.1, the intro-

duction of an `1 penalty is motivated by the desire to recover a parsimonious GGM which

accurately describes the conditional dependence structure.

We assume we have n IID samples X1, . . . , Xn from a multivariate Gaussian distri-

bution. Following from equation (2.7), we note that the (scaled) log-likelihood takes the

following form:

log Ln(Θ) = log det Θ− trace (SΘ) , (2.13)

where S denotes the sample covariance matrix. The maximum likelihood estimate of the

precision matrix corresponds to the inverse covariance matrix, however, this is may be

poorly conditioned in the context of high-dimensional data [101]. As a result, we look to

estimate the precision matrix by solving the following optimization problem:

Θ = argmin
Θ�0

{− log Ln(Θ) + λ ||Θ||1} , (2.14)

where we write Θ � 0 to denote that the estimated precision matrix must be positive defi-

nite and ||Θ||1 denotes the sum of absolute values of the precision matrix. The introduction

of an `1 penalty serves to constrain the elements of the estimated precision matrix, poten-

tially setting entries to be exactly zero.

The choice of the regularization parameter, λ, is an important consideration as it has

a significant effect on the properties of the estimated GGM. A wide variety of methods

have been proposed through which to tune λ. These include traditional cross-validation

methods [68], minimizing information theoretic measures such as BIC [100] or employing

stability based methods [107]. The latter methods, inspired by [118], involve randomly

sub-sampling the data and either selecting edges which are consistently present under ran-

domized penalization (thus avoiding the explicit choice of the regularization parameter) or

selecting λ in order to minimize variability across sub-sampled graphs [107].
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We further note that the objective function detailed in equation (2.14) is convex, im-

plying a wide range of convex optimization techniques may be employed [170]. These are

discussed in further detail in Section 2.3.

Neighbourhood selection

In this section we consider neighbourhood selection [117]. This can be considered as an

approximation to the exact optimization problem described in equation (2.14) which enjoys

the benefits of being computationally efficient and highly scalable. The underlying intuition

behind neighbourhood selection stems from the fact that we may derive the overall edge

structure for a GGM by iteratively inferring the conditional dependence structure for each

node. The latter is referred to the neighbourhood of a node [100]. We write ne(v) to denote

the neighbourhood for a given node v ∈ V .

In order to derive neighbourhood selection, we return to Proposition 2 and consider the

conditional distribution of a node, v, given all remaining nodes, XV \{v} = xV \{v}. This

follows a univariate Gaussian distribution whose mean is defined as [100]:

µv|V \{v} = µv − Σv,V \{v}
(
ΣV \{v},V \{v}

)−1 (
xV \{v} − µV \{v}

)
(2.15)

= µv +
∑

u∈V \{v}

βvu (xu − µu) . (2.16)

Equations (2.15) and (2.16) demonstrate that the observations for a given node, v, can be

decomposed as a linear prediction based on the data at the remaining nodes where the

conditional dependence structure is entirely captured by the regression coefficients, βv.

As a result it follows that we are able to learn the conditional dependence structure

for each node, termed the neighbourhood of a node, by considering the optimal prediction

given the observations of the remaining nodes [77]. From equation (2.16), this reduces to

a linear regression of Xv on X\{v}:

Xv = X\{v}β
v + εv, (2.17)

where εv is a univariate Gaussian variable with mean zero. In such a regression model,
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it follows that nodes which are not in the the neighbourhood of v will be omitted from

the set of optimal predictors. Neighbourhood selection can therefore be reformulated as

variable selection in a linear regression model, which can be achieved via the introduction

of an `1 penalty as discussed in Section 2.1.1. Due to the parsimony properties of the lasso,

certain elements of βv will be shrunk to zero. An estimate for the neighbourhood of v is

subsequently defined as:

n̂e(v) =
{
u ∈ V \{v} : β̂vu 6= 0

}
. (2.18)

The estimated neighbourhood of a node is therefore defined as the set of all nodes included

in the lasso solution. Given the estimated neighborhood of each node in a graph it is

possible to infer the edge structure for the entire GGM. In practice, estimation error may

introduce discrepancies into the estimated neighborhoods across nodes. For example, it

may be the case that v ∈ n̂e(u) while u /∈ n̂e(v), which is incompatible with the undirected

nature of edges in GGMs. As a result, the following heuristic rules are proposed [117]:

EOR = {(v, u) : u ∈ n̂e(v) or v ∈ n̂e(u)} or EAND = {(v, u) : u ∈ n̂e(v) and v ∈ n̂e(u)}. (2.19)

The use of neighbourhood selection leads to many important advantages. Primarily,

it is easily amenable to parallelization, allowing such methods to be employed in high-

dimensional settings. This is in contrast to the graphical lasso, which simultaneously esti-

mates the entire GGM. However, one fundamental shortcoming of neighbourhood selection

methods is that we are only able to recover the edge structure as opposed to the associated

precision matrix.

2.3 Convex optimization methods

In the preceding sections we have discussed penalized likelihood methods and their appli-

cation to covariance selection. One of the fundamental advantages of such methods is their

convexity, allowing a wide array of convex optimization methods to be employed.

Convex optimization techniques are prevalent within statistics, the prototypical exam-

ple being least squares regression. Formulating problems in the context of convex optimiza-

tion yields important theoretical and practical advantages. From a theoretical perspective,
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we are able to obtain a host of necessary and sufficient conditions through which to check

the optimality of a solution [27].

In the remainder of this section we consider two methods through which to solve convex

optimization problems and relate them back to the original problems described in Section

2.1 and 2.2. We begin by discussing traditional gradient and proximal gradient methods

in Section 2.3.1 before discussing Alternative Direction Methods of Multipliers (ADMM)

algorithms in Section 2.3.2.

2.3.1 Gradient methods

Gradient descent methods correspond to a class of iterative algorithms for solving opti-

mization problems. In this section we focus exclusively on first order descent methods, im-

plying only information relating to the gradient is employed. Such methods are attractive as

they avoid the computational burden associated with calculating higher order derivatives,

making them suitable for large scale problems.

Throughout this section we consider the optimization of an objective function,

f : Rp → R.

In many cases, we are able to exploit specific properties of the objective function in order

to derive efficient optimization algorithms. Two properties which will prove fundamental

to the algorithms presented in this thesis are convexity and separability, defined below.

Definition 2.3.1 A function, f : Rp → R, is convex if it satisfies:

f (αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) (2.20)

for any x1, x2 in the domain of f and any α ∈ [0, 1].

As such, a convex function is any function where the tangent between any two points on

the curve always lies above the curve. From a geometric perspective, this property implies

that the gradient always points in the direction of the global minimum.
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Definition 2.3.2 A function, f : Rp → R, is separable with respect to partition or splitting

the variable θ if we may write:

f(θ) =
N∑

i=1

fi(θi) (2.21)

where θ = (θ1, . . . , θN) and the variables θi ∈ Rni are subvectors of θ.

Throughout this section we focus on optimization problems were the objective function

is convex and separable but not necessarily differentiable. For example, this may corre-

spond to the lasso objective presented in equation (2.6) or the Graphical lasso objective

detailed in equation (2.14). Under the assumption that the objective function is differen-

tiable and convex, a necessary and sufficient condition for a solution, θ∗, to be optimal is

[134]:

∇f(θ)|θ=θ∗ = 0. (2.22)

In the remainder of this thesis we abuse notation and directly write ∇f(θ∗) to denote the

derivative of f evaluated at θ∗. In some cases, such as linear regression, it is possible to

solve equation (2.22) directly. However, for general complex problems a solution must

be obtained by iterating through a minimizing sequence of candidate solutions, θ1, θ2, . . .,

each of which progressively approximates the solution [15].

Gradient descent algorithms iteratively produce such a sequence as follows:

θk+1 = θk − ηk∇f(θk), (2.23)

where ηk denotes the stepsize parameters which can be selected in various different ways

in order to guarantee convergence [26, 27]. The update described in equation (2.23) has

a natural geometric interpretation. At each step the gradient is calculated, which indicates

the direction of steepest descent along the objective function. Each iteration therefore takes

a step in this direction before the gradient is calculated once more. The stopping criteria

for such algorithms is typically determined by measuring the magnitude of each gradient,

∇f(θk), and declaring convergence once this falls below a threshold.

One of the advantages of employing gradient methods to optimize convex objective

functions is that regardless of the initial choice of the parameter of interest, θ0, the proposed
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algorithm is still guaranteed to converge to the global minimum [27]. In other words,

iteratively applying the recursive update defined in equation (2.23) guarantees convergence

regardless of the initial θ0. This is desirable property as it implies that θ0 may be specified

arbitrarily. However, it follows that specifying θ0 close to the global minimum will greatly

reduce the computational burden associated with iterative gradient descent methods. A

frequently employed approach is that of warm starts, where information from a highly

related problem is employed to guide the choice of θ0 [92]. While there are many distinct

warm start strategies available, throughout this thesis we only consider specifying θ0 to be

the solution (i.e., θ∗) for a related problem. Many of the problems considered in this thesis

will require solving a sequence of closely related optimization problems and are therefore

well suited to benefit from warm starts.

Proximal gradient algorithms

Optimization problems which involve a non-differentiable objective, such as problems

which enforce `1 regularization, preclude the use of traditional gradient methods [155].

As a result, we consider proximal algorithms, which are a general class of optimization

algorithms which can handle non-differentiable objectives [136].

Definition 2.3.3 For a convex function g : Rn → R the associated proximal operator,

denoted proxg : Rn → Rn, is defined as follows:

proxg(ω) = argmin
θ

(
g(θ) +

1

2
||θ − ω||22

)
(2.24)

The operator derives it name from the fact that proxf (ω) balances a compromise between

minimizing f and remaining in the vicinity of (i.e., proximal to) ω.

One of the crucial properties of such operators is that the fixed point of a proximal

operator are precisely the minimizers of g [136]:

proxg(θ
∗) = θ∗ ⇐⇒ θ∗ is a minimizer of g.
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Proximal algorithms iteratively evaluate the proximal operator of an objective. As such,

they can be interpreted as solving optimization problems by finding the fixed points of the

appropriate operator.

Recall that in Section 2.1 we considered penalized likelihood functions of the form:

f(θ) + g(θ) (2.25)

where f typically denotes the negative log-likelihood and g denotes the regularization

penalty. Furthermore, in the context of penalized likelihoods it is often the case that while

both f and g are convex, only f is differentiable. Proximal gradient algorithms are partic-

ularly well-suited to the minimization of such objectives as they exploit both the separable

nature of the problem as well as the differentiability of f .

Formally, proximal gradient algorithms produce a sequence of candidate solutions as

follows:

ωk+1 = θk − ηk∇f(θk)

θk+1 = proxg
(
ωk+1

) (2.26)

Setting g = 0 removes regularization constraints and recovers gradient descent described

in equation (2.23).

The appeal of proximal gradient methods is derived from the fact that while evaluat-

ing the proximal operator involves solving a convex optimization problem, in many cases

the solution is available in closed form. In particular, when g(θ) = λ||θ||1 the proximal

operator is the element-wise soft-thresholding operator [77]:

(proxg(ω))i = Sλ(ωi) =





ωi − λ, if ωi ≥ λ

0, if |ωi| ≤ λ

ωi + λ, if ωi ≤ λ

(2.27)
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In order to provide a flavor for the proposed methods we consider the lasso. The objec-

tive, originally defined in equation (2.6), is separable with:

f(β) =
n∑

i=1

(Yi −Xiβ)2 and g(β) = λ||β||1.

As a result, the associated proximal gradient algorithm employs the following update step:

βk+1 = Sηkλ

(
βk − 2ηk

n∑

i=1

XT
i (Yi −Xiβ

k)

)
, (2.28)

where the soft-thresholding function is applied element-wise. Equation (2.28) is then it-

eratively applied until convergence. This is closely related to the shooting algorithm for

the lasso, proposed in [67] and [71] with the only difference that all regression coefficients

are updated simultaneously. In practice, the use of a proximal algorithm of the shooting

algorithm has been shown to yield similar performance [77].

2.3.2 ADMM algorithms

Alternating directions method of multipliers (ADMM) algorithms are a special case of

proximal algorithms which are typically employed to further exploit the separability of

the objective function or when the evaluation of the proximal operator is non-trivial [26].

Formally, the ADMM algorithm proceeds to solve the following problem:

minimize f(θ) + g(z)

subject to θ − z = 0.
(2.29)

This is often referred to as the consensus form of the problem [136]. We note that the

parameter of interest has been split into two parts denoted by θ and z such that the objective

function is separable across this split. An additional consensus constraint has also been

added to ensure the variables agree.

The augmented Lagrangian [15] associated with the optimization problem detailed in
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equation (2.29) is:

L(θ, z, u) = f(θ) + g(z) + uT (θ − z) +
1

2
||θ − z||22 (2.30)

= f(θ) + g(z) +
1

2
||θ − z + u||22 −

1

2
||u||22, (2.31)

where u is the Lagrangian dual variable associated with the constraint that θ = z. Equation

(2.30) corresponds to the usual Lagrangian with an additional quadratic penalty. The intro-

duction of this term is desirable as it often facilitates the minimization of the Lagrangian

[26]. The ADMM algorithm then iterates:

θk+1 = proxf (z
k − uk) = argmin

θ

{
L(θ, zk, uk)

}
(2.32)

zk+1 = proxg(θ
k+1 + uk) = argmin

z

{
L(θk+1, z, uk)

}
(2.33)

uk+1 = uk + θk+1 − zk+1. (2.34)

This decoupling of the original objective allows for ADMM algorithms to exploit the

structure associated with each of the functions f and g separately. At each iteration, min-

imization is performed first with respect to θ variables and subsequently with respect to z

variables. Finally, a dual variable update is then employed in order to ensure variables θ

and z converge towards each other [15].

An ADMM algorithm for the Graphical lasso

In order to highlight the simplicity of ADMM algorithms we consider the graphical lasso

problem, defined in equation (2.14). This corresponds to a widely studied optimization

problem whose difficulty also lead to novel approximation algorithms such as neighbour-

hood selection presented in Section 2.2.2. The associated ADMM algorithm looks to solve

the following problem:

minimize − log det Θ + trace (SΘ) + λ||Z||1

subject to Θ− Z = 0,
(2.35)
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for which each of the steps outlined in equations (2.32) - (2.34) are as follows:

Θk+1 = argmin
Θ

{
−log det Θ + trace (SΘ) +

1

2
||Θ− Zk + Uk||22

}
(2.36)

Zk+1 = argmin
Z

{
λ||Z||1 +

1

2
||Θk+1 − Z + Uk||22

}
(2.37)

Uk+1 = Uk + Θk+1 − Zk+1. (2.38)

From equation (2.27) we note that the update of the Z variable is nothing more than an

element-wise application of soft-thresholding. With regards to updating Θ, we note that

the objective specified in equation (2.36) is differentiable with respect to Θ. As a result,

differentiating the right hand side of equation (2.36) and setting the derivative to zero yields:

Θ−1 −Θ = S −
(
Zk − Uk

)
. (2.39)

Equation (2.39) yields an expression quadratic in Θ which can be solved analytically, as

detailed in the following proposition.

Proposition 2.3.4 If symmetric matrices X, Y ∈ Rp×p satisfy X−1 − αX = Y for some

constant α then it follows that X and Y have the same eigenvectors. Furthermore it is also

the case that the ith eigenvalues of X and Y , denoted by λXi and λYi respectively, will

satisfy λ−1
Xi
− αλXi = λYi for i ∈ {1, . . . , p}

Proof In order to prove claim 2 we begin taking the eigendecompositions of X and Y as

ΩXΛXΩT
X and ΩY ΛY ΩT

Y respectively. Substituting these into X−1 − αX = Y we obtain:

(ΩXΛXΩT
X)−1 − α(ΩXΛXΩT

X) = ΩY ΛY ΩT
Y

Expanding the left hand side yields:

ΩXΛ−1
X ΩT

X − α(ΩXΛXΩT
X) = ΩY ΛY ΩT

Y

= ΩX(Λ−1
X − αΛX)ΩT

X

where we have made use of the fact that ΩX is an orthonormal matrix. Thus it follows that
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ΩX = ΩY and since both ΛX and ΛY are diagonal matrices we also have that λ−1
Xi
−αλXi =

λYi for i ∈ {1, . . . , p}

From Proposition 2.3.4, it follows that the solution to equation (2.36) can be obtained

in closed form where the update for Θ is obtained by computing the eigendecomposition

of S−Zk +Uk. As a result, the ADMM algorithm specified by equations (2.36)-(2.38) al-

ternates between updating variables Θ, Z and U ; all of which involve solving optimization

problems with closed-form solutions.

2.4 Analysis of functional MRI data

The preceding sections have set the foundations from a mathematical perspective. The ob-

jective of this section is to provide the necessary background on the study of functional

MRI (fMRI) data as well as the closely related topic of functional connectivity. Both these

topics raise important statistical challenges, which we hope to address using the aforemen-

tioned techniques.

While there are a wide range of imaging modalities available, the applications presented

in this thesis are focused on the use of fMRI data. Functional MRI is an imaging technique

which is widely employed as a result of its safe, non-invasive nature together with the

high spatial resolution it is able to provide [88]. The underlying idea behind fMRI relies

on quantifying changes in blood oxygenation which occur during neuronal activity. As a

result, the signal measured by fMRI is referred to as the blood oxygenation level dependent

(BOLD) signal [140].

As fMRI is fundamentally based on blood flow, there are several important properties to

consider. Formally, the increase in blood flow which follows a period of neuronal activity

is determined by the hemodynamic response. One of the important properties of the hemo-

dynamic response is that it occurs over a time scale of seconds. As a result, the temporal

resolution of fMRI data is far lower than alternative modalities which are not based on

blood flow [105]. From a practical perspective, the low resolution of fMRI data results in a

reduced number of observations. This may cause challenges, as the high spatial resolution

yields high-dimensional data, resulting in the class of large p, small n problems discussed
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in Section 2.1. As a result, regularization penalties are often introduced when studying

fMRI data.

There are several common objectives typically associated with the study of fMRI data.

These include understanding which brain regions are modulated by specific tasks as well

as investigating the networks of multiple regions associated with specific brain functions.

Throughout this thesis the focus is on the latter objective by estimating functional connec-

tivity networks, introduced below.

2.4.1 Functional connectivity

The primary objective of early neuroscientific research was to establish and explore the

functional segregation of the human brain. This refers to the view that specific brain re-

gions support specific tasks, ofter termed functional localization or segregation [69, 161].

While the functional segregation of brain is firmly established, there has since been a sig-

nificant shift towards the study of functional dependence or connectivity across regions,

termed functional integration. One potential avenue through which to study the functional

integration of the brain is via functional connectivity. Formally, the objective of func-

tional connectivity is to quantify the statistical dependencies which exist across spatially

remote brain regions. Accurately estimating functional connectivity networks therefore

corresponds to a statistical challenge.

It follows that studying the brain as network of functionally related regions can provide

new insights relating to the architecture and large-scale structure of the human connec-

tome, such as the small-world structure [13, 162] and the presence of hubs [54]. Moreover,

functional connectivity provides a platform through which to examine how changes in orga-

nization and structure in such networks may relate to a various neurological and psychiatric

conditions [168].

Throughout this thesis we focus on the study of brain connectivity from the perspec-

tive of functional connectivity. However, it is important to note that brain connectivity

is a widely studied topic which can be addressed by many alternative frameworks. Two

popular alternatives include the study of anatomical and effective connectivity. The former

is concerned with the study of physical connections between brain regions and is typi-
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cally quantified by studying white matter tracts between regions [73]. It follows that the

anatomical connectivity between regions will directly affect their capability to share func-

tional dependencies [40]. This has motivated the introduction of anatomical connectivity

networks as additional constraints in the estimation of functional connectivity [81, 132].

Conversely, the study of effective connectivity is focused on quantifying directional effects

of one region over another and is therefore far more challenging to quantify [70].

A cornerstone in the study of functional connectivity, as well as brain connectivity in

general, is the notion that connectivity can be represented as a graph or network composed

of a set of nodes inter-connected by a set of edges. This allows for connectivity to be

studied using a rich set of graph theoretic tools [63, 131] and has resulted in widespread

use of graph theoretic techniques in neuroscience [1, 58].

The first step when looking to study brain connectivity is to define a set of nodes. This

can be achieved through various distinct methods depending on the underlying objectives

and ambitions of the data analysis. It is important to note that the choice of such regions

is paramount to both the estimation and subsequent interpretation of networks [171]. Of a

large number of strategies, two popular examples include anatomical parcellation methods

and independent component analysis. In each case, multiple brain regions are obtained

which serve as the nodes in the corresponding graph. Each node is associated with its own

BOLD time series, which is subsequently studied to determine statistical dependencies and

infer functional connectivity structure.

Traditionally, functional connectivity networks have been estimated by measuring pair-

wise dependencies across regions quantified via Pearson’s correlation coefficient [63, 90].

This corresponds to estimating the correlation matrix where each entry corresponds to the

correlation between a distinct pair of nodes. Partial correlations, summarized in the preci-

sion or inverse covariance matrix [181] have also been employed extensively [81, 87, 112].

In this case, the correlations between nodes are inferred once the effects of all other units

have been removed. Partial correlations are typically preferred to Pearson’s correlation

coefficient for a host of reasons. Firstly, the use of partial correlations provides a clear

interpretation for the edges in the network based on conditional dependence. Moreover,

by considering correlations across nodes after regressing out the effects of other nodes, the

risk of confounding is reduced [171]. As a result, partial correlations have been shown to
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be better suited to detecting changes in connectivity structure [112, 157]. The focus on

partial correlations, summarized by the precision matrix, makes GGMs a natural candidate

in the modeling of functional connectivity networks.

2.4.2 Functional connectivity via sparse GGMs

Throughout this work we look to model functional connectivity networks using GGMs with

a sparse edge structure, as introduced in Section 2.2. This yields several important bene-

fits. Firstly, the use of GGMs allows for the derivation of scalable and efficient estimation

algorithms. In particular, GGMs are easily amenable to the introduction of regularization.

Second, the edge structure associated with GGMs encodes the conditional dependencies

across nodes, which may be interpreted as functional relationships. This is in contrast to

alternative methods, such as those based on the correlation matrix where the edges encodes

marginal dependence structure [171].

Throughout this thesis the edge structure of the associated GGMs is inferred via the

use of regularization methods. In particular, this thesis is focused on the use `1 regular-

ization penalties such as those discussed earlier in this chapter which yield graphs with

sparse edge structure. Intrinsically related to the use of such regularization methods is the

issue of estimating the true sparsity of the network in question. There are many studies

reporting brain networks display varying degrees of sparsity. For example, [30] suggest

that connectivity networks have evolved to achieve high efficiency of information transfer

at a low connection cost, resulting in sparse networks. Conversely, [111] propose a high-

density model where efficiency is achieved via the presence of highly heterogeneous edge

strengths between nodes. Throughout this thesis we consider the degree of sparsity as a

question to be answered by the data. However, we note that regularization must be intro-

duced to some extent in order to ensure the problem is well-posed from an optimization

perspective. Table 2.1 provides a description of the datasets employed in this thesis, which

are representative of the type of datasets typically employed in the study of functional con-

nectivity. For the vast majority of the datasets employed the size of the edge set exceeds

the number of observations available, indicating that regularization of some form must be

introduced.
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Dataset p n |E| Chapter
CRT task 18 126 153 Chapter 3
HCP Motor task 11 404 55 Chapter 4
HCP Emotion task 20 404 190 Chapter 5
HCP Working Memory task 84 404 3468 Chapter 6
ABIDE resting state 92 230 4168 Chapter 7

Table 2.1: A summary of the various datasets employed throughout this thesis. For each
dataset we report the number of nodes, p, the number of observations, n, the size of the edge
set, |E|, and the chapter in which the results are provided. It is important to note that for the
vast majority of the datasets, the size of the edge set larger than the number of observations
available. This issue is further exasperated when we consider the non-stationary nature of
the data, which implies that only local observations may be employed.

While alternative regularization schemes, such as `2 penalization, may also be em-

ployed we focus on the use of `1 regularization for reasons of interpretability and insight.

Recall that in the context of GGMs, edges denote conditional dependencies and may inter-

preted as functional relationships between spatially remote brain regions [157]. By pruning

the edge set we are able to recover the minimal set of conditional dependencies across nodes

which adequately describes the data. This serves to provide easily interpretable networks

from which insights may be easily inferred.

2.5 Conclusion

In this chapter we have reviewed several topics which will form the foundation of the meth-

ods derived in subsequent chapters. We have discussed penalized likelihood methods and

their relationship to covariance selection in GGMs. This in turn motivated the discussion

of the convex optimization methods required to solve such problems. We concluded with

a brief review fMRI and the study of functional connectivity networks together with a de-

scription of how GGMs may be employed to model functional connectivity. Finally, the

introduction of sparsity constraints was motivated from the perspectives of interpretability

and feasibility.
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Chapter 3

Time-varying covariance selection

The focus of this chapter revolves around the estimation of time-varying Gaussian graphical

models (GGMs) in the context of non-stationary data. While we consider the analysis of

fMRI data as our motivation, the methods described in this chapter are applicable in many

other contexts.

As described in Section 2.4, GGMs are frequently employed to model statistical depen-

dencies across spatially remote brain regions, known as functional connectivity [70]. Tra-

ditionally, functional connectivity networks had been assumed to remain fixed over time,

implying that a single GGM was sufficient to summarize the covariance structure within

an fMRI dataset. However, there is growing evidence to suggest that fMRI data is non-

stationary over time [91]; this is particularly true in the context of task-based fMRI studies

[32], as noted in Section 2.4. In particular, functional relationships are hypothesized to be

modulated by certain cognitive tasks [24, 62] implying that certain edges may be present

across brain regions during a particular cognitive tasks but absent during others. As a re-

sult there is a need to quantify dynamic changes in network structure over time. From a

statistical perspective, this translates to estimating time-indexed GGMs which capture the

statistical dependencies at a specific point in time. Specifically, there is a need to estimate

a graph at each observation in order to accurately quantify temporal diversity induced by

cognitive tasks.

Formally, the objective of the methodology presented in this chapter is to infer dynamic

functional connectivity networks from fMRI data which display two overriding proper-
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ties: sparsity and temporal homogeneity. The former property implies estimated networks

should consist only of a reduced set of all possible edges. Such constraints are introduced

in order to yield easily interpretable networks as well as ensure the estimation problem is

well-posed and feasible, as discussed in Section 2.4.2. Meanwhile, the property of temporal

homogeneity implies estimated networks should display sparse changes in edge structure

over time, thereby encouraging constant covariance structure across temporally adjacent

networks. From a biological perspective, this property is motivated by reports that func-

tional connectivity is modulated by distinct cognitive tasks [62] indicating the network

structure should remain approximately constant within a neighbourhood of any observa-

tion and vary only over a larger time horizon. Moreover, the introduction of a temporal

homogeneity constraint also serves as an additional mechanism, analogous to shrinkage in

the static case, through which to differentiate variation in edge structure which is driven by

statistical noise from true variation in the underlying covariance structure [122].

To date, the most common approach to study dynamic functional connectivity involves

the use of sliding windows [90]. Such methods allow for the estimation of time-varying

networks by considering only a reduced subset of temporally adjacent observations. While

sliding window methods are easily amenable to the introduction of sparsity [3], they lack

a mechanism through which to enforce temporal homogeneity. To this end, we present

the Smooth Incremental Graphical Lasso Estimation (SINGLE) algorithm, which directly

extends sliding window algorithms by enforcing additional constraints across temporally

adjacent network estimates. The additional constraints, in the form of `1 penalties across

temporally adjacent graphs, serve to encourage sparse differences across consecutive net-

work estimates. The aforementioned constraints are enforced via the introduction of convex

regularization penalties. As a result, the SINGLE algorithm involves the minimization of

an objective function that is convex but not differentiable, thereby motivating the use of

ADMM algorithms, introduced in Section 2.3.2.

The remainder of this chapter is structured as follows: in Section 3.1 we introduce and

describe the SINGLE framework as well as the corresponding optimization algorithm in

detail. In Section 3.2 we present the results of our simulation study which aims to study the

empirical properties of the SINGLE algorithm. Throughout these simulations, synthetic

data is generated in order to recreate many of the statistical properties observed in fMRI
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data. We benchmark the performance of the SINGLE algorithm against sliding window

based algorithms as well as recently proposed algorithms from the literature.

3.1 Time-varying GGMs

We assume we have observed fMRI time series data denoted by X1, . . . , Xn, where each

vector Xi ∈ Rp contains the BOLD measurements of p nodes at the ith observation.

Throughout the remainder of this section we assume that each Xi follows a multivariate

Gaussian distribution, Xi ∼ N (µi,Σi). Here the mean and covariance are dependent on

the observation index in order to accommodate the non-stationary nature of fMRI data.

We aim to infer functional connectivity networks over time by estimating the corre-

sponding precision (inverse covariance) matrices {Θi} = {Θ1, . . . ,Θn}. Here, Θi encodes

the partial correlation structure at the ith observation [181]. As described in Section 2.2, we

may encode Θi as a graph or network Gi where the presence of an edge implies a non-zero

entry in the corresponding precision matrix and can be interpreted as a functional relation-

ship between the two nodes in question. Thus our objective is equivalent to estimating a

sequence of time indexed graphs {Gi} = {G1, . . . , Gn} where each Gi summarizes the

functional connectivity structure at the ith observation.

The objective of this work is to estimate a sequence of graphs, {Gi}, which display the

following two properties:

1. Sparsity: The introduction of sparsity is motivation by two reasons; first, the number

of parameters to estimate often exceeds the number of observations. In this case the

introduction of regularization is required in order to formulate a well-posed problem.

Second, due to the presence of noise, all entries in the estimated precision matri-

ces will be non-zero. This results in dense, unparsimonious networks with limited

interpretability.

2. Temporal homogeneity: From a biological perspective, it has been reported that

functional connectivity networks exhibit changes due to task based demands [57, 62,

64, 165]. As a result, we expect the network structure to remain constant within

a neighbourhood of any observation but to vary over a larger time horizon. This
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is particularly true for task-based fMRI studies where stimulus presentation often

occurs in alternating blocks. In light of this, we wish to encourage estimated graphs

with sparse changes in edge structure over time.

We split the problem of estimating {Θi} into two independent tasks. First we look to

obtain local estimates of time-varying covariance matrices, which we denote by {Si} =

{S1, . . . , Sn}. Here each Si is a function of the data which serves as an estimate of the

time-varying covariance matrix, Σi. By some abuse of terminology, we refer to each Si
as the sample covariance at the ith observation in the sense that the estimate Si serves the

same purpose locally as the sample covariance would serve if the data were IID. In this

work kernel functions are employed to obtain sample covariance matrices, as detailed in

Section 3.1.1. Given such a sequence we wish to estimate the corresponding precision

matrices {Θi} with the aforementioned properties while ensuring that each Θi adequately

describes the corresponding Si. The latter is quantified by considering the negative log-

likelihood:

f ({Θi}, {Si}) =
n∑

i=1

−log det Θi + trace (SiΘi). (3.1)

While it would be possible to estimate {Θi} by directly minimizing f , this would not

guarantee either of the properties discussed previously. In order to enforce sparsity and

temporal homogeneity we introduce the following regularization penalty:

gλ1,λ2({Θi}) = λ1

n∑

i=1

||Θi||1 + λ2

n∑

i=2

||Θi −Θi−1||1. (3.2)

Sparsity is enforced by the first penalty term which assigns a large cost to matrices with

large absolute values, thus effectively shrinking elements towards zero. This can be seen as

a convex approximation to the combinatorial problem of selecting the number of edges. The

second penalty term, parameterized by λ2, encourages temporal homogeneity by penalizing

the difference between consecutive networks. This can be seen as an extension of the Fused

lasso penalty [167], typically applied in the context of linear regression.

The proposed method therefore minimizes the following loss function:

l({Θi}, {Si}) = f({Θi}, {Si}) + gλ1,λ2({Θi}). (3.3)



Chapter 3. Time-varying covariance selection 49

This allows for the estimation of time-indexed precision matrices which display the prop-

erties of sparsity and temporal homogeneity while providing an accurate representation of

the data, as detailed in Section 3.1.2. The choice of regularization parameters λ1 and λ2

allow us to balance this trade-off and can be learnt in a data driven manner as described in

Section 3.1.3.

3.1.1 Estimation of time-varying covariance matrices

The loss function, summarized in equation (3.3), requires the input of sample covariance

matrices {Si}. Estimating time-varying covariance matrices is itself a non-trivial and

widely studied problem. Under the assumption of IID data, the sample covariance ma-

trix serves as a suitable estimator of the true covariance and may be readily calculated as

S = 1
n−1

∑n
i=1(Xi− x̄)T (Xi− x̄) where x̄ is the sample mean. However, when faced with

time-varying covariance matrices, such an approach is untenable.

A potential approach involves the use of change-point detection to segment the data

into piece-wise stationary segments, as is the case in the DCR algorithm [38]. Alterna-

tively, a sliding window may be used to obtain an estimate of the covariance matrix at each

observation. Due to the sequential nature of the observations, sliding windows allow us to

obtain adaptive estimates by considering only temporally adjacent observations.

A natural extension of sliding windows is to obtain adaptive estimates by downweigh-

ing past observations, thereby yielding weighted sample covariance matrices. This can be

achieved using kernel functions. Formally, kernel functions have the form Kh(i, j) where

Kh(·, ·) is a symmetric, non-negative function, h is a specified fixed width and i and j are

time indices. By considering the uniform kernel Kh(i, j) = I{|i − j| < h}, where I(x)

denotes the indicator function, we can see that sliding windows are a special case of kernel

functions. This allows us to contrast the behavior of sliding windows against alternative

kernels, such as the Gaussian kernel:

Kh(i, j) = exp
{
−(i− j)2

h

}
. (3.4)

Finally, given a kernel function, we are able to obtain the weighted sample mean and sample
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covariance matrix at the ith observation as follows:

x̄i =

∑n
j=1Kh(i, j)Xj∑n
j=1Kh(i, j)

, (3.5)

Si =

∑n
j=1Kh(i, j)(Xj − x̄j)T (Xj − x̄j)∑n

j=1 Kh(i, j)
. (3.6)

It follows that for both the Gaussian kernel as well as the sliding window the choice of h

plays a fundamental role. It is typically advised to set h to be large enough to ensure robust

estimation of covariance matrices without making h too large [150]. However, data-driven

approaches are rarely proposed [90]. This is partly because the choice of h will depend

on many factors, such as the rate of change of the underlying networks, which are rarely

known apriori. Here we propose to estimate h using cross-validation. This is discussed in

detail in Section 3.1.3.

3.1.2 Proposed algorithm

Having obtained weighted sample covariance matrices, as discussed in Section 3.1.1, we

turn to the problem of minimizing the loss function (3.3). Whilst this loss is convex, it is

not continuously differentiable due to the presence of the penalty terms. In particular, the

presence of the Fused lasso penalty poses a real restriction as it introduces dependencies

across chronologically adjacent network estimates. Additional difficulty is introduced by

the structured nature of the problem: we require that each Θi be symmetric and positive

definite.

The approach taken here is to exploit the separable nature of equation (3.3). As dis-

cussed previously, the loss function is composed of two components; the first of which

is proportional to the sum of likelihood terms and the second containing the sum of the

penalty components. This separability allows us to take advantage of the structure of each

component.

There has been a rapid increase in interest in the study of such separable loss func-

tions in the statistics, machine learning and optimization literature. Here we capitalize on

the separability of the objective function by employing ADMM algorithms, introduced in

Section 2.3. We note that the use of an ADMM algorithm is able to guarantee estimated
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precision matrices, {Θi}, are symmetric and positive definite as we outline below.

Formally, the separability of the loss function (3.3) is exploited via the introduction of a

set of auxiliary variables denoted {Zi} = {Z1, . . . , Zn}where each Zi ∈ Rp×p corresponds

to each Θi. This allows us to minimize the loss with respect to each set of variables, {Θi}
and {Zi} in iterative fashion while enforcing an equality constraint on each Θi and Zi

respectively. Consequently, equation (3.3) can be reformulated as the following constrained

minimization problem:

minimize
{Θi},{Zi}

n∑

i=1

(−log det Θi + trace (SiΘi)) + λ1

n∑

i=1

||Zi||1 + λ2

n∑

i=2

||Zi − Zi−1||1 (3.7)

subject to Θi = Zi i = 1, . . . , n (3.8)

where we have replaced Θi with Zi in both of the penalty terms. As a result, {Θi} terms are

involved only in the likelihood component of equation (3.7) while {Zi} terms are involved

in the penalty components. This decoupling allows for the individual structure associated

with the functions f and gλ1,λ2 to be exploited.

The use of an ADMM algorithm requires the formulation of the augmented Lagrangian

corresponding to equations (3.7) and (3.8), defined as:

Lγ ({Θi}, {Zi}, {Ui}) = −
n∑

i=1

(log det Θi − trace (SiΘi)) + λ1

n∑

i=1

||Zi||1

+ λ2

n∑

i=2

||Zi − Zi−1||1 + γ/2

n∑

i=1

(
||Θi − Zi + Ui||22 − ||Ui||22

)
,

(3.9)

where {Ui} = {U1, . . . , Un} are scaled Lagrange multipliers such that Ui ∈ Rp×p. Equa-

tion (3.9) corresponds to the Lagrangian for equations (3.7) and (3.8) together with an

additional quadratic penalty term. The latter is multiplied by a constant stepsize parameter

γ which can typically be set to one. The introduction of this term is desirable as it often

facilitates the minimization of the Lagrangian; specifically in our case it will make our

problem substantially easier as we outline below.

We write {Θj
i} = {Θj

1, . . . ,Θ
j
n} where Θj

i denotes the estimate of Θi in the jth it-

eration. The same notation is used for {Zi} and {Ui}. The algorithm is initialized with

Θ0
i = Ip, Z0

i = U0
i = 0 ∈ Rp×p for i = 1, . . . , n. At the jth iteration of the proposed
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algorithm three steps are performed as outlined below.

Step 1: Update {Θj
i}

At the jth iteration, each Θi is updated independently by minimizing equation (3.9). At

this step we treat all {Zj
i }, {U

j
i } and Θj

k, for k 6= i as constants. As a result, minimizing

equation (3.9) with respect to Θi corresponds to setting:

Θj
i = argmin

Θi

{
−log det Θi + trace(SiΘi) + γ/2||Θi − Zj−1

i + U j−1
i ||22

}
. (3.10)

From equation (3.10) we can further understand the process occurring at this step. If γ

is set to zero only the negative log-likelihood terms will be left in equation (3.10) resulting

in Θj
i = S−1

i . However, this will not enforce either sparsity or temporal homogeneity and

requires the assumption that Si is invertible. Setting γ to be a positive constant implies that

Θi will be a compromise between minimizing the negative log-likelihood and remaining in

the proximity of Zj−1
i . The extent to which the latter is enforced will be determined by both

γ and the Lagrange multiplier, U j−1
i . As we will see in step 2, it is the {Zi} terms which

encode the sparsity and temporal homogeneity constraints. Differentiating the right hand

side of equation (3.10) with respect to Θi and setting the derivative equal to zero yields:

Θ−1
i − γΘi = Si − γ

(
Zj−1
i − U j−1

i

)
(3.11)

which is a matrix quadratic in Θi (after multiplying through by Θi). Following from Propo-

sition 2.3.4, we note that the quadratic defined in equation (3.11) has a closed form solution.

Formally, we have that both Θi and Si−γ
(
Zj−1
i − U j−1

i

)
share the same eigenvectors. This

allows us to solve equation (3.10) using an eigendecomposition as outlined below. Letting

θr and sr denote the rth eigenvalues of Θi and Si− γ
(
Zj−1
i − U j−1

i

)
respectively we have

that:

θ−1
r − γθr = sr. (3.12)
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Solving the quadratic in equation (3.12) yields

θr =
1

2γ

(
−sr +

√
s2
r + 4γ

)
, (3.13)

for r = 1, . . . , p. We note that the quadratic equation specified by equation (3.12) also con-

tains a negative solution, however, this is ignored as each θi corresponds to an eigenvalue.

By only considering the positive solution to the aforementioned quadratic equation we are

able to ensure all eigenvalues are positive, thereby guaranteeing that the associated matrix

will be positive semi-definite [27]. Due to the nature of equation (3.13) it follows that all

eigenvalues, θi will be greater than zero. Thus Step 1 involves an eigendecomposition and

update

Θi = ViD̃iV
T
i (3.14)

for each i = 1, . . . , n. Here Vi is a matrix containing the eigenvectors of Si−γ
(
Zj−1
i − U j−1

i

)

and D̃i is a diagonal matrix containing entries θ1, . . . , θp. As discussed, all of the entries in

D̃i will be strictly positive, ensuring that each Θi will be positive definite. Moreover, we

also note from equation (3.14) that each Θi will also be symmetric.

Step 2: Update {Zj
i }

As in step 1, all variables {Θj
i} and {U j

i } are treated as constants when updating {Zi}.
Due to the presence of the Fused lasso penalty in equation (3.9) we cannot update each Zj

i

separately as was the case with each Θj
i in step 1. Instead, at the jth iteration the {Zj

i }
variables are updated by solving:

{Zji } = argmin
{Zi}

{
γ/2

T∑

i=1

||Θj
i − Zi + U j−1

i ||22 + λ1

T∑

i=1

||Zi||1 + λ2

T∑

i=2

||Zi − Zi−1||1

}
, (3.15)

where we note that only element-wise operations are applied. As a result it is possible to

break down equation (3.15) into element-wise optimizations of the following form:

argmin
{Zi}k,l

{
γ/2

T∑

i=1

||(Θj
i − Zi + U j−1

i )k,l||22 + λ1

T∑

i=1

||(Zi)k,l||1 + λ2

T∑

i=2

||(Zi − Zi−1)k,l||1

}
(3.16)

where we write (M)k,l to denote the (k, l) entry for any square matrix M . Moreover, we

write {Zi}k,l to denote the (k, l) entires for all matrices in {Zi}. This corresponds to a
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Fused lasso signal approximator (FLSA) problem [83]. Moreover, due to the symmetric

nature of matrices {Θi}, {Zi} and {Ui} we require p(p+1)
2

optimizations of the form shown

in equation (3.16). Thus by introducing auxiliary variables {Zi} and formulating the aug-

mented Lagrangian we are able to enforce both the sparsity and temporal homogeneity

penalties by solving a series of one-dimensional Fused lasso optimizations.

Step 3: Update {U j
i }

Step 3 corresponds to an update of Lagrange multipliers {U j
i } as follows:

U j
i = U j−1

i + Θj
i − Z

j
i for i = 1, . . . , T (3.17)

Convergence Criteria

The proposed algorithm is an iterative procedure consisting of Steps 1-3 described above

until convergence is reached. In order to guarantee convergence we require both primal

and dual feasibility: primal feasibility refers to satisfying the constraint Θi = Zi while

dual feasibility refers to minimization of the Augmented Lagrangian. For dual feasibility

to be satisfied we require both that ∇ΘL(Θ, Zj, U j) = 0 and ∇ZL(Θj+1, Z, U j) = 0. We

can check for primal feasibility by considering ||Θj
i − Z

j
i ||22 at each iteration. In order to

ensure dual feasibility we employ the following proposition from [26].

Proposition 3.1.1 The update in Step 3 guarantees dual feasibility in the {Zi} variables

and dual feasibility in the {Θi} variables can be checked by considering ||Zj+1 − Zj||22.

Step 3 thereby ensures that {Zi} are always dual feasible [26] and it suffices to consider

||Zj − Zj−1||22 to verify dual feasibility in {Θi} variables. Thus the SINGLE algorithm is

said to converge when ||Θj
i − Z

j
i ||22 < ε1 and ||Zj

i − Z
j−1
i ||22 < ε2 for i = 1, . . . , T where

ε1 and ε2 are user specified convergence thresholds. The complete procedure is given in

Algorithm 1.
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Algorithm 1: Smooth Incremental Graphical Lasso Estimation (SINGLE) algorithm
Input: Multivariate fMRI time series X1, ..., Xn, Gaussian kernel width h and
regularization parameters λ1, λ2 and convergence tolerance ε1, ε2

1 Set Θ0
i = Ip, Z0

i = U0
i = 0 for i ∈ {1, ..., n} and j = 1

2 ## Compute weighted sample covariance matrices
3 for i in {1, . . . , n} do
4 µi =

∑n
j=1Kh(i,j)·Xj∑n
j=1Kh(i,j)

5 for i in {1, . . . , n} do
6 Si =

∑n
j=1Kh(i,j)·(Xj−µj)T (Xj−µj)∑n

j=1Kh(i,j)

7 ## Estimate sparse precision matrices
8 while Convergence == False do
9 ## {Θ} Update

10 for i in {1, . . . , n} do
11 V,D = eigen

(
Si − γ

(
Zj−1
i − U j−1

i

))

12 D̃ = diag
(

1
2γ

(
−D +

√
D2 + 4γ

))

13 Θj
i = V D̃V ′

14 ## {Z} Update
15 for l in {1, . . . , p} do
16 for k in {l, . . . , p} do
17 x = concat

((
Θj

1 − U
j−1
1

)
k,l
, . . . ,

(
Θj
T − U

j−1
T

)
k,l

)

18
(
Zj

1 , . . . , Z
j
T

)
k,l

= FLSA(x, λ1, λ2)

19 ## {U} Update
20 for i in {1, . . . , n} do
21 U j

i = U j−1
i + Θj

i − Z
j
i

22 if ||Θj
i − Z

j
i ||22 < ε1 and ||Zj

i − Z
j−1
i ||22 < ε2, ∀i then

23 Convergence=True
24 else
25 j = j + 1

26 return {Θ}

Computational complexity

As discussed previously the optimization of the SINGLE objective function involves the

iteration of three steps. In step 1 we perform n eigen-decompositions, each of complexity

O(p3) where p is the number of nodes (i.e., the dimensionality of the data). Thus step 1 has
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a computational complexity ofO(np3). We note that step 2 requires p(p+1)
2

iterations of the

Fused lasso∗ where each iteration is O (nlog(n)) [83]. Thus the computational complexity

of step 2 is O (p2nlog(n)). Finally step 3 only involves matrix addition implying that the

final computational complexity of the SINGLE algorithm is O (p2nlog(n) + np3). This

is dominated by the number of nodes, p, not the number of observations. As a result the

limiting factor is likely to be the number of nodes in a study.

3.1.3 Tuning parameters

The SINGLE algorithm requires the input of three parameters which can be tuned using the

available data: λ1, λ2 and h. Each of these parameters has a direct interpretation. Parame-

ter h is the width of the Gaussian kernel. Following from our discussions in Section 3.1.1,

similar considerations should be made when tuning h as when tuning the width of a sliding

window. Parameters λ1 and λ2 affect the sparsity and temporal homogeneity respectively.

In particular, increasing λ1 will result in network estimates with a higher degree of spar-

sity whereas increasing the value of λ2 will encourage the fusion of temporally adjacent

estimates. We discuss each of these three parameters in turn.

The choice of parameter h describes certain assumptions relating to the nature of the

available data which are often not formally discussed. The use of a kernel (be it in the

form of a sliding window or otherwise) also reflects an assumption of local, as opposed to

global, stationarity. This assumption is that it is possible to obtain time dependent parame-

ter estimates that accurately reflect the correlation structure within a neighbourhood of any

observation but possibly not over an arbitrarily long time horizon. The choice of h can

therefore be seen as an assumption relating to the extent of non-stationarity of the available

data (for an attempted definition of the degree of non-stationarity see [78]).

On the one hand, the choice of a large value of h is indicative of an assumption that

the data is close to stationary. If this is the case, a large choice of h allows for the accurate

estimation of sample covariance matrices by incorporating information across a wide range

of observations. However, if this assumption is incorrect, the choice of a large h can result

in overly smoothed estimates where short term variation is overlooked. On the other hand,

∗ p(p−1)
2 edges and p more along the diagonal
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the choice of a small h implies an assumption of a higher degree of non-stationarity. Here

the choice of a small h can allow for the accurate estimation of sample covariance matrices

by correctly discarding irrelevant information. However reducing the value of h will result

in an increase in the variance of the estimators as it implies that a smaller sample size

is used to estimate parameters. This effect is more dramatic for large values of p as a

greater number of parameters must be estimated. Overall, the best performing value of h

in any given setting will depend on the difficulty of the estimation task, in particular the

dimensionality of p, as well as the rate of change of the underlying networks. The latter is

not known apriori in many fMRI applications.

To avoid making specific assumptions about the nature of the temporal variability we

rely on an entirely data-driven technique when choosing h that best describes the observa-

tions. The approach taken here is to use cross-validation [156]. As before, goodness-of-fit

is employed to quantify how well estimated sample covariance matrices describe the ob-

served time series. We define the leave-one-out (LOO) log-likelihood for the ith observa-

tion and some fixed choice of h as follows:

L−i(h) = −1

2
log det

(
S

(h)
−i

)
− 1

2

(
Xi − µ(h)

−i

)T (
S

(h)
−i

)−1 (
Xi − µ(h)

−i

)
, (3.18)

where both µ(h)
−i and S(h)

−i are estimated with the ith observation removed for a given h. Thus

L−i(h) allows us to estimate the goodness-of-fit at Xi for any fixed h. We subsequently

choose h in order to maximize the following score function:

CV (h) =
n∑

i=1

L−i(h). (3.19)

Parameters λ1 and λ2 determine the sparsity and temporal homogeneity of the estimated

networks respectively. Therefore λ1 and λ2 directly affect the degrees of freedom of the

estimated networks. In this case we can employ a more sophisticated parameter tuning

technique based on the Akaike Information Criterion (AIC). The use of AIC allows us to

estimate the in-sample prediction error for each choice of parameters λ1 and λ2, allowing

for a clear comparison across different values of each parameter [76]. For any pair λ1, λ2
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we define the AIC as:

AIC(λ1, λ2) = 2
T∑

i=1

(−log det (Θi) + trace (SiΘi)) + 2K (3.20)

where K is the estimated degrees of freedom. For a given range of λ1 and λ2 values an

extensive grid-search is performed with the resulting choices of λ1 and λ2 being the pair

that minimises AIC.

Following [167] we defineK to be the number of non-zero coefficient blocks in {(Θi)r,s}
for 1 ≤ r 6= s ≤ p. That is, we count a sequence of one or more consecutive non-zero

and equal estimates of partial correlations as one degree of freedom. This can be formally

written as:

K =
∑

r,s

n∑

i=2

1 ((Θi)r,s 6= (Θi−1)r,s) . (3.21)

Equation (3.21) therefore corresponds to counting the number of consecutive changes in

estimated edge structure.

3.1.4 Related work

There are currently limited methodologies available for estimating dynamic functional con-

nectivity networks. A novel approach has recently been proposed in the form of the DCR

algorithm [38]. The DCR is able to estimate functional connectivity networks by first par-

titioning time series into piece-wise stationary segments. This allows the DCR to exploit

the vast literature relating to stationary network estimation. Formally, the DCR algorithm

detects statistically significant change-points by applying a block bootstrap permutation

test. The use of a block bootstrap allows the DCR algorithm to account for autocorrelation

present in fMRI data. The DCR will be employed extensively throughout the remainder

of this chapter as a benchmark for the SINGLE algorithm. As a result, we provide a brief

overview of the DCR algorithm in Appendix B.1.

Other widely employed approaches involve the use of a sliding windows [90]. This in-

volves recursively estimating covariance matrices by re-weighting observations according

to a sliding window or kernel. Subsequently, analysis can be performed directly on the
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sample covariance, Si, to infer the network structure at the ith observation. This approach

is studied in detail by [187]. However, sliding window approaches face the potential issue

of variability between temporally adjacent networks. This arises as a direct consequence

of the fact that each network is estimated independently without any mechanism present to

encourage temporal homogeneity. This additional variability can jeopardize the accuracy

of the estimation procedure and can result in networks which do not reflect the true network

structure over time. The SINGLE algorithm addresses precisely this problem by introduc-

ing an additional Fused lasso penalty. In this way, changes in the connectivity structure are

only reported when strongly validated by the data. The beneficial effects of the additional

Fused lasso penalty are studied extensively in the simulation study provided in Section 3.2.

Finally, the SINGLE algorithm is formally related to the Joint Graphical lasso (JGL)

[42]. The JGL was designed with the motivation of improving network inference by lever-

aging information across related observations and data sets. However, while the JGL fo-

cuses on stationary network estimation the SINGLE algorithm is designed to estimate dy-

namic networks. This manifests itself in two main differences to the overall objective func-

tions of each of the algorithms. Firstly, the SINGLE algorithm only employs the Fused

lasso penalty as the Group lasso penalty proposed in [42] cannot be used in the context

of temporal homogeneity. This is due to the fact that the Group lasso penalty encourages

all coefficients to either be zero or non-zero in unison and therefore ignores temporal be-

haviour. Secondly, while both algorithms contain a Fused lasso penalty the nature of these

penalties are vastly different. In the case of the JGL there is no natural ordering to obser-

vations and therefore fusions are present between all networks (i.e., the penalty is of the

form
∑

i 6=j ||Θi − Θj||1). This is not the case in the SINGLE algorithm where there is a

chronological ordering. This results in a penalty of the form
∑T

i=2 ||Θi−Θi−1||1. From an

algorithmic perspective, this greatly reduces the computational burden as each estimated

network only depends on the previous network [83].

3.2 Simulation study

In this section we evaluate the performance of the SINGLE algorithm through a series

of simulation studies. In each simulation we produce simulated time series data giving
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rise to a number of connectivity patterns which reflect those reported in real fMRI data.

The objective is then to measure whether the proposed algorithm is able to recover the

underlying patterns. That is, we are interested primarily in the correct estimation of the

presence or absence of edges.

3.2.1 Simulation settings

There are two main properties of fMRI data which we wish to recreate in this simulation

study. The first is the high autocorrelation which is typically present in fMRI data [140].

The second and main property we wish to recreate is the structure of the connectivity net-

works themselves. It is widely reported that brain networks have a small-world topology as

well as highly connected hub nodes [30] and we therefore look to enforce these properties

in our simulations.

Vector Autoregressive (VAR) processes are well suited to the task of producing auto-

correlated multivariate time series as they are capable of encoding autocorrelations within

components as well as cross-correlations across components [38]. Moreover, when sim-

ulating connectivity structures we study the performance of the proposed algorithm using

three types of random graphs; Erdős-Rényi random graphs [56], scale-free random graphs

obtained by using the preferential attachment model [11] and small-world random graphs

obtained using the Watts-Strogatz model [177]. Erdős-Rényi random graphs are included

as they correspond to the simplest and most widely studied type of random network while

the use of scale-free and small-world networks is motivated by the fact that they are each

known to each resemble different aspects of fMRI networks. A detailed description of each

of the three aforementioned algorithms is provided in Appendix C.1.

When simulating Erdős-Rényi random networks we maintain the edge strength of the

connectivity between nodes fixed at 0.6. We note that the edge strength refers to the cor-

relation coefficient between simulated random variables. However, when simulating scale-

free and small-world networks we randomly sample the edge strengths uniformly from

[−1/2,−1/4] ∪ [1/4, 1/2]. The motivation behind randomly sampling the edge strengths was

due to the fact that such an approach would add additional variability in the edge strength

together. Moreover, the expected magnitude of edges was also reduced further increasing
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the difficulty of the estimation task.

The first three simulations considered are aimed at studying the performance of the

SINGLE algorithm in three different scenarios. We begin by considering the overall perfor-

mance of the SINGLE algorithm by generating connectivity structures according to Erdős-

Rényi, scale-free and small-world networks in simulations 1a, 1b and 1c respectively. In

many task-based experiments it is the case that the task is repeated several times, thus we

expect there to be cyclic behavior within the true functional connectivity structure (i.e.,

connectivity alternates between two structures) and we study this scenario in simulations

2a, 2b and 2c. In simulation 3 we study the performance of the algorithm as the ratio of

observations, n, to nodes, p, decreases. This simulation is critical as it is often the case that

there is a low ratio of observations to nodes, especially when considering subject specific

fMRI data. We further note that only scale-free and small-world networks are considered in

this simulation. This is motivated by the fact that Erdős-Rényi networks are too simplistic

and scale-free and small-world methods provide more realistic and challenging synthetic

networks.

Throughout each of these simulations we benchmark the performance of the SINGLE

algorithm against both the DCR algorithm and two sliding window based algorithms. In

the case of the latter, a sliding window is employed to obtain time-dependent estimates of

the sample covariance matrices and the Graphical lasso is subsequently used to estimate

a sparse connectivity structure. In order to ensure a fair comparison, the sliding window

approach is employed using both a uniform kernel as well as a Gaussian kernel.

3.2.2 Performance measures

When evaluating the performance of the SINGLE algorithm we are primarily interested in

the estimation of the functional connectivity graphs at every time point. In our setting this

corresponds to correctly identifying the non-zero entries in estimated precision matrices,

Θi, at each i = 1, . . . , n. An edge is assumed to be present between the jth and kth nodes if

(Θi)j,k 6= 0. At the ith observation we define the set of all reported edges as Di = {(j, k) :

(Θi)j,k 6= 0}. We define the corresponding set of true edges as Ti = {(j, k) : (Ki)j,k 6= 0}
where we write Ki to denote the true precision matrix at the ith observation. Given Di and
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Ti we consider a number of performance measures at each observation i.

First we measure the precision, Pi. This measures the percentage of reported edges

which are actually present (i.e., true edges). Formally, the precision is given by:

Pi =
|Di ∩ Ti|
|Di|

.

Second we also calculate the recall, Ri, formally defined as:

Ri =
|Di ∩ Ti|
|Ti|

.

This measures the percentage of true edges which were reported by each algorithm. Ideally

we would like to have both precision and recall as close to one as possible. Finally, the Fi
score, defined as

Fi = 2
PiRi

Pi +Ri

, (3.22)

summarizes both the precision and recall by taking their harmonic mean [169].

3.2.3 Results

The objective of the simulation study presented is to provide an overview of the perfor-

mance of the SINGLE algorithm with respect to alternative methods. The data is simulated

as follows: each data set consists of 3 segments each of length 100 (i.e., overall duration

of 300). Thus each data set consists of 2 change-points at times t = 100 and 200 respec-

tively resulting in a network structure that is piece-wise constant over time. The correlation

structure within each segment is randomly generate in three distinct methods which capture

different properties known to arise in functional connectivity networks.

Throughout these simulations, the parameters for the SINGLE algorithm were set as

per Section 3.1.3. This involved specifying the value of h via maximizing the leave-one-

out log-likelihood, defined in equation (3.19). Furthermore, we note that in the case of the

SINGLE algorithm, a Gaussian kernel was employed throughout all simulations. Values

of λ1 and λ2 were estimated by minimizing AIC. For the DCR algorithm, the block size

for the block bootstrap permutation tests was set to be 15 and one thousand permutations
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where used for each permutation test. We note that alternative values for the block size

and number of permutation tests were explored but did not result in significant differences

in performance of the DCR algorithm. In the case of the sliding window and Gaussian

kernel algorithms the kernel width was estimated using leave-one-out log-likelihood and

regularization parameter was estimated by minimizing AIC.

Simulation 1a - Erdős-Rényi random networks

In this simulation, networks are simulated according to the Erdős-Rényi random graph

model [56]. This corresponds to the simplest possible manner of generating random net-

works and therefore does not reproduce properties of fMRI data. As a result, we also study

the performance of the SINGLE algorithm when networks are simulated using a preferen-

tial attachment model [11] and the Watts-Strogatz model [177] in Simulations 1b and 1c

respectively.

The Erdős-Rény model treats all edges as independent random variables which are

present with some fixed probability α ∈ [0, 1]. This allows for random networks to be

easily simulated. In the case of this simulation, random graphs were generated with 10

nodes and the probability of an edge between two nodes was fixed at α = 0.1.

The top-left panel of Figure [3.1] shows the average Ft scores for each of the four

algorithms over 500 simulations. We can see that the SINGLE algorithm performs com-

petitively relative to the other algorithms. Specifically we note that the performance of

the SINGLE algorithm mimics that of the Gaussian kernel algorithm. We also note that all

four algorithms experience a dramatic drop in performance in the vicinity of change-points.

This effect is most pronounced for the sliding window algorithm.

Simulation 1b - Scale-free networks

It has been reported that brain networks follow a scale-free distribution. A hallmark of

scale-free networks is the degree centrality across all nodes follows a power law. From a

biological perspective this implies that there are a small but finite number of hub regions

which have access to most other regions [54]. While Erdős-Rényi random graphs offer a

simple and powerful model from which to simulate random networks they fail to generate
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Figure 3.1: Mean F scores are shown across all four algorithms for simulations 1 and
2. Shaded regions correspond to 95% confidence intervals. Underlying network structure
was simulated using three distinct algorithms. In the case of simulation 2, the covariance
structure was cyclic in nature.

networks where the degree distribution follows a power law. In this simulation we analyze

the performance of the SINGLE algorithm by simulating random networks according to the

preferential attachment model proposed by [11]. Further details are provided in Appendix

C.1. Here the power of preferential attachment was set to one. Additionally, edge strength

was also simulated according to a uniform distribution on [−1/2,−1/4]∪[1/4, 1/2], introducing

further variability in the estimated networks.

The top-middle panel of Figure [3.1] shows the average Ft scores for each of the four

algorithms over 500 simulations. We note that the performance of the SINGLE and DCR

algorithms is largely unaffected by the increased complexity of the simulation. This is not

true in the case of the sliding window and Gaussian kernel algorithms, both of which see

their performance drop. We hypothesize this drop in performance may be caused by the in-

creased complexity of the network structure. Similar results confirming that networks with

skewed degree distributions (e.g., power law distributions) are typically harder to estimate

have also been described in [137].
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Simulation Ic - Small-world networks

In addition to scale-free properties, brain networks have also been reported to display a

small-world topology [13, 162, 164]. In this simulation, random networks demonstrating

such properties were simulated by employing the Watts-Strogatz model [177]. Such a

model is parameterized by β ∈ [0, 1] which quantifies the probability of randomly rewiring

an edge. A detailed description of this model is provided in C.1. Throughout this simulation

we set β = 3/4 and edge strength was simulated according to a Uniform distribution on

[−1/2,−1/4] ∪ [1/4, 1/2].

The top-right panel of Figure [3.1] shows the average Ft scores for each of the four

algorithms over 500 simulations. There is a significant drop in the performance of all the

algorithms relative to their performance in simulations 1a and 1b, however, the SINGLE

algorithm continues to out-perform both the DCR and sliding window alternatives. An

interesting related research question, which lies beyond the scope of this work, is to un-

derstand the effect of network structure on the accuracy of the estimated networks. In the

case of this simulation, we believe that the drop in performance may be related to the in-

creased complexity of small-world networks compared to alternative network models. In

particular, due to the high local clustering present in small-world networks, the path length

between any two nodes will remain relatively short. As a result, we expect there to be a

large number of correlated variables that are not directly connected. It has been reported

that the lasso (and therefore by extension the Graphical lasso) cannot guarantee consistent

variable selection in the presence of highly correlated predictors [189, 190]. Since all four

algorithms are related to the Graphical lasso, this may be the cause of the overall drop in

performance.

Simulation 2a - Alternating Erdős-Rényi networks

In task related experiments subjects are typically asked to alternate between performing a

cognitive task and resting. As a result, we expect the functional connectivity structure to

alternate between two states: a task related state and the resting state. In order to recreate

this scenario, network structures are simulated in a recurring fashion such that the first and

third correlation structures are identical.
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The results are shown in the bottom-left panel of Figure [3.1]. The performance of the

SINGLE, sliding window and Gaussian kernel algorithms is largely unaffected. This is

to be expected as such methods consider only an adequately re-weighted subset of nearby

observations when computing the sufficient statistics. However, the DCR algorithm suffers

a clear drop in performance relative to simulation 1a. The drop in performance of the DCR

algorithm is partly due to the presence of the recurring correlation structure. More specifi-

cally, the problem is related to the use of block bootstrapping permutation test to determine

the significance of change-points in the DCR. This test assumes that local data points are

identically distributed but expects data points that are far away not to be. Typically this

assumption holds, however, in the context of an alternating correlation structure, points

which are far away may also follow the same underlying distribution. As a result the power

of the permutation test is heavily reduced and many change-points are missed.

Simulation 2b - Alternating Scale-free networks

In this simulation multivariate time series are generated where the underlying correlation

structure is alternating and follows a scale-free distribution. The results are summarized

in the bottom-middle panel of Figure [3.1]. As in simulation 1b, there is no noticeable

difference in the performance of the SINGLE algorithm. However, there is a drop in the

performance of the sliding window, Gaussian kernel and DCR algorithms. This is par-

ticularly evident in the case of the DCR algorithm. As mentioned previously the drop in

performance of the sliding window and Gaussian kernel algorithms is due to the increased

complexity of the network structure as well as the fall in the signal to noise ratio. In the case

of the DCR the drop in performance can be partly explained by the fact the assumptions be-

hind the use of the block bootstrap no longer hold (see simulation 2a for a discussion) and

the increased complexity of the network structure. These two factors combine to greatly

affect the performance of the DCR algorithm.

Simulation 2c - Alternating Small-world networks

In this simulation the performance of the SINGLE algorithm is assessed in a scenario that

is representative of experimental data typically obtained from fMRI studies. As such, the
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Figure 3.2: Mean F scores for simulation 3. Underlying networks followed scale-free
(left) and small-world (right) distributions. The performance of each of the four algorithms
is studied as the number of observations, n, decreases for a fixed number of nodes, p.

network structure in this simulation was composed of alternating networks where each

network structure is simulated according to a small-world network as in Simulation 1c.

This simulation gives us a clear insight into the performance of the SINGLE algorithm in

a scenario that is very similar to that proposed in the experimental data.

The results are summarized in the bottom-right panel of Figure [3.1]. As in Simulation

1c, there is drop in the performance of all four algorithms relative to their performance in

simulations 2a and 2b. This is due to the increased complexity of the underlying networks

structures, specifically the high levels of clustering we experience in small-world networks

which are not seen in Erdős-Rényi or scale-free random networks.

Simulation 3a - Scale-free networks with decreasing n/p ratio

The objective of this simulation is to study the behavior of the proposed method as the ratio

of observations, n, to the number of nodes, p, decreases. This is a particularly relevant

problem in the case of fMRI data as it is often the case that the number of nodes in the

study (typically the number of ROIs) will be much larger than the number of observations.
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In this simulation we fix p = 10 and allow the value of n to decrease. As such, data

is simulated with three segments each of length n where the connectivity structure within

each segment is randomly simulated according to a scale-free network. As the value of n

decreases we are able to quantify the performance of the SINGLE algorithm in the presence

of rapid changes in network structure.

In the case of the SINGLE, sliding window and Gaussian kernel algorithms all param-

eters are estimated as discussed previously. In the case of the DCR algorithm, the value of

block sizes for the block bootstrap test was reduced as a function of n.

Results for Simulation 3a are given in the left panel of Figure [3.2]. Error bars have

been omitted in the interest of clarity however detailed results are available in Table 3.1.

As expected, the performance of all four algorithms diminishes when n is small relative to

p. However, from Figure [3.2] we note that the performance of both the SINGLE and DCR

algorithms quickly improves as n increases.

n µ σ

10 0.28 0.09
20 0.36 0.15
30 0.55 0.21
40 0.70 0.15
50 0.76 0.08
60 0.78 0.07
70 0.78 0.06
80 0.79 0.03
90 0.79 0.02

(a) DCR

n µ σ

10 0.54 0.13
20 0.78 0.08
30 0.85 0.06
40 0.87 0.05
50 0.87 0.05
60 0.88 0.05
70 0.89 0.04
80 0.89 0.04
90 0.89 0.04

(b) SINGLE

n µ σ

10 0.53 0.09
20 0.67 0.07
30 0.72 0.05
40 0.74 0.05
50 0.75 0.04
60 0.76 0.04
70 0.77 0.03
80 0.77 0.03
90 0.77 0.03

(c) Gaussian Kernel

n µ σ

10 0.41 0.09
20 0.49 0.10
30 0.55 0.10
40 0.61 0.09
50 0.65 0.07
60 0.67 0.07
70 0.68 0.06
80 0.69 0.05
90 0.69 0.05

(d) Sliding window

Table 3.1: Detailed results from Simulation 3a. For each algorithm the mean F score, µ,
is reported together with the sample standard deviation, σ. The algorithm with the best
performance is highlighted in bold for each value of n.

Simulation 3b - Small-world networks with decreasing n/p ratio

As with Simulation 3a, the purpose of this simulation is to evaluate the performance of

the proposed algorithm as the ratio of observations, n, relative to the dimensionality of the

data, p, decreases. However, here the underlying network structure are simulated according
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to small-world networks. This simulation therefore provides an insight into how accurately

proposed algorithm is able to estimate networks in the presence of rapid changes.

Results for Simulation 3b are shown in the right panel of Figure [3.2] and detailed

results are provided in Table [3.2]. As with the previous simulations we note that the

performance of all four algorithms is affected by the presence of small-world networks

(see simulation 1c for a discussion). Furthermore, as in simulation 3a, the performance of

all four algorithms also deteriorates as the ratio n/p decreases. Moreover, as in Simulation

3a, the performance of the SINGLE algorithm improves as n/p increases.

3.3 Application

In this section the SINGLE algorithm is employed to estimate connectivity networks as-

sociated with fMRI data evoked during a simple cognitive task, the Choice Reaction Time

(CRT) task. The CRT is a forced choice visuo-motor decision task that reliably activates

visual, motor and many cognitive control regions. The task was blocked into alternating

task and rest periods. As a result we expect the task onset to evoke an abrupt change in the

correlation structure that is cyclical in nature.

This corresponds to a challenging dataset for several reasons. Firstly, it corresponds to

the scenario where n/p = 126/18 is small. Secondly, a change in the covariance structure

is expected roughly every 15 seconds, suggesting that an even smaller number of relevant

observations are available through which to estimate networks. Finally, given the nature

of the CRT task there is a recurring correlation structure with subjects alternating between

two cognitive states: resting and performing the CRT task.

3.3.1 Choice Reaction task data

The data was collected from 24 healthy subjects performing a simple but attentionally de-

manding cognitive task. Subjects were presented with an initial fixation cross for 350ms.

This was followed by a response cue in the form of an arrow in the direction of the required

response and lasting 1400ms. The inter-stimulus interval was 1750ms. Finger-press re-

sponses were made with the index finger of each hand. Subjects were instructed to respond
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n µ σ

10 0.31 0.06
20 0.32 0.07
30 0.33 0.08
40 0.35 0.10
50 0.36 0.11
60 0.40 0.12
70 0.42 0.11
80 0.45 0.10
90 0.46 0.10

(a) DCR

n µ σ

10 0.37 0.08
20 0.49 0.07
30 0.56 0.07
40 0.59 0.07
50 0.61 0.07
60 0.62 0.07
70 0.64 0.07
80 0.65 0.06
90 0.66 0.06

(b) SINGLE

n µ σ

10 0.40 0.06
20 0.48 0.05
30 0.52 0.05
40 0.54 0.05
50 0.56 0.05
60 0.57 0.05
70 0.58 0.05
80 0.58 0.05
90 0.58 0.05

(c) Gaussian Kernel

n µ σ

10 0.35 0.07
20 0.39 0.08
30 0.44 0.08
40 0.49 0.09
50 0.52 0.08
60 0.55 0.07
70 0.57 0.07
80 0.59 0.06
90 0.60 0.06

(d) Sliding window

Table 3.2: Detailed results from Simulation 3b. For each algorithm the mean F score, µ,
is reported together with the sample standard deviation, σ. The algorithm with the best
performance is highlighted in bold for each value of n.

as quickly and as accurately as possible. To maximise design efficiency, stimulus presenta-

tion was blocked, with five repeated blocks of 14 response trials interlaced with five blocks

of 14 rest trials, and four response trials at the start of the experiment. This resulted in a

total of 74 response trials per subject.

Image pre-processing involved realignment of EPI images to remove the effects of mo-

tion between scans, spatial smoothing using a 6mm full-width half-maximum Gaussian ker-

nel, pre-whitening using FILM and temporal high-pass filtering using a cut-off frequency

of 1/50 Hz to correct for baseline drifts in the signal. FMRIB’s Linear Image Registration

Tool (FLIRT) [158] was used to register EPI functional data sets into standard MNI space

using the participant’s individual high-resolution anatomical images.

The nodes were eighteen cortical spherical regions based on [135]. Briefly, these nodes

were defined based on peak regions from a spatial group independent components analysis

of resting state fMRI. The regions were chosen for the nodes to encompass a wide range

of cortical regions including regions within two well recognized functional connectivity

networks, the fronto-parietal cognitive control network (FPCN) and default mode network

(DMN) regions, as well as motor, visual and auditory cortical regions. For each subject

and node the mean time-course from within a 10mm diameter sphere centered on each of

the 18 peaks was calculated. Six motion parameters, estimated during realignment, were

filtered out of each time-course using linear regression. The resulting 18 time-courses were
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subsequently used.

3.3.2 Results

The SINGLE algorithm was employed to estimate time-varying functional connectivity

networks for each subject. This required the specification three parameters: the Gaussian

kernel width, h, was fixed across all subjects and selected via cross-validation as described

in Section 3.1.3. The remaining regularization parameters, λ1 and λ2 were selected on a

subject-by-subject basis by minimizing AIC. The choice of kernel width was estimated to

be ĥ = 10 which is roughly in line with the block length for the CRT task. As mentioned,

the regularization parameters were estimated separately for each subject with mean values

of λ̄1 = 0.15 and λ̄2 = 0.05. However, the interpretation of such regularization parameters

is challenging [77].

In order to study the roles of the various ROIs during the CRT task we consider the

changes in betweenness centrality of each node over time. The betweenness centrality of a

node is the sum of how many shortest paths between all other nodes pass through it [135].

Nodes with high betweenness centralities are considered to be of important, hub nodes

in the network [73]. As described previously the CRT task involves subjects alternating

between performing a visual stimulus task (on task) and resting state (off task). Figure

[3.3] shows the average estimated functional connectivity networks for a patient on and off

task respectively. Here the size of each node is proportional to the sum of the betweenness

centralities of the corresponding ROI and the edge thickness is proportional to the partial

correlation between nodes.

We note that there are changes in the betweenness centralities of several nodes between

tasks. In order to determine the significance of any changes betweenness centrality as a

result of the changing cognitive state of the subjects we study the estimated graphs for

each of the 24 subjects both on and off task. To determine the statistical significance of

reported changes a Wilcoxon rank sum test was employed. The resulting p-values where

adjusted according to the Bonferroni-Holm method in order to account for multiple tests.

The results indicated that at the α = 5% level there was a statistically significant increase

in betweenness centrality for the Right Inferior Frontal Gyrus and Right Inferior Parietal
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Figure 3.3: Mean estimated graphs on and off task for a given subject. Here node size is
proportional to betweenness centrality and edge width is proportional to the magnitude of
their partial correlations.

regions. This indicates that during this simple, cognitive task the Right Inferior Frontal

Gyrus and the Right Inferior Parietal increase their connectivity across remaining nodes,

potentially indicating an increase in their importance in the network.

These findings suggest that the Right Inferior Frontal Gyrus and Right Inferior Parietal

play a key role in cognitive control and executive functions as demonstrated by their dy-

namically changing betweenness centrality throughout the task. This result agrees with the

proposed functional roles for the Right Inferior Frontal Gyrus (and adjacent right anterior

insula), which is assumed to play a fundamental role in attention and executive function

during cognitively demanding tasks and may have an important role in regulating the bal-

ance between other brain regions [7, 74, 20]. The findings also agree with the proposed

function of the Right Inferior Parietal lobe, which has been reported to play a role in high-

level cognition [113] and sustaining attention [37, 89].

We may further study the behavior of the dynamic networks estimated by the SINGLE

algorithm by considering the time courses of individual edges. Figure [3.4] provides a

visualization of three edges which were found to be significantly correlated with task onset.

Specifically, Figure [3.4] shows the average edge weights over time for all subjects. We

note that in the case of all three edges show, there is an increase in connectivity during the

CRT task and a corresponding drop during rest.
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Figure 3.4: Time courses are visualized for three edges which were found to be highly
correlated with task onset. Each time course corresponds to the average edge connectivity
across all subjects. Background shading is indicative of the underlying task performed by
subjects; blue indicates the CRT task whilst red indicates rest.

3.4 Conclusion

In this chapter we have studied the problem of learning time-varying GGMs. We have

introduced the Smooth Incremental Graphical lasso Estimation (SINGLE) algorithm as a

new methodology for estimating sparse dynamic functional connectivity networks from

non-stationary fMRI data. The proposed algorithm provides two main advantages. First,

it is able to accurately estimate functional connectivity networks at each observation. This

allows for the quantification the dynamic behavior of brain networks at a high temporal

granularity. The second advantage lies in the SINGLE algorithm’s ability to quantify net-

work variability over time. In SINGLE, networks are estimated simultaneously in a unified

framework which encourages temporal homogeneity. This results in networks with sparse

innovations in edge structure over time and implies that changes in connectivity structure
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are only reported when substantiated by evidence in the data.

The SINGLE algorithm is closely related to sliding window based algorithms. We note

that [187] have extensively studied the combined use of kernel methods and constrained op-

timization to estimate dynamic networks and provide a theoretical guarantee that accurate

estimates of time varying network structure can be obtained in such a manner under mild

assumptions [187]. The approach taken there is to estimate sample covariance matrices

at each i ∈ {1, . . . , T} using kernel methods with the Graphical lasso being used subse-

quently to estimate the corresponding precision matrices. However, given T time points

this approach corresponds directly to T independent iterations of the Graphical lasso. As

a result, while smooth estimates of the sample covariance matrix are obtained via the use

of kernels, there is no mechanism in place to enforce temporal homogeneity in the corre-

sponding precision matrices. Consequently the estimated partial correlations may not ac-

curately represent the functional connectivity over time. The SINGLE algorithm addresses

precisely this problem by directly enforcing temporal homogeneity. This is achieved via

the introduction an additional constraint inspired by the Fused lasso. As shown in our sim-

ulation study, this additional constraint results in higher accuracy of estimated networks in

a vast array of scenarios.

The SINGLE algorithm requires the input of 3 parameters, λ1, λ2 and h, each of which

has a natural interpretation for the user. Penalty parameters λ1 and λ2 enforce sparsity and

temporal homogeneity respectively. They can be tuned by minimizing AIC over a given

range of values. The choice of h can be interpreted as the window length and we provide

an data-driven method for tuning parameter h using the leave-one-out log-likelihood. We

note that the choice of h is a delicate matter as well as an active area of research in its own

right. The choice of h can be seen as a trade-off between stability and temporal adaptivity.

Setting h to be too large will result in network estimates that resemble the global mean and

omit valuable short-term fluctuations in connectivity structure. Conversely, setting h to be

too small will lead to networks that are dominated by noise. Given this reasoning, it is often

desirable to have a kernel width which is dependent on the location within the time series.

This allows the kernel width to decrease in the proximity of a change-point (allowing for

rapid temporal adaptivity) and increase when data is piece-wise stationary (in order to fully

exploit all relevant data). The idea of adaptive values of h has been studied in literature
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[78, 142], and is discussed in further detail in Chapter 4.

Our simulation results indicate that the SINGLE algorithm can accurately estimate the

true underlying functional connectivity structure when provided with non-stationary multi-

variate time series data. We identify three relevant scenarios where the proposed method

performs competitively. The first, demonstrated by Simulation 1, quantifies our claim that

the SINGLE algorithm is able to accurately estimate dynamic functional connectivity net-

works. In task based experiments it is often the case that tasks are repetitively performed

followed by a period of rest, resulting in the presence of a cyclic functional connectivity

structure. This scenario is studied in Simulation 2 which serves as an indication that the

SINGLE algorithm is not adversely affected in such cases. Furthermore, we have shown

that the SINGLE algorithm is relatively robust when the ratio of observations to nodes falls,

meaning that the SINGLE algorithm can be applied on a subject-by-subject basis. This is

a great advantage as it avoids the issue of subject-to-subject variability and allows for the

estimation of functional connectivity networks for each subject. This potentially allows for

estimated dynamic connectivity to be used to differentiate between subjects. A summary

of all the simulation results is provided in Table 3.3.

SINGLE DCR Glasso methods
Temporal adaptivity X X X
Temporal homogeneity X X X
Cyclic correlation structure X X X
Parameters h, λ1, λ2 ∆, λ1 h, λ1

Computational Complexity O(np3 + p2nlog(n)) O((n+ b)p3) O(np3)

Table 3.3: Comparative summary of each algorithm. A derivation of the computational
cost of the DCR algorithm is provided in Appendix B.1 where b refers to the number of
bootstrap permutation tests performed at each iteration.

In conclusion, the SINGLE algorithm provides an alternative and novel method for es-

timating the underlying network structure associated with dynamic fMRI data. It is ideally

suited to analyzing data where a change in the correlation structure is expected but little

more is known. An exciting avenue of neuroscientific research corresponds to studying

fMRI data in real-time. Here the objective is to study the data as a stream of observations.

To date, the majority of real-time fMRI applications have not incorporated information
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relating to functional connectivity networks. This is primarily due to the complexity of es-

timating such networks in realt-time. In Chapter 4 we present an extension of the proposed

methodology through which to accurately estimate connectivity networks in the context of

streaming data.

Moreover, an important theoretical consideration which has not been addressed relates

to the choice of the regularization parameters, λ1 and λ2. In particular, throughout this

chapter it has been assumed that the aforementioned parameters remain fixed. However,

since the data is assumed to be non-stationary, such an assumption cannot easily be jus-

tified. This aspect this considered in further detail in Chapter 5, were a framework is

proposed through which to learn a time-varying regularization parameter.

A further problem raised by the proposed algorithm is related to the interpretation and

understanding of results. This is especially the case when networks are estimated across

a large number of subjects. In the application presented here, graph metrics such as be-

tweenness centrality have been employed. However, it follows that such metrics may not

necessarily capture relevant changes in connectivity structure in a concise manner. In order

to address this issue, we consider two distinct graph embedding methods in Chapter 6.



77

Chapter 4

Streaming covariance selection

In Chapter 3 we proposed novel methodology through which to estimate time-varying

Gaussian graphical models (GGMs). This work was motivated by the desire to quantify

the dynamic properties of functional connectivity networks, which are often modeled as

GGMs. In this chapter we focus on extending the methodology proposed in Chapter 3 to

the context of streaming data. Formally, a data stream is defined as a potentially unending

sequence of ordered observations where each observation may be read or studied only once

[17]. Streaming applications may arise in settings where observations are continually ar-

riving or when the data itself is too large to store in memory for analysis. Examples include

the study of financial data and cyber-security [18, 19].

The work presented in this chapter is motivated by the study of fMRI data in real-time,

a rapidly expanding avenue of neuroscience research [178]. The dominant applications of

real-time fMRI are centered around neurofeedback [43], where the objective is to train par-

ticipants to modulate BOLD activity within a specified brain region, and brain decoding

[99], which seeks to predict brain states “on the fly” based on BOLD measurements ob-

tained in real-time. However, both of the aforementioned applications are typically based

on the study of individual brain regions. In the context of neurofeedback, the use such of re-

gion of interest based approaches fails to take into consideration the notion of the brain as a

functionally connected network [162]. Furthermore, in addition to stimulating a particular

brain region it may also be of scientific interest to stimulate entire networks [148]. Con-

versely, in the case of brain decoding, it is reasonable to suggest that the predictive power
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of such methods could be further boosted by providing them with additional information

relating to functional connectivity.

Accurately estimating functional connectivity networks in real-time is therefore an im-

portant methodological challenge in the context of real-time fMRI. To date, only a limited

number of studies, primarily focused on neurofeedback, have considered the estimation of

connectivity networks in real-time [96, 148, 188]. A limitation of the above mentioned

studies is that only a reduced number of regions have been employed.

The objectives of this chapter is therefore to extend the methods presented in Chapter 3

to facilitate the estimation of functional connectivity networks in real-time. This presents

significant practical as well as methodological challenges. From a practical perspective,

it is imperative to derive closed-form, recursive updates for sufficient statistics as well as

computationally efficient optimization algorithms. An additional challenge is introduced

by the potentially non-stationary nature of the data. It follows that rapid changes may oc-

cur in functional connectivity structure, indicating that proposed methods should be highly

adaptive to change. In order to address these issues we leverage a host of previous research

on streaming data analysis. In particular, we advocate the use of exponentially weighted

moving average (EWMA) modes [106] as well as adaptive filtering techniques [78]. Such

methods effectively discard past observations, allowing for local estimates of sufficient

statistics. Through an extensive simulation study, we provide evidence indicating that such

methods should be preferred to traditional sliding window approaches. The SINGLE algo-

rithm, presented in the previous chapter, is then extended to the real-time scenario, allowing

for functional connectivity to be estimated on the basis of conditional dependencies while

encouraging the properties of sparsity and temporal homogeneity. These methods are dis-

cussed in Section 4.1.

The remainder of this chapter is organized as follows: In Section 4.1, we detail the

extension of the SINGLE algorithm to handle streaming data. In order to achieve this, we

introduce computationally efficient methods through which to update sufficient statistics

as well as solve the associated optimization problem. An extensive simulation study is

presented in Section 4.2. Finally, in Section 4.3 we present an application of the proposed

methods to data from the Human Connectome Project (HCP).
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4.1 Streaming GGMs

We assume we have access to a stream of multivariate fMRI measurements across p nodes

where each node represents a spatially remote brain region. We write Xt ∈ Rp to denote

the BOLD measurements at the tth observation; thus Xt,j corresponds to the BOLD mea-

surement at the jth node at time t. The objective of this work is to sequentially use all

observations up to and including Xt in order to recursively estimate the underlying con-

nectivity networks. As new observations, Xt+1, arrive they are employed to update the

estimated networks accordingly. Throughout this chapter it is assumed each Xt follows a

multivariate Gaussian distribution, Xt ∼ N (µt,Σt), where both the mean and covariance

are assumed to vary over time.

Following from the previous chapter, our objective is to estimate functional connectivity

networks based on conditional dependencies across nodes. As noted in Section 2.2, this

corresponds to estimating the support of the precision matrix. The objective of this work is

therefore to estimate an increasing sequence of connectivity networks, {Θ1, . . . ,Θt, . . .},
where each Θt captures the conditional dependence structure at the tth observation.

The task of estimating functional connectivity networks in real-time is divided into two

independent steps. First, an update of the sample covariance, St, is obtained. To this end,

we consider two related methods, EWMA models and adaptive filtering methods, which

are formally outlined in Section 4.1.1. The second step corresponds to estimation of a

sparse precision matrix. This is achieved by extending the SINGLE algorithm, detailed in

Chapter 3. This step is discussed in Section 4.1.2.

4.1.1 Recursive covariance estimation

As noted in Section 2.2, the sample covariance is a sufficient statistic when estimating

connectivity networks based on the precision matrix, Θt. In this section we focus on the

challenge of obtaining adaptive estimates of the sample covariance in a recursive fashion.

The recursive nature of the proposed methods is fundamental in order to adequately handle

streaming datasets.

Within the neuroimaging community, arguably the dominant approach used to obtain
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adaptive estimates of the sample covariance involves sliding windows [90]. This also holds

true in the case of real-time fMRI analysis [148, 188]. Such methods are able to obtain

adaptive estimates of St in real-time by only considering a fixed number of past observa-

tions, defined as the window. Using only the observations within the predefined window,

an adaptive estimate of functional connectivity is obtained at time t as follows:

St =
1

h

h−1∑

i=0

(Xt−i − x̄t)T (Xt−i − x̄t). (4.1)

Here x̄t denotes the mean of all observations within the window and the parameter h de-

notes the length of the window.

A natural extension of sliding windows is the use of EWMA models, first introduced

by [145]. Such methods re-weight observations according to their chronological proximity.

The rate at which past information is discarded is determined by a fixed forgetting factor,

r ∈ (0, 1]. In this manner, EWMA models are able to give greater weight to more recent

observations. Furthermore, as detailed by [106], these methods enjoy superior statistical

properties when compared to traditional sliding window methods. EWMA models thereby

provide a conceptually simple and robust method with which to handle a wide range of

non-stationary processes. For a given forgetting factor, r, the estimated mean at time t can

be recursively computed as:

x̄t =

(
1− 1

ωt

)
x̄t−1 +

1

ωt
Xt, (4.2)

where ωt is a normalizing constant defined as:

ωt =
t∑

i=1

rt−i = rωt−1 + 1. (4.3)

The sample covariance can be computed as follows:

Πt =

(
1− 1

ωt

)
Πt−1 +

1

ωt
XT
t Xt (4.4)

St = Πt − x̄Tt x̄t (4.5)
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We note that equations (4.4) and (4.5) are equivalent to iteratively estimating the sample

covariance as:

St =

(
1− 1

ωt

)
St−1 +

1

ωt
(Xt − x̄t)T (Xt − x̄t). (4.6)

While equation (4.6) is arguably a more intuitive formulation, the parameterization pre-

sented in equations (4.4) and (4.5) will serve to simplify future discussion as it is more

amenable to streaming data and incremental updates.

From equations (4.2) and (4.4) it is clear that past observations gradually receive less

importance whenever r < 1. This is in contrast to sliding windows, where all observa-

tions within the window receive equal weighting. It follows that the choice of parameter r

dictates the rate at which past information is discarded. This parameter therefore directly

relates to the adaptivity of the proposed method, as noted by studying the extreme case of

r = 1. This implies that ωt = t and consequently that x̄t and St correspond to the sam-

ple mean and covariance in an offline setting (using all observations up to time t). As a

result, equal importance is given to all past observations, resulting in reduced adaptivity to

changes. As the value of r is reduced, greater importance is given to more recent obser-

vations. This leads to increasingly adaptive estimates of the sample covariance. However,

decreasing the value of r also increases the susceptibility of the proposed methods to out-

liers and noise. The choice of r therefore constitutes a trade-off between adaptivity and

stability.

Adaptive filtering methods

In the context of non-stationary data, it is important to note that the optimal choice of

forgetting factor, r, may itself by time-varying. By this, we mean that in the proximity of

a change-point it is clearly desirable to employ a small choice of r, thereby reducing the

importance of past observations which are no longer relevant. Conversely, within a locally

stationary region we wish to employ a large value for r as this will allow us to learn from

a wide range of pertinent observations. This concept is visualized in Figure [4.1]. In the

case of real-time fMRI, we inherently expect the statistical properties of a subject’s data to

vary depending on a wide range of factors (e.g., varying cognitive tasks). A fixed choice of

forgetting factor may therefore be suboptimal.
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Figure 4.1: Measurements of a non-stationary univariate random variable, Xt, are shown
in grey together with the true mean in blue. This figure serves to highlight how the optimal
choice of a forgetting factor or window length may vary over time. It follows that in
the neighborhood of the change-point we wish r to be small in order for it to adapt to
change quickly. However, during locally stationary regimes, we wish for r to be large
in order to be able to fully exploit all relevant data. Bottom: An illustration of how an
ideal adaptive forgetting factor would behave; decreasing directly after a change occurs
and quickly recovering thereafter.

To address this issue we propose the use of adaptive filtering methodology [78]. In such

methods, the magnitude of the forgetting factor is iteratively adjusted as new observations

arrive. This is achieved by approximating the derivative of the likelihood for new obser-

vations with respect to the current forgetting factor. In this manner, the forgetting factor

may be updated in a stochastic gradient descent framework [22]. As such, the value of the

forgetting factor will have a direct dependence on the time index, t. We write rt to make

this dependence explicit. The bottom panel of Figure [4.1] provides an example illustration

of desirable behavior of an adaptive forgetting factor. In the context of a change-point, the

adaptive forgetting factor should drop. This allows for the discarding of past observations

which are no longer relevant while giving increased importance to new observations. Con-

versely, in the presence of piece-wise stationary data the value of rt should increase. This

allows for a wider range of relevant observations to be leveraged, resulting in more stable

and accurate estimates.

Furthermore, the use of adaptive filtering methods provides an additional monitoring
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mechanism. By considering the value of rt at any given point in time we are able to obtain

a rudimentary understanding as to the current degree of non-stationarity in the data [5].

This follows from the fact that the estimated forgetting factor quantifies the influence of

recent observations on the sample mean and covariance. Therefore, large values of rt
are indicative of the presence of a stationary regime whereas small values of rt provide

evidence of non-stationarity.

Adaptive filtering methods are able to tune the forgetting factor, rt, by iteratively quan-

tifying the performance of the current parameter on new observations, Xt+1. Throughout

this work we denote such a measure by C(Xt+1). Assuming that the derivative of C(Xt+1)

with respect to the forgetting factor can be efficiently computed or approximated, we are

able to update the parameter of interest in a stochastic gradient descent framework:

rt+1 = rt − ε
∂C(Xt+1)

∂r

∣∣∣∣
r=rt

(4.7)

Here ε is a small step-size parameter which may be viewed as a learning rate [17].

The approach we advocate here is to iteratively tune the adaptive forgetting factor to

maximize the likelihood of unseen observations. In this case, C(Xt+1) is defined to be the

likelihood of Xt+1 given the current estimates of the mean and covariance matrix. Under

the assumption of Gaussianity, we therefore have that:

C(Xt+1) = C(Xt+1; x̄t, St) = −1

2
log det St −

1

2
(Xt+1 − x̄t)TS−1

t (Xt+1 − x̄t). (4.8)

Unfortunately, due to the recursive definition of ωt, provided in equation (4.3), the deriva-

tive of C(Xt+1) is not available analytically and must be approximated. In this work we

employ the approximation detailed in [5].

From equations (4.2), (4.4) and (4.5) we can see the direct dependence of estimates x̄t
and St on a fixed forgetting factor r. This suggests that the likelihood is itself a function of

the forgetting factor, allowing us to calculate its derivative with respect to r as follows:

∂C(Xt+1)

∂r
=

1

2
(Xt+1 − x̄t)T

(
2S−1

t x̄′t − S−1
t S′tS

−1
t (Xt+1 − x̄t)

)
− 1

2
trace (S−1

t S′t). (4.9)

Full details relating to the derivation of equation (4.9) are provided in Appendix A. Given

the derivative, the adaptive forgetting factor is updated as described in equation (4.7). Once
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rt+1 has been calculated, the estimates of the mean and sample covariance are subsequently

updated as described in equations (4.2-4.5) with the minor adjustment that the effective

sample size is updated as:

ωt+1 = rtωt + 1. (4.10)

4.1.2 Recursive network estimation

In this section we detail how the SINGLE algorithm, introduced in Chapter 3, can be ex-

tended to recursively estimate sparse and temporally homogeneous precision matrices in

the context of streaming observations.

We recall that given a sequence of sample covariance matrices {St} = {S1, . . . , ST},
the SINGLE algorithm is able to estimate corresponding precision matrices by solving the

following convex optimization problem:

{Θt} = argmin
{Θt}

{
T∑

i=1

−log det Θi + trace (SiΘi) + λ1

T∑

i=1

||Θi||1 + λ2

T∑

i=2

||Θi −Θi−1||1

}
. (4.11)

The first sum in equation (4.11) corresponds to a likelihood term while the remaining terms,

parameterized by λ1 and λ2 respectively, enforce sparsity and temporal homogeneity con-

straints.

However, in the real-time setting, a new St is constantly obtained implying that the

dimension of the solution to equation (4.11) grows over time as we look to estimate a

network at each observation. It follows that iteratively re-solving equation (4.11) is both

wasteful and computationally expensive; in particular, valuable computational resources

will be spent estimating past networks which are no longer of interest. In order to address

this issue the following objective function is proposed to estimate the functional connectiv-

ity network at time t:

f(Θ) = −log det Θ + trace (StΘ) + λ1||Θ||1 + λ2||Θ−Θt−1||1, (4.12)

where Θt−1 corresponds to the estimate of the precision matrix at time t−1 and is assumed

to be fixed. The proposed real-time SINGLE (rt-SINGLE) algorithm therefore estimates

Θt by minimizing equation (4.12). In doing so the proposed method must find a balance be-

tween goodness-of-fit and satisfying the regularization constraints. The former is captured
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by the likelihood term:

l(Θ, St) = −log det Θ + trace (StΘ), (4.13)

and provides a measure of how precisely Θ describes the current estimate of the sample

covariance, St. The latter two terms of the objective correspond to regularization penalty

terms:

gλ1,λ2(Θ) = λ1||Θ||1 + λ2||Θ−Θt−1||1 (4.14)

The first of these, parameterized by λ1, encourages sparsity while the second, parame-

terized by λ2, determines the extent of temporal homogeneity. By penalizing changes in

functional connectivity networks, the second penalty encourages sparse changes in edge

structure over time. As a result, network changes are only reported when substantiated by

evidence in the data.

Optimization algorithm

Equations (4.12)-(4.14) expose the separable nature of the objective function. As a result

we follow the methods described in Chapter 3 and employ an ADMM algorithm introduced

in Section 2.3.

As in the SINGLE algorithm, we proceed by introducing an auxiliary variable Z ∈
Rp×p. Here Z corresponds directly to Θ and we require Z = Θ for convergence. Mini-

mizing equation (4.12) can subsequently be cast as the following constrained optimization

problem, where only a single precision matrix is estimated:

minimize
Θ,Z

{−log det Θ + trace (StΘ) + λ1||Z||1 + λ2||Z −Θt−1||1} (4.15)

subject to Θ = Z. (4.16)

We note that Θ is now only involved in the likelihood component while Z is involved ex-

clusively in the penalty components. Thus, by introducing Z we have decoupled the initial

objective function — allowing us to take advantage of the individual structure associated

with each term. We formulate the augmented Lagrangian corresponding to equations (4.15)
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and (4.16), which is defined as:

Lγ (Θ, Z, U) =− log det Θ + trace (StΘ) + λ1||Z||1

+ λ2||Z −Θt−1||1 + 1/2
(
||Θ− Z + U ||22 − ||U ||22

)
,

(4.17)

where U ∈ Rp×p is the associated Lagrange multiplier.

The proposed estimation algorithm works by iteratively minimizing equation (4.17)

with respect to Θ and Z while maintaining all other variables fixed. In this way, we are able

to decouple the augmented Lagrangian and exploit the individual structure corresponding

to each of these variables. Due to the iterative nature of the algorithm, in what follows we

write Θi to denote the estimate of Θ at the ith iteration. The same notation is used for both

Z and U . The algorithm is initialized with Θ0 = Ip, Z0 = U0 = 0 ∈ Rp×p. We note that

the Θ and U update steps remain unchanged from the original offline algorithm. However,

in the case of the Z update an adjustment is required due to the fact that past networks,

Θt−1, are treated as constants. Subsequently, Z is updated by solving:

Zi = argmin
Z

{
1/2||Θi − Z + U i−1||22 + λ1||Z||1 + λ2||Z −Θt−1||1

}
, (4.18)

where Θi, U i and Θt−1 are treated as constants. We note that equation (4.18) involves

a series of one-dimensional problems as only element-wise operations are applied. This

implies that we may solve an independent problem of the following form for each entry in

Zi:

(Zi)k,l = argmin
(Z)k,l∈R

{
1/2||(Θi − Z + U i−1)k,l||22 + λ1||(Z)k,l||1 + λ2||(Z −Θt−1)k,l||1

}

(4.19)

where we write (M)k,l to denote the (k, l) entry for any square matrix M . Thus each

element of Zi can be updated by solving a one-dimensional convex problem. While there

is no closed form solution, we may employ efficient line search algorithms [134]. Due to

the symmetric nature of Z it follows that only p(p+1)
2

of such problems must be solved.



Chapter 4. Streaming covariance selection 87

Burn-in period

It is common for streaming algorithms to incorporate a brief burn-in phase when they are

initialized. This involves collecting the first NBurnIn observations to initialize parameter

estimates. Many times such an approach is motivated by the need to ensure sample statistics

are well-defined, however, due to the presence of regularization the proposed method does

not require a burn-in per se. That said the use of a burn-in phase can improve initial network

estimates and may thereby result in improved network estimation initially. As a result, the

first NBurnIn observations are collected and used to estimate the corresponding precision

matrices by directly applying the offline SINGLE algorithm. This involves solving equation

(4.11). From then onward, new estimates of the precision matrix are obtained as described

previously.

4.1.3 Tuning parameters

Parameter estimation is challenging in the context of streaming data. Approaches such as

cross-validation, which are inherently difficult to implement due to the non-stationarity of

the data, are further hampered by the limited computational resources. As an alternative,

information theoretic approaches such as minimizing the AIC or BIC may be employed but

these too may incur a high computational burden.

In this chapter we advocate the use of adaptive filtering as such methods provide a flex-

ible framework through which to handle temporal variation in the data which cannot easily

be modeled. In this context of this work, the use of adaptive filtering methods designates

the choice of forgetting factor, rt, to the data. As a result, only a stepsize parameter ε

is required. This is desirable as the choice of fixed forgetting factor (or sliding window)

requires knowledge regarding the degree of non-stationarity of the data which is both dif-

ficult to justify as well as problem specific. In contrast, we can interpret the choice of ε as

a stepsize parameter in a stochastic gradient descent scheme. As a result, there are clear

guidelines which can be followed when selecting ε [21, 22].

Parameters λ1 and λ2 enforce sparsity and temporal homogeneity respectively. The

choice of these parameters affects the degrees of freedom of estimated networks, suggesting

the use of information theoretic approaches such as AIC. However, in a real-time setting,
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choosing λ1 and λ2 in such a manner presents a computational burden. As a result, we

propose two heuristics for choosing appropriate values of λ1 and λ2 respectively. One

potential approach involves studying a previous scan of the subject in question. If this is

available then the regularization parameters may be chosen by minimizing AIC over this

scan. Alternatively, the burn-in phase may be used to choose adequate parameters. Such an

approach would involve choosing λ1 and λ2 which minimized AIC over the burn-in period.

Finally, we note that the implicit assumption that regularization parameters should re-

main constant is difficult to justify in the context of non-stationary data. Ideally, such

parameters should themselves to be time-varying. To this end, a framework through which

to iteratively update the sparsity parameter, λ1, is presented in Chapter 5.

4.2 Simulation study

In this section we evaluate the performance of the rt-SINGLE algorithm throughout a series

of simulation studies. In each simulation we produce simulated time series data giving rise

to a number of connectivity patterns and properties which reflect those reported in fMRI

data. The objective is then to measure whether our proposed algorithm is able recover the

underlying patterns in real-time. We are primarily interested in studying the performance

of the proposed methods in two ways; first we wish to study the quality of the estimated

covariance matrices over time. That is to say, we study how accurately our sample covari-

ances represent the true underlying covariance structure. Second, we are also interested in

the correct estimation of the presence or absence of edges.

In Simulation 1 we study how reliably we are able to track changes in the correlation

structure using forgetting factors and adaptive filtering techniques. In Simulations 2 and

3 we consider the overall performance of the proposed method by generating connectivity

structures according to scale-free and small-world networks respectively. Finally, in Simu-

lation 4 we look to quantify the computational cost of the proposed method as the number

of nodes, p, increases; a crucial aspect to study given the objectives of this work.

Throughout this section we compare results for the rt-SINGLE algorithm where the

sample covariance matrix is iteratively updating in three ways: a sliding window, a fixed

forgetting factor (corresponding to an EWMA model) and an adaptive forgetting factor.
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Further, we also consider the performance of the offline SINGLE algorithm as a bench-

mark. Naturally, we expect the rt-SINGLE algorithms to generally perform below its of-

fline counterpart.

Throughout each of these simulations, the parameters for the offline SINGLE algo-

rithm where determined as described Chapter 3. As such, the choice of kernel width was

obtained by maximizing leave-one-out log-likelihood while the regularization parameters

where chosen by minimizing AIC. In the case of the real-time algorithms the parameters

where chosen as follows: sliding windows of with a window length of 20 observations

were employed. The fixed forgetting factor was chosen to be r = 0.95 as this corresponded

approximately to an effective sample size of twenty observations. While in the case of

adaptive forgetting, η = 0.005 was employed. In the case of the rt-SINGLE algorithm, reg-

ularization parameters were selected by minimizing AIC over a burn-in of 15 observations.

4.2.1 Performance measures

As discussed previously, we wish to evaluate the performance of the proposed method in

two distinct ways. First, we wish to study the reliability with which we can track changes

in correlation structure using either a fixed forgetting factor or an adaptive forgetting factor.

In order to quantify the difference between the true correlation structure and our estimated

covariance matrix, S, we consider the distance defined by the trace inner product:

d(Σ, S) = Trace (Σ−1S). (4.20)

We note that equation (4.20) is proportional to a Gaussian log-likelihood without the log-

determinant term, which may be interpreted as a penalty on the complexity of the sample

covariance [27]. It follows that if the sample covariance, S, is a good estimate of the true

covariance, Σ, we will have that d(Σ, S) ≈ p. However, if S is a poor estimate, the distance

d will be large. Moreover, since both Σ and S are positive definite we have that d(Σ, S)

will always be positive.

Second, we wish to consider the estimated functional connectivity networks at each

point in time. As in Chapter 3, we are interested in correctly identifying the non-zero

entries in estimated precision matrices, Θi, at each i = 1, . . . , T . An edge is assumed to be
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present between the jth and kth nodes if (Θi)j,k 6= 0. At the ith observation we define the

set of all reported edges as Di = {(j, k) : (Θi)j,k 6= 0}. We define the corresponding set

of true edges as Ti = {(j, k) : (Ki)j,k 6= 0} where we write Ki to denote the true precision

matrix at the ith observation. Given Di and Ti we consider a number of performance

measures at each observation. As detailed in Section 3.2.2 we consider the precision, recall

and F -score.

4.2.2 Results

The objective of the simulation study presented below is to empirically quantify the perfor-

mance of the proposed rt-SINGLE algorithm. In Simulation 1, we consider the challenges

of tracking correlation structure while in Simulations 2 and 3 we consider recovering the

sparse support of the covariance structure. Finally, the computational demands of the pro-

posed method are studied in Simulation 4.

Simulation 1 - Correlation tracking

In this simulation we look to assess how accurately we are able to track changes in corre-

lation structure via the use of sliding windows as well as fixed (i.e., EWMA models) and

adaptive forgetting factors.

Datasets were simulated as follows: each dataset consisted of five segments each of

length 100 (i.e., overall duration of 500). The network structure within each segment was

simulated according to either the preferential attachment model of Barabási and Albert [11]

or using the Watts-Strogatz models [177]. A detailed description of each of these network

generation models is provided in Appendix C.

Figure [4.2] shows results when scale-free (top) and small-world (bottom) network

structures are simulated. We note that the performance of the sample covariance drops

in the proximity of a change-point for all algorithms. In the case of the offline SINGLE

algorithm this drop is symmetric due to the symmetric nature of the Gaussian kernel em-

ployed. However, in the case of the real-time algorithms the drop is highly asymmetric

and occurs directly after the change-point, as is to be expected. Due to the sudden change

in correlation structure, the performance of streaming methods drops immediately after a
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Figure 4.2: Mean trace scores, defined in equation (4.20), are shown when the sample co-
variance matrix is estimated using a symmetric Gaussian kernel (as in the offline SINGLE
algorithm) and three real-time methods: sliding windows, fixed and adaptive forgetting fac-
tors. Results are shown when the underling correlation structure displays scale-free (top)
or small-world properties.

change occurs. Moreover, from Figure [4.2] we note that the correlation tracking capabili-

ties of the proposed methods are not adversely affected by the choice of underlying network

structure.

Simulation 2 - scale-free networks

In this simulation we look to obtain a general comparison between the rt-SINGLE algo-

rithm and its offline counterpart. Datasets were simulated as described in Simulation 1

using the Barabási and Albert preferential attachment model [11]. This generated scale-

free networks were the the degree distribution of nodes followed a power law. This implies

the presence of a reduced number of hub nodes which have access to many other regions,

while the remaining majority of nodes have a small number of edges [54]. The entire

dataset was simulated apriori. In the case of the rt-SINGLE algorithms, one observation

was provided at time, thereby treating the dataset as if it was a stream arriving in real-time.

The offline SINGLE algorithm was provided with the entire dataset and this was treated as
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an offline task.

The left panel of Figure [4.3] shows the average Ft scores for each of the real-time

algorithms as well as the offline algorithm over 500 simulations. We note that all three

algorithms experience a drop in F -score in the proximity of change-points. The offline

SINGLE algorithm is based on a symmetric Gaussian kernel and as a result it suffers a a

symmetric drop in performance in the vicinity of a change-point before quickly recovering.

Alternatively, the drop in performance of the rt-SINGLE algorithms is asymmetric. This

is due to the real-time nature of these algorithms. Moreover, we note that while the rt-

SINGLE algorithm performs worse than its offline counterpart directly after change-points,

it is able to quickly recover to the level of the offline SINGLE algorithm. Specifically, in

the case where adaptive forgetting is used, the real-time algorithm is able to outperform

its offline counterpart in sections where the data remains piece-wise stationary for long

periods of time. This is because it is able to increase the value of the adaptive forgetting

factor accordingly. This allows the algorithm to exploit a larger pool of relevant information

compared to its offline counterpart. This is demonstrated on the right panel of Figure [4.3]

where the mean value of the adaptive forgetting factor is plotted. We see there is a drop

directly after changes occur; this allows the algorithm to quickly forget past information

which is no longer relevant. We also note that the estimated value of the forgetting factor

increases quickly after changes occur.

Simulation 3 - small-world networks

While Simulation 2 studied scale-free networks, it has been reported that brain networks

follow a small-world topology [13]. Such networks are characterized by their high clus-

tering coefficients which has been reported in both anatomical as well as functional brain

networks [162]. Datasets were simulated as described in Simulations 1 and 2, with the

exception that individual networks were generated according to the Watts-Strogatz prefer-

ential attachment model [177].

Average Ft scores for each of the algorithms over N = 500 simulations are shown on

the left panel of Figure [4.4]. As in Chapter 3, we note that the performance drops compared

to scale-free networks considered in Simulation 2. We further note that the rate at which
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Figure 4.3: Results are shown for Simulation 2, where the underlying covariance struc-
ture followed a scale-free distribution. The left panel plots the mean Ft score across four
distinct algorithms: the offline-SINGLE algorithm and the rt-SINGLE algorithm where the
underlying covariance is estimated using sliding windows and fixed and adaptive forgetting
factors. The right panel visualizes the mean adaptive forgetting factor over all simulations.
We note there is a sudden drop immediately after each change-point before quickly recov-
ering.

the real-time networks recover after a change-point is reduced. As with Simulation 2, we

note that both of the real-time algorithms are able to reach the same level of performance

as their offline counterpart if given sufficient time. Moreover, in the case where adaptive

forgetting is employed we once again find that the performance of the real-time algorithm

exceeds that of the offline algorithm when the data is remains piece-wise stationary for a

sufficiently long period of time. In the right panel of Figure [4.4] we see the estimated

adaptive forgetting factor over each of the 500 simulations. Again, we see the drop in the

value of the forgetting factor directly after change-points, allowing past information to be

discarded.

Simulation 4 — Computational cost

A fundamental aspect of real-time algorithms is that they must be computationally efficient

in order to be able to update parameter estimates in the limited time provided. The main

computational cost of the rt-SINGLE algorithm is related to the eigendecomposition of the

Θ update, which has a complexity of O(p3), as discussed in Section 3.1.2.
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Figure 4.4: Results are shown for Simulation 3, where the underlying covariance structure
followed a small-world distribution. The left panel plots the mean Ft score across four
distinct algorithms: the offline-SINGLE algorithm and the rt-SINGLE algorithm where the
underlying covariance is estimated using sliding windows and fixed and adaptive forgetting
factors. The right panel visualizes the mean adaptive forgetting factor over all simulations.
We note there is a sudden drop immediately after each change-point before quickly recov-
ering.

In this simulation we look to empirically study the computational cost. In this manner,

we are able to provide a rough guide as to the number of ROIs which can be employed in

a real-time neurofeedback study while still reporting network estimates at every point in

time. This was achieved by measuring the mean running time of each update iteration of

the rt-SINGLE algorithm for various numbers of ROIs, p.

Here each dataset was simulated as in Simulation 2; that is the underlying correlation

structure was randomly generated according to a small-world network. However, here we

choose to only simulate three segments, each of length 50, resulting in a dataset consisting

of 150 observations. For increasing values of p, the time taken to estimate a new preci-

sion matrix was calculated. Figure [4.5] shows the mean running time for the rt-SINGLE

algorithm where either sliding window, a fixed forgetting factor or adaptive forgetting was

used. We note that the difference in computational cost between each of the algorithms is

virtually indistinguishable. More importantly, we note that the running times for each of

the rt-SINGLE algorithms was significantly lower than the offline SINGLE algorithm; on

average, the computational time associated with the offline SINGLE algorithm was 5-10
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Figure 4.5: Mean running time (seconds) per update iteration of the rt-SINGLE algorithm
when either a sliding window (rt-SW), fixed forgetting factor (rt-FF) or adaptive forgetting
(rt-AF) was employed.

times that of the computational time associated with the real-time algorithms. For example,

in the case of p = 20 nodes, rt-SINGLE algorithms required approximately 1.75 seconds

whilst the offline SINGLE algorithm required 12 seconds.

Finally we note that when the number of nodes is below 20 it is possible to estimate

functional connectivity networks in under two seconds, making the proposed method prac-

tically feasible in real-time studies. This simulation was run on a computer with an INTEL

CORE I5 CPU at 2.8 GHz.

4.3 Application

In this section we present an applications of the rt-SINGLE algorithm to Motor task data

taken from the Human Connectome Project (HCP) [55]. Subjects were required to perform

a range of motor tasks such as tapping their fingers or squeezing their toes. While this

data was not acquired and analyzed in real-time, it may be treated as such by only single

observation at a time. In this manner, we are able to validate the performance of the rt-

SINGLE algorithm on fMRI data.
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4.3.1 HCP Motor task data

Twenty of the 500 available task-based fMRI datasets provided by the HCP were selected

at random and data corresponding to a motor task was studied. The task, adapted from

[186], involved the presentation of visual queues to subjects who had to perform one of five

motor tasks. Each movement type was blocked, lasting 12 seconds and preceded by a three

second visual cue. Each motor task was performed twice together with three additional

fixation blocks of 15 seconds. This resulted in a total of 13 blocks.

While this data is not intrinsically real-time (as the preprocessing was conducted after

data acquisition) it is included as a proof-of-concept study. The data was pre-processed

offline as the focus lies on the comparison between the real-time and offline network es-

timation approaches rather than different preprocessing pipelines. Preprocessing involved

regression of Fristons 24 motion parameters and high-pass filtering using a cut-off fre-

quency of 1
150

Hz.

Eleven bilateral cortical ROIs were defined based on the Desikan-Killiany atlas [47]

covering the occipital, parietal and temporal lobe. These regions were selected based on

the hypothesis that changes would occur in the sensory-motor and higher-level visual areas.

The extracted time courses from these regions were subsequently used for the analysis. By

treating the extracted time course data as if it was arriving in real-time (i.e., considering

one observation at a time), we can compare the results of the proposed real-time method to

offline algorithms while using the same underlying pre-processed data.

4.3.2 Results

Both the SINGLE as well as the rt-SINGLE algorithms where applied to the motor-task

fMRI dataset. Our primary interest here is to report task-driven changes in functional con-

nectivity. In this way, we are able to examine if the rt-SINGLE algorithm is capable of

reporting the changes functional connectivity induced by the motor task. The functional

relationships that were modulated by the motor task were studied. This corresponds to

studying the edges in the estimated networks which are significantly correlated with task

onset. This was achieved by first estimating time-varying functional connectivity networks

using both the offline SINGLE algorithm as well as the proposed real-time algorithm. In
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the case of the SINGLE algorithm, parameters where chosen as described in Chapter 3.

This involved estimating the width of the Gaussian kernel via leave-one-out cross vali-

dation and estimating regularization parameters via minimizing AIC. In the case of the

real-time algorithm, an adaptive forgetting factor was employed with η = 0.005. The spar-

sity and temporal homogeneity parameters where set to the same values as those employed

in the offline SINGLE algorithm as the focus here was to study the differences induced by

estimating networks in real-time as opposed to differences resulting from distinct regular-

ization penalties.

To determine which edges where modulated by the motor task a non-parametric statis-

tical test was performed on an edge by edge basis. Formally, the Spearman rank correlation

coefficient was estimated between the time-varying estimated partial correlation values for

each edge and the task-evoked HRF function. It follows that edges which are modulated

by the task will display strong correlations with the task HRF, thus allowing us to obtain a

network of edges which are modulated by the motor task. Each estimated correlation coef-

ficient was subsequently tested to determine if the correlation was statistically significant.

The resulting p-values (one for each edge) were then corrected for multiple comparisons

via the Holm-Bonferroni method [84]. In this manner, an activation network was obtained.

This network summarized the set of edges which were statistically activated by the motor

task for each algorithm.

Figure [4.6] shows task activation networks for both the SINGLE and rt-SINGLE al-

gorithms. Edges are only present if they were reported as being significantly correlated

with task-evoked HRF function. Red edges indicated the strength of the edge increase

during task while blue edges indicate the strength of the edge decrease during task (i.e.,

a negative correlation). Furthermore, edge thickness is indicative of the magnitude of the

correlation. Figure [4.6] shows clear similarities across each of the algorithms, with 84%

of edges reported by both the rt-SINGLE and SINGLE algorithms. This would suggest

that the rt-SINGLE algorithm is accurately detecting task-modulated changes in functional

connectivity. In particular, we observe increased functional coupling between the motor-

sensory and visual regions in the occipital cortex as well as inferior and middle temporal

heteromodal regions. These results are plausible with regard to the task that involved high-

level visual and heteromodal processing of the preceding visual cues and the execution of
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Figure 4.6: Task activation networks for rt-SINGLE (top) and SINGLE (bottom) algo-
rithms, respectively. Present edges had statistically significant correlations with task HRF
after correction for multiple comparisons. Red edges indicate edge strength increased dur-
ing task while blue edges indicate edge strength decreased during task. In order to facilitate
interpretation of the plot, only the right-hemispheric coordinates are shown here. We note
there is consistent activation pattern across both algorithms, particularly across nodes nodes
corresponding to the motorsensory areas.

the actual movement and have been previously reported [80, 188].

While Figure [4.6] serves to visually demonstrate that the rt-SINGLE algorithm is ac-

curately detecting task modulated changes in connectivity, we also studied graph theoretic

properties to quantify if there are significant differences in the graph structure of networks

estimated using offline SINGLE and rt-SINGLE algorithms. While there are many can-

didate graph statistics which can be studied, in this work we look to study the three key

properties; the mean degree centrality across nodes, the mean betweenness centrality over

edges in the network and the transitivity of the network. Furthermore, the changes in net-

work statistics where studied in the context of task positive and task negative modulation,

thereby allowing us to study in detail if significant differences occurred in the estimated
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Graph statistics
Offline SINGLE Real-time SINGLE

Task positive Task negative Task positive Task negative
Degree centrality 0.29 (0.10) 0.09 (0.05) 0.27 (0.11) 0.07 (0.04)
Betweenness centrality 0.07 (0.02) 0.01 (0.01) 0.01 (0.03) 0.02 (0.01)
Transitivity 0.24 0.06 0.22 0.06

Table 4.1: Summary graph statistics for networks estimated using the offline and real-time
SINGLE algorithms respectively. Graph statistics are provided for task positive and task
negative networks (correspond to red and blue edges in Figure [4.6] respectively) in order
to allow for a detailed study of graph properties across both algorithms.

network structure. Graph statistics were calculated for the network of positively and nega-

tively task-modulated edges respectively (that is the networks corresponding to the red and

blue edges in Figure [4.6] respectively). The results are provided in Table 4.1. We note that

no significant differences are reported for each of the graph statistics considered. These

results serve as evidence that the proposed method can perform comparably with offline

methods despite facing the additional challenge of estimating networks on-the-fly.

Furthermore, in real-time fMRI studies it is crucial to be able to accurately estimate

functional connectivity networks on a subject-by-subject basis. While the true underlying

functional connectivity networks are unknown (and may vary for each subject), we are able

to quantify how closely the networks estimated in real-time recreate the results of an offline

analysis. As a result, the correlation was studied between the estimated edges using both

the rt-SINGLE and the offline SINGLE algorithms. This was performed on a subject-by-

subject basis. For each edge, the correlation between the estimated edge values using each

of the two algorithms was quantified using Spearmans rank correlation coefficient and the

corresponding p-values were corrected for multiple comparisons. Figure [4.7] shows the

subject-specific networks containing only edges that were significantly correlated across

both algorithms. As before, red edges indicate a positive correlation with task while blue

edges are indicative of negative correlations and the thickness of the edges is proportional to

the strength of the correlation. We note the resulting networks are dense across all subjects

and the vast majority of edges indicate positive correlations. In particular, an average of

74% of edges were positively correlated across all subjects.

As noted previously, it is also important to study graph theoretic properties of the esti-
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Figure 4.7: Subject specific networks visualizing edges that were significantly correlated
across both the rt-SINGLE algorithm and its offline counterpart. Red edges indicate pos-
itive correlations while blue edges indicate negative correlations. We note that networks
are dense across all subjects, indicating that the rt-SINGLE algorithm is able to accurately
recover network structures similar to an offline study. Associated summary graph statistics
of the task positive and task negative networks across all subjects are provided in Table 4.2.
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mated networks to quantitatively study whether there are significant differences in the net-

work structure across subjects. As a result, we computed the three aforementioned graph

statistics over the subject-specific estimated networks shown in Figure [4.7]. The results are

provided in Table 4.2 which indicate significant differences in the edge statistics from task

positive to task negative states. We note that in the case of each of the three graph statistics

considered, the difference in the mean values is over two standard deviations away. These

results serve to indicate that the estimated networks are stable and consistent across both

algorithms as well as across the cohort of subjects.

Finally, we note that the use of the real-time SINGLE algorithm also resulted in sig-

nificant computational improvements. More specifically, inline with the improvements re-

ported in Simulation 4, we observed a 6-fold decrease in the running time of the real-time

SINGLE algorithm when compared to its offline counterpart.

4.4 Conclusion

In this chapter we have extended the methods proposed in Chapter 3 to perform covariance

selection in the context of streaming data. This has required both the introduction of effi-

cient methods through which to iteratively obtain estimates of sufficient statistics as well

as adapting the original optimization algorithm so that sparsity and temporal homogeneity

may be enforced in a real-time estimation framework.

In order to incrementally obtain estimates of sufficient statistics such as the sample

covariance matrix, the rt-SINGLE algorithm extends widely used sliding window meth-

ods by considering fixed and adaptive forgetting methods. Such methods are preferred in

this work due to their superior theoretic properties [106] as well as improved empirical

results obtained through simulations. In particular, adaptive forgetting methods provide

several important advantages. Firstly, such methods effectively designate that choice of

the forgetting factor to the data, making them highly adaptive and allowing them to handle

non-stationary data without requiring an explicit model for such behavior.

The proposed methods directly extend the SINGLE algorithm to the context of the

streaming data by deriving a computationally tractable approximation to the SINGLE ob-

jective function. The proposed approximation involves iteratively estimating a precision
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Graph statistics
Estimated value across subjects
Task positive Task negative

Degree centrality 0.31 (0.05) 0.11 (0.06)
Betweenness centrality 0.06 (0.01) 0.01 (0.01)
Transitivity 0.27 (0.06) 0.08 (0.04)

Table 4.2: Summary graph statistics for networks estimated using the real-time SINGLE
algorithm across the cohort of subjects. Graph statistics are provided for task positive and
task negative networks (correspond to red and blue edges in Figure [4.7] respectively) in
order to allow for a detailed study of the robust nature of graph statistics across all subjects.

matrix for each incoming observation, as opposed to jointly estimating multiple matrices.

As in the SINGLE algorithm, sparsity and temporal homogeneity constraints are intro-

duced. As we demonstrate through a series of simulation studies, the rt-SINGLE algorithm

is able to both obtain accurate estimates of functional connectivity networks at each point

in time as well as accurately describe the evolution of networks over time.

The proposed method requires the input of three parameters. The first of these pa-

rameters, stepsize η, governs the rate at which an adaptive forgetting factor, rt, varies and

can be interpreted as the stepsize in a stochastic gradient descent scheme [22]. The final

two parameters enforce sparsity and temporal homogeneity respectively. These parameters

remain fixed throughout in a similar manner to the fixed forgetting factor and two heuris-

tic approaches are proposed to tune these parameters. However, the assumption that such

parameters remain fixed is difficult to justify. This is particularly the case in the context

of non-stationary data. This issue is addressed in Chapter 5 where an adaptive update for

regularization parameters is proposed for streaming regression models.

An application of the proposed algorithm to task-based fMRI data is presented. The

results demonstrate that the rt-SINGLE algorithm was able to accurately detect functional

networks which are modulated by motor task. While the data is not intrinsically real-time,

observations were treated as such and therefore serves as a proof-of-concept. Moreover,

the results indicate that functional connectivity networks may be reliably estimated both at

a group level as well as on a subject-by-subject basis.

In conclusion, the rt-SINGLE algorithm provides a novel method for estimating func-

tional connectivity networks in real-time. In future, the proposed method could be incor-
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porated into rt-fMRI studies, potentially providing neurofeedback based on functional con-

nectivity. One exciting avenue would be to integrate this work with the recently proposed

Automatic Neuroscientist framework of [109]. Such a framework combines real-time fMRI

with machine learning techniques to optimize experimental conditions to maximize a given

target brain state [110, 108]. While the target brain state in the original proof-of-principle

study presented in [109] was simply based on BOLD differences, the proposed method can

be utilized to extend the Automatic Neuroscientist to target entire functional connectivity

networks.
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Chapter 5

Adaptive penalization in streaming

regression models

Motivated by the non-stationary properties of fMRI data, novel methodologies for quantify-

ing the dynamic properties of covariance structure were proposed in Chapters 3 and 4. The

proposed methods relied heavily on the use regularization penalties. However, the introduc-

tion of such penalties in the context of non-stationary data raises important methodological

questions relating to the choice of the associated regularization parameters as well as the

implicit assumption that such parameters remain fixed. In this chapter, we look to address

some of these questions by presenting a framework through which to learn a time-varying

sparsity parameter in the context of streaming data. The proposed framework effectively

recasts the selection of a sparsity parameter in the context of adaptive filtering, thereby

relegating the choice of such a parameter to the data. This reformulation also allows for

the derivation of convergence guarantees in a non-stochastic setting. Such a framework

is developed for streaming lasso models and then extended to GGMs via neighborhood

selection techniques described in Section 2.2.

As a result, this chapter is focused on in learning `1 regularized linear regression models

in the context of streaming, non-stationary data. While there has been significant research

relating to the estimation of such models in a streaming data context [23, 52], a fundamen-

tal aspect which has been overlooked is the selection of the regularization parameter. The

choice of this parameter dictates the severity of the regularization penalty. While the un-
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derlying optimization problem remains convex, distinct choices of such a parameter yield

models with vastly different characteristics. This poses significant concerns from the per-

spective of model performance and interpretation. It therefore follows that selecting such a

parameter is an important problem that must be addressed in a data-driven manner.

Many solutions have been proposed through which to select the regularization parame-

ter in a non-streaming context. For example, stability based approaches have been proposed

in the context of linear regression [118]. Other popular alternatives include cross-validation

[65] and information theoretic techniques. However, in a streaming setting such approaches

are infeasible due to the limited computational resources available. Moreover, the statisti-

cal properties of the data may vary over time; a common manifestation being concept drift

[2, 182]. This complicates the use of sub-sampling methods as the data can no longer be

assumed to follow a stationary distribution. Furthermore, as we argue in this work, it is

conceivable that the optimal choice of regularization parameter may itself vary over time.

It is also important to note that traditional approaches such change-point detection cannot

be employed as there is no readily available pivotal quantity. It therefore follows that novel

methodologies are required in order to tune regularization parameters in an online setting.

The remainder of this Chapter is organized as follows: the proposed framework is de-

tailed in Section 5.1. This involves a discussion of the computational demands of the

framework as well as the associated convergence guarantees. We present an extensive sim-

ulation study in Section 5.2 and an application to data from the Human Connectome Project

(HCP) is presented in Section 5.3.

5.1 Real-time adaptive penalization framework

In this work we are interested in streaming linear regression problems. Here it is assumed

that pairs (Xt, yt) arrive sequentially over time, where Xt ∈ Rp−1 corresponds to a (p−1)-

dimensional vector of predictor variables and yt is a univariate response. The objective of

this work is to learn time-varying linear regression models from which to accurately predict

future responses, yt+1, from predictors, Xt+1. An `1 penalty, parameterized by λ ∈ R+,

is introduced in order to encourage sparse solutions as well as to ensure the problem is

well-posed from an optimization perspective. This corresponds to the lasso model intro-
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duced by [166]. For a given choice of regularization parameter, λ, time-varying regression

coefficients can be estimated by minimizing the following convex objective function:

Lt(β, λ) =
t∑

i=1

wi
(
yi −XT

i β
)2

+ λ||β||1, (5.1)

where wi > 0 are weights indicating the importance given to past observations. Typically,

wi decay monotonically as a function of the chronological proximity of the ith observation.

For example, weights wi may be tuned using a fixed forgetting factor or a sliding window

as discussed in Chapter 4.

In a non-stationary context, the optimal estimates of regression parameters, β̂t, may

vary over time. The same argument can be posed in terms of the selected regularization

parameter, λ. For example, this may arise due to changes in the underlying sparsity or

changes in the signal-to-noise ratio of the data. While there exists a wide range of method-

ologies through which to update regression coefficients in a streaming fashion, the choice of

regularization parameter has been largely overlooked in the literature. As such, the primary

objective of this work is to propose a framework through which to learn time-varying reg-

ularization parameter in real-time. The proposed framework is based on adaptive filtering

theory, described in Chapter 4.

As noted previously, the choice of parameter λ dictates the severity of the regularization

penalty. Different choices of λ result in vastly different estimated models. While several

data-driven approaches are available for selecting λ in an offline setting, such methods

are typically not feasible for streaming data for two reasons. First, limited computational

resources pose a practical restriction. Second, data streams are often non-stationary and

rarely satisfy IID assumptions required for methods based on the bootstrap [2]. Moreover,

it is important to note that traditional methods such as change point detection cannot be

employed due to the absence of a readily available pivotal quantity for λ.

In this section we detail the proposed framework for real-time adaptive penalization

(RAP) in the context of streaming lasso models. We begin by outlining the RAP framework

and deriving the necessary machinery in Section 5.1.1. Section 5.1.2 outlines the resulting

algorithm. Computational considerations are discussed in Section 5.1.3 and an efficient

approximation is presented. In Section 5.1.4 we study some of the theoretical properties of
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the proposed framework and provide some convergence results in a non-stationary setting.

5.1.1 Proposed framework

We propose to learn a time-varying sparsity parameter in an adaptive filtering framework.

This allows the proposed method to relegate the choice of sparsity parameter to the data.

Moreover, by allowing λt to vary over time the proposed method is able to naturally ac-

commodate datasets where the underlying sparsity may vary over time.

We define the empirical objective to be the look-ahead residual error, defined as:

Ct+1 = C(Xt+1, yt+1) = ||yt+1 −Xt+1β̂t(λt)||22, (5.2)

where we write β̂t(λt) to emphasize the dependence of the estimated regression coefficients

on the current value of the regularization parameter, λt. In an adaptive filtering framework,

the regularization parameter can be iteratively updated as follows:

λt+1 = G(λt) = λt − ε
∂Ct+1

∂λt
. (5.3)

We note that for convenience we write ∂Ct+1

∂λt
to denote the derivative of Ct+1 with respect

to λ evaluated at λ = λt (i.e, ∂Ct+1

∂λ
|λ=λt). We note that λt is bounded below by zero, in

which case no regularization is applied, and above by λmaxt = maxj
{
|
∑t

i=1wiyiXi,j|
}
,

in which case all regression coefficients are set to zero [66].

The proposed framework requires only the specification of an initial sparsity parameter,

λ0, together with a stepsize parameter, ε. In this manner the proposed framework effectively

replaces a fixed sparsity parameter with a stepsize parameter, ε. This is desirable as the

choice of a fixed sparsity parameter is difficult to justify in the context of streaming, non-

stationary data. Moreover, any choice of λ is bound to be problem specific. In comparison,

we are able to interpret ε as a stepsize parameter in a stochastic gradient descent scheme.

As a result, there are clear guidelines which can be followed when selecting ε [21].

Once the regularization parameter has been updated, estimates for the corresponding

regression coefficients can be obtained by minimizing Lt+1(β, λt+1), for which there is a

wide literature available [21, 23, 52]. The challenge in this work therefore corresponds to
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efficiently calculating the derivative in equation (5.3). Through the chain rule, this can be

decomposed as:
∂Ct+1

∂λt
=
∂Ct+1

∂β̂t
· ∂β̂t
∂λt

. (5.4)

The first term in equation (5.4) can be obtained by direct differentiation. In the case of

the second term, we leverage the results of [53] and [146] who demonstrate that the lasso

solution path is piecewise linear as a function of λ. By implication, ∂β̂t
∂λt

must be piecewise

constant. Furthermore, there is a simple, closed-form solution for ∂β̂t
∂λt

.

Proposition 5 [Adapted from [146]] In the context of `1 penalized linear regression mod-

els, the derivative ∂βt
∂λt

is piecewise constant and can be obtained in closed form.

Proof Since β̂t minimizes the objective function specified in equation (5.1), it satisfies:

∇β (Lt(β, λ)) |β=β̂t
3 0 (5.5)

This follows from Section 2.3.1, which states that a convex objective function is minimized

when the gradient is zero. Recall from equation (5.1) that Lt(β, λ) is composed of the sum

of a squared error term and an `1 penalty term. As such, the we have that the derivative of

Lt(β, λ) with respect to β is as follows:

∇βLt(β, λ) = −XT
1:tW1:t(Y1:t −XT

1:tβ) + λ sign(β) (5.6)

where W1:t is a diagonal matrix with entries w1 . . . , wt. We may therefore take the deriva-

tive of equation (5.5) with respect to λ and obtain the following:

∂

∂λ

(
∇βLt(β, λ)|β=β̂t

)
= 0 (5.7)

=
∂β̂t
∂λ
∇
(
−XT

1:tW1:t(Y1:t −XT
1:tβ̂t)

)
+ sign(β̂t) (5.8)

=
∂β̂t
∂λ

(
XT

1:tW1:tX1:t

)
+ sign(β̂t) (5.9)

where equation (5.8) is obtained by applying the chain rule. Rearranging equation (5.9)
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yields:

∂β̂t
∂λ

= −
(
XT

1:tWX1:t

)−1
sign(β̂t), (5.10)

= −(St)
−1 sign(β̂t). (5.11)

From Proposition 1 we have that the derivative, ∂Ct+1

∂λt
, can be computed in closed form.

Moreover, we note that the derivative in equation (5.10) is only defined over the active set

of regression coefficients, denoted by At = {i : (β̂t(λt))i 6= 0}, and zero elsewhere. In

practice we must therefore consider two scenarios:

• the active set is non-empty (i.e.,At 6= ∅). In this case equation (5.10) is well-defined.

• the active set is empty. In this case we proceed to take a step in the direction of the

most correlated predictor: ĵ = argmax
j

{
|
∑t

i=1wiyiXi,j|
}
. Thus we have that:

(
∂β̂t
∂λ

)

i

= −δi,ĵ sign

(
t∑

i=1

wiyiXi,ĵ

)
, (5.12)

where δi,j is the dirac-delta function.

5.1.2 Streaming lasso regression

At each iteration, a new pair (Xt+1, yt+1) is received and employed to update both the

time-varying regularization parameter, λt, as well as the corresponding estimate of regres-

sion coefficients, β̂t(λt). The former involves computing the derivative ∂Ct+1

∂λ1
as outlined

in Section 5.1.1. As noted in equation (5.11), a current estimate of the sample covariance

matrix is sufficient. This may be recursively estimated in a variety of ways, for example

using a fixed forgetting factor as detailed in Chapter 4. The latter involves solving a convex

optimization problem which can be addressed in a variety of ways. In this work we look to

iteratively estimate regression coefficients using coordinate descent method, discussed in

Section 2.3. Such methods are easily amenable to streaming data and allow us to exploit

previous estimates as warm starts. In our experience, the use of warm starts leads to conver-

gence within a handful of iterations. Psuedo-code detailing the proposed RAP framework
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is given in Algorithm 2.

Algorithm 2: Real-time Adaptive Penalization
Input: Stepsize ε ∈ R+, fixed forgetting factor r ∈ [0, 1) used to compute St

1 begin
2 for t← 1, . . . , t . . . do
3 receive new (Xt+1, Yt+1);
4 if At 6= ∅ then
5 set ∂β̂t

∂λt
using equation (5.10);

6 else
7 set ∂β̂t

∂λt
using equation (5.12) ;

8 set ∂Ct+1

∂λt
= ∂Ct+1

∂βt

∂β̂t
∂λt

;
9 update λt+1 = λt − ε∂Ct+1

∂λt
;

10 β̂t+1(λt+1) = argmin
β
{Lt+1(β, λt+1)}

5.1.3 Computational considerations

With respect to the computational and memory demands, we note that the major expense

incurred when calculating ∂βt
∂λt

involves inverting the sample covariance matrix. While only

the dimensions corresponding to active variables need to be considered, this still corre-

sponds to inverting a |At|× |At|matrix. It is possible to alleviate the computational burden

by efficiently updating (St)At,At using the Sherman - Morrison formula. In this case, care

must be taken to ensure that the support of At has not changed from iteration t − 1 to t.

If this is not the case (i.e., a regression coefficient has either added/removed from At) then

the inverse must be calculated directly from (St)At,At .

However, computational and memory efficiency is paramount to streaming methods.

The need to compute and store the inverse of the sample covariance is undesirable in the

context of high-dimensional data. As a result, the following approximation is proposed:

∂β̂t
∂λt
≈ − (diag (St))

−1 sign
(
β̂t

)
. (5.13)

Here a diagonal approximation to the sample covariance is employed, implying that only
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the diagonal elements of the sample covariance must be stored and inverted. Such ap-

proximations are frequently employed in streaming or large data applications [52]. This

serves to reduce the computational burden of updating the sparsity parameter in the pro-

posed manner. The approximate update therefore has a time and memory complexity that

is proportional to the cardinality of the active set, At.

5.1.4 Fixed point convergence

In this section we study some of the properties of the proposed framework from a theo-

retical perspective. We note that a formal theoretical treatment would require analysis of

convergence using the tools of stochastic approximation theory [21, 23]. However, in this

section we derive some preliminary properties of the proposed framework and provide a

sketch of what future theoretical results may resemble. This is achieved by studying the

behavior of the RAP framework in a non-stochastic setting. As such, our objective is to

demonstrate convergence to a fixed point when the gradient updates are iteratively applied

to the data. We begin by noting that this update rule is piecewise non-expansive over the

support of regularization parameter. We then show that iteratively applying equation (5.3)

leads to convergence to a fixed point.

Recall thatG(λt) = λt−ε∂Ct+1

∂λt
is a self-mapping defined on the support Λ = [0, λmaxt ].

We study the behavior of iteratively applying the update rule G(λt) for fixed new data pair

(Xt+1, yt+1). This corresponds to iteratively performing the gradient descent update to

minimize residual error, Ct+1, for some fixed unseen pair, (Xt+1, yt+1). While the pro-

posed algorithm is stochastic in the sense that distinct random samples, (Xt+1, yt+1), are

employed at each update step, the results presented below provide reassuring guarantees in

a non-stochastic setting. We note that such non-stochastic results are often presented when

studying online algorithms.

Throughout the remainder of this section we abuse notation and write λt+1 = G(λt) to

denote the result of applying the gradient update for t iterations. Our goal is to show that

the limit of δt = |λt+1 − λt| converges to zero as the number of iterations, t, increases.

First, we demonstrate that the support of the regularization parameter, Λ, can be par-

titioned into p − 1 subsets where G is a contraction mapping. Then the mappings across
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subsets are studied to show that proposed algorithm does not exhibit periodic, expansive

behavior. These two results are combined to obtain convergence to a fixed point.

Assumption 1 The coefficient profiles for each regression coefficient, {β(λ) : λ ∈ Λ}, are

monotone.

Assumption 1 implies that |β(λ1)| < |β(λ2)| for all λ1 > λ2. For any λ we define the

corresponding active set as A(λ). Assumption 1 thus implies A(λ1) ⊂ A(λ2) for all

λ1 > λ2. We note that the assumption of monotonicity has been previously employed to

study the properties of lasso estimators [75]. Furthermore, this assumption can be verified

in practice by checking that the inverse covariance is diagonally dominant [75].

Lemma 1 Under Assumption 1, Λ can be divided into p− 1 open subsets, {Si}p−1
i=1 , where

G is a contraction mapping for suitably selected stepsize parameter, ε.

Proof We assume without loss of generality that λ1 > λ2. We consider:

|G(λ1)−G(λ2)| =
∣∣∣∣λ1 − λ2 − ε

(
∂Ct+1

∂λ1

− ∂Ct+1

∂λ2

)∣∣∣∣ . (5.14)

Our objective is to show that ∂Ct+1

∂λ1
− ∂Ct+1

∂λ2
> 0, thereby showing thatG is a contraction for

suitably chosen ε. Recall the gradient with respect to regularization parameter λ is defined

as:
∂Ct+1

∂λ
= (yt+1 −Xt+1βt(λ))T XT

t+1 (St)
−1 sign (βt(λ))

Due to Assumption 1, we have that:

∂Ct+1

∂λ1
− ∂Ct+1

∂λ2
=

∑

i∈A(λ1)∩A(λ2)

[
(βt(λ2)− βt(λ1))

T (
XT
t+1Xt+1

)
(St)

−1 sign(βt(λ1))
]
i

︸ ︷︷ ︸
A1

−
∑

i∈A(λ2)\A(λ1)

[
(yt+1 −Xt+1βt(λ2))

T
XT
t+1 (St)

−1 sign(βt(λ2))
]
i

︸ ︷︷ ︸
A2

We note that A2 will be zero whenever A(λ1)\A(λ2) = ∅. Moreover, the term A1 will

always be greater than or equal to zero. This follows from the fact that A1 = g(λ1)− g(λ2)
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where
g(λ) = −

(
βt(λ)T

(
XT
t+1Xt+1

)
(St)

−1 sign(βt(λ))
)

= βt(λ)T
(
XT
t+1Xt+1

) ∂βt(λ)

∂λ
.

Recall from Proposition 5 that the derivative, ∂βt(λ)
∂λ

, is piecewise constant as a function of

λ. As a result, it follows that ∂
2βt(λ)
∂λ2

= 0. Therefore, we have that:

∂g(λ)

∂λ
=

(
∂βt(λ)

∂λ

T (
XT
t+1Xt+1

) ∂βt(λ)

∂λ

)
≥ 0, (5.15)

due to the positive semi-definite nature of XT
t+1Xt+1. This indicates that g(λ) is a mono-

tone, non-decreasing function in λ. As a result, we are able to divide Λ into p − 1 open

subsets where the update rule G is a contraction for suitably selected ε. These subsets cor-

respond to the regions where the support of the lasso solution is constant, thus implying

that A2 is zero. Finally, we note that there are many different rules which are frequently

employed when setting stepsize parameters such as ε [27]. In the context of this work, it

sufficies to check that:

|λ1 − λ2| ≤ ε

∣∣∣∣
∂Ct+1

∂λ1

− ∂Ct+1

∂λ2

∣∣∣∣ , (5.16)

which can easily be checked for all λ1, λ2 as ∂Ct+1

∂λ
can be evaluated in closed form.

By Lemma 1, we have that |G(λ1)−G(λ2)| < |λ1 − λ2| for all λ1, λ2 ∈ Si. It remains

to study the (possibly expansive) behavior across the subsets {Si}p−1
i=1 ; in particular there

remains a need to mitigate against potential periodic, expansive behavior.

Lemma 2 If periodic behavior occurs across subsets, then this must be a contraction.

Proof We consider periodic behavior of the form:

G(λt) ∈




Sj if t is even

Sj−1 if t is odd
(5.17)

We consider two subsets which we label S1 and S2. Without loss of generality we

assume that S1 > S2 in the sense that λ1 > λ2 for all λ1 ∈ S1 and λ2 ∈ S2. We consider

the periodic behavior described in equation (5.17).
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Therefore, at an odd iteration the gradient update maps from S2 into S1. Thus we have

λt = G(λt−1) > λt−1 by construction. This implies that the gradient, ∂Ct
∂λt−1

, is negative

here. This can be seen by noting that

λt = λt−1 − ε
∂Ct
∂λt−1

> λt−1.

Conversely, at every even iteration the gradient update maps from S1 into S2, implying that

λt = G(λt−1) < λt−1. This in turn implies that ∂Ct
∂λt−1

must be positive here. As a result, we

have that for any λ1 ∈ S1 and λ2 ∈ S2:

∂Ct
∂λ1

− ∂Ct
∂λ2

> 0

indicating that cyclic mapping must be contractions.

By Lemma 2 we have that any periodic behavior across subsets must be a contraction. Due

to the compact nature of Λ, it follows that at most p− 1 (possibly expansive) non-periodic

mappings across subsets occur, after which only contraction mappings occur.

Proposition 6 Iteratively applying the gradient descent mapping G over a fixed training

example, (Xt+1, yt+1), leads to convergence to a fixed point.

Proof We consider the sequence {δt}t where δt = |λt+1 − λt|. The terms in {δt}t can

be split exactly into two subsequences; one containing all mappings within the same sub-

set Si for some i and another containing all mappings across subsets. We denote these

subsequences by {δt}t(1) and {δt}t(2) respectively.

By Lemma 1, the first subsequence consists of purely contraction mappings and there-

fore converges to zero. Similarly, Lemma 2 states that all periodic behavior across subsets

must be a contraction, thereby implying that the second subsequence also converges to

zero. As both subsequences contain all elements of {δt}t and converge to zero, it follows

that {δt}t also converges to zero.

We note that the aforementioned results also hold when either the exact or approximate

gradient as well as when multiple unseen samples {(Xi, yi) : i = 1, . . . , N} are employed

(in the case of mini-batch updates).
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5.1.5 Related work

Regularized methods have established themselves as popular and effective tools through

which to handle high-dimensional data [77]. Such methods employ regularization penalties

as a mechanism through which to constraint the set of candidate solutions, often with the

goal of enforcing specific properties such as parsimony. In particular, `1 regularization

is widely employed as a convex approximation to the combinatorial problem of model

selection. As a result of the convex nature of `1 penalties, efficient and highly scalable

estimation algorithms can be derived [9].

However, the introduction of an `1 penalty requires the specification of the associated

regularization parameter. The task of tuning such a parameter has primarily been studied in

the context of non-streaming, stationary data. Stability selection procedures, introduced by

[118], effectively look to by-pass the selection of a specific regularization parameter by in-

stead fitting multiple models across sub-sampled data. Variables are subsequently selected

according to the proportion of all models in which they are present. In this manner, stability

selection is able to provide important theoretical guarantees while incurring an additional

computational burden. Other popular approaches involve the use of cross-validation [67]

or information theoretic techniques [166]. However, such methods have been reported to

perform poorly in high-dimensional settings [102, 107, 176] and cannot easily be adapted

to handle streaming data.

Online learning with the `1 constraints has also been studied extensively and many com-

putationally efficient algorithms are available. A stochastic gradient descent algorithm is

proposed by [23]. More generally, online learning of regularized objective functions has

been studied extensively by [52] who propose a general class of computationally efficient

methods based on proximal gradient descent. The aforementioned methods all constitute

important advances in the study of sparse online learning algorithms. However, a funda-

mental issue that has been overlooked corresponds to the selection of the regularization

parameters. As such, current methodologies are rooted on the assumption that the regular-

ization parameter remains fixed. It follows that the regularization parameter may itself vary

over time, yet selecting such a parameter in a principled manner is non-trivial. The focus of

this work is to present and validate a framework through which to automatically select and
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update the regularization parameter in real-time. The framework presented in this work is

therefore complementary and can be employed in conjunction with many of the preceding

techniques.

More generally, the automatic selection of hyper-parameters has recently become an ac-

tive topic in machine learning [154]. Interest in this topic has been catalyzed by the success

of deep learning algorithms, which typically involve many such hyper-parameters. Sequen-

tial model based optimization (SMBO) methods such as Bayesian optimization employ a

probabilistic surrogate to model the generalization performance of learning algorithms as

samples from a Gaussian process [154], leading to expert level performance in many cases.

It follows that such methods may be employed to tune regularization parameters in the con-

text of penalized linear regression models. However, there are several important differences

between the SMBO framework and the proposed framework. The most significant differ-

ence relates to the fact that the proposed framework employs gradient information in order

to tune the regularization parameter while SMBO methods such as Bayesian optimization

are rooted in the use of a probabilistic surrogate model. This allows the SMBO framework

to be applied in a wide range of settings while the proposed framework focuses exclusively

on lasso regression models. However, as we describe in this work, the use of gradient infor-

mation makes the RAP framework ideally suited in the context of non-stationary, streaming

data. This is in contrast to SMBO techniques, which typically assume the data is stationary.

5.2 Empirical results

In this section we look to empirically demonstrate the capabilities of the proposed frame-

work by studying a variety of real and simulated datasets. In order to provide a flavor for

the capabilities of the RAP algorithm, we being by studying the diabetes dataset in Sec-

tion 5.2.1. This corresponds to a publicly available dataset which has been widely studied

in the context of lasso models [53]. We complement these results with a more extensive

simulation study presented in Section 6.2.
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5.2.1 Diabetes dataset

We begin by considering the diabetes dataset presented in [53]. Here the response is a quan-

titative measure of disease progression. The covariates associated with each observation

correspond to four measurements over baseline variables such as average blood pressure

and body mass index as well as six blood serum measurements.

The objective of this example is to provide empirical evidence that the RAP algorithm is

able to reliably track the regularization parameter. As such, cross-validation with K = 10

folds was employed in order to estimate the regularization parameter. The regularization

parameter was subsequently estimated using the RAP framework in a streaming fashion.

The RAP algorithm was applied over N = 500 iterations. At each iteration, the dataset

rows were randomly permuted such that the order in which observations arrived varied.

Due to the stationary nature of the data, dynamically tracking regression coefficients was

not of interest here. As such, the sample covariance was recursively estimated using a fixed

forgetting factor of r = 1. This corresponds to an online analysis where information from

past observations is not discarded. For each iteration, the proposed method was initialized

with β = 0 ∈ Rp Both the exact and approximate gradient updates were considered. Fi-

nally, a SMBO approach, in the form of Bayesian optimization, was also considered. This

involved modeling the generalization performance of the penalized regression model as a

Gaussian process with a square exponential covariance function. The expected improve-

ment acquisition function was employed to search the parameter space for λ [154].

The results are shown in Figure [5.1], where the `1 norm∗ is plotted against the num-

ber of iterations of the RAP algorithm. The horizontal red and blue lines indicates the

regularization parameter as selected by 10-fold cross-validation and SMBO respectively.

The dashed lines represent the mean `1 norm selected over N = 500 permutations when

the exact (black) or approximate (brown) gradients where employed. We note that in both

cases the estimated `1 norm quickly increases away from zero and converges to the cross-

validated norm.

∗The `1 norm was considered as opposed to the estimated sparsity parameter in order to avoid potential
confusion arising due to scaling of regularization parameters and other idiosyncrasies. There is a one-to-one
relationship between the sparsity parameter, λ, and the `1 norm.
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Figure 5.1: Mean `1 norm over all permutations for exact and approximate RAP algorithms
is plotted in the dashed black and brown lines respectively. Each grey line corresponds to
the `1 norm over each of the N = 500 iterations when applying RAP algorithm with exact
gradient updates. The solid, horizontal lines correspond to the regularization parameters
selected via two offline methods: cross-validation and Bayesian optimization.

5.2.2 Simulation study

In this section we look to compliment the results presented in Section 5.2.1 with a more ex-

tensive set of simulations. We begin by considering the performance of the RAP algorithm

in the context of stationary data. This simulation serves to demonstrate that the proposed

method is capable of accurately tracking the regularization parameter. We then study the

performance of RAP algorithm in the context of non-stationary data. Throughout this sim-

ulation study the RAP algorithm is benchmarked against two offline methodologies: cross-

validation and SMBO. In the context of SMBO methods, we study the performance against

Bayesian optimization methods. Here a Gaussian process with a square exponential kernel

was employed as a surrogate model together with the expected improvement acquisition

function.

Simulation settings

In order to thoroughly test the performance of the RAP algorithm, we look to generate

synthetic data were we are able to control both the underlying structure as well as the di-

mensionality of the data. In this work, data was generated according to a multivariate Gaus-

sian distribution with a block covariance structure. This introduced significant correlations

across covariates, thereby increasing the difficultly of the regression task [190]. Formally,
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the data simulation process followed that described by [116]. This involved sampling each

covariate as follows:

Xt ∼ N (0,Σ),

where Σ ∈ Rp×p is a block diagonal matrix consisting of five equally sized blocks. Within

each block, the off-diagonal entries were fixed at 0.8, while the diagonal entries were fixed

to be one. Having generated covariates, Xt, a sparse vector of regression coefficients, β,

was simulated. This involved randomly selecting a proportion, ρ, of coefficients and ran-

domly generating their values according to a standard Gaussian distribution. All remaining

coefficients were set to zero. Finally, univariate responses were obtained as follows:

yt ∼ N (Xtβ, 1).

In this manner, it is possible to generate piece-wise stationary data, {(yt, Xt) : t =

1, . . . , T}. When studying the performance of the RAP algorithm in the context of sta-

tionary data, it sufficed to simulate one such dataset. In order to quantify performance in

the context of non-stationary data, we concatenate multiple piece-wise stationary datasets.

This results in datasets with abrupt changes. We note that in the non-stationary setting

the block structure was randomly permuted at each iteration in order to avoid covariates

constantly sharing the same set of highly correlated variables.

Performance metrics

In order to asses the performance of the RAP algorithm we consider various performance

metrics. In the context of stationary data, our primary objective is to demonstrate that the

proposed method is capable of tracking the regularization parameter when benchmarked

against traditional methods such as cross-validation. As a result, we consider the difference

in `1 norms of the regression model estimated by each algorithm. This is defined as:

∆ = ||β(λCV )||1 − ||β(λRAP )||1, (5.18)



5.2 Empirical results 120

where we write λCV and λRAP to denote the regularization parameters selected by cross-

validation and RAP algorithms respectively. We choose to employ the `1 norm (as opposed

to directly considering the sparsity parameter, λ) as there is a one-to-one relationship be-

tween λ and the `1 norm with the added benefit that the `1 norm is not affected by arbitrary

changes to the data (e.g., scaling observations).

In the context of non-stationary data we are interested in two additional metrics. The

first corresponds to the residual error over unseen observations, Ct+1, initially defined in

equation (5.2). Secondly, we also consider the correct recovery of the sparse support of βt.

In this context, we treat the recovery of the support of βt as a binary classification problem

and quantify the performance using the F score; defined as the harmonic mean between

the precision and recall of a classification algorithm [169].

Stationary data

While the results presented in Section 5.2.1 provide reassuring empirical evidence, we

consider a more extensive simulation study here. In particular, we study the performance of

the RAP algorithm as the dimensionality of regression coefficients, p, increases. The goal

of this simulation therefore is to demonstrate that proposed algorithm is able to accurately

track the regularization parameter.

Data was generated as described previously and the dimensionality of the covariates,

Xt, was varied from p = 10 through to p = 100. For each value of p, N = 500 datasets

were randomly generated. The regularization parameter was first estimated using K = 10

fold cross-validation. The RAP algorithm was subsequently employed and the difference

in `1, defined in equation (5.18), was then computed.

This procedure was repeated to produce data with dimensionality p = 10 through to

p = 100. For each simulated dataset, the regularization parameter was selected via K = 10

fold cross-validation in an offline manner (i.e., by considering the entire dataset). The

RAP algorithm was subsequently employed to estimate the regularization parameter. This

involved iterating through observations in a streaming fashion.

The difference in selected regularization parameters over N = 500 simulations is vi-

sualized in Figure [5.2]. It is reassuring to note that the differences are both small in
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Figure 5.2: Violin plots visualizing the difference in `1 norms of estimated regression co-
efficients as a function of the dimensionality, p. It is reassuring to note that the difference
is both small in magnitude and centered around the origin, indicating the absence of a large
systematic bias.

magnitude as well as centered around the origin. The latter serves to indicate the absence

of a large systematic bias. The figure also does not show evidence of any systematic change

in the bias as the dimensionality increases.

Non-stationary data

While the previous simulation provided empirical evidence demonstrating that the RAP

framework can be effectively employed to track regularization parameters in a stationary

setting, we are ultimately interested in streaming, non-stationary datasets. As a result, in

this simulation we study the performance of the proposed framework in the context of

non-stationary data.

While there are a multitude of methods through which to simulate non-stationary data,

in this simulation study we chose to generate data with piece-wise stationary covariance

structure. As a result, the underlying covariance alternated between two regimes: a sparse

regime where the response was driven by a reduced subset of covariates and a dense regime

where the converse was true. Thus, pairs (yt, Xt) of response and predictors were simulated

in a piece-wise stationary regimes. The dimensionality of the covariates was fixed at p =

20, implying that Xt ∈ R20. Changes occurred abruptly every 100 observations and two

change-points were considered, resulting in 300 observations in total.

Covariates, Xt, were simulated with two alternating regimes; dense and sparse. The
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Figure 5.3: Left: Mean estimates of the regularization parameter are shown for the RAP
algorithm as well as a the optimal piece-wise constant value selected by cross-validation.
The background color indicates the nature of the underlying regime (green indicating dense,
blue sparse). Right: Residual error, Ct+1, is plotted as a function of time. We note that the
RAP algorithms outperforms the offline approaches employed.

block-covariance structure remained fix within each regime (i.e., for 100 observations).

Within the dense regime, a proportion ρ1 = 0.8 of regression coefficients were randomly

selected and their values sampled from a standard Gaussian distribution. All remaining

coefficients were set to zero. Similarly, in the case of the sparse regime, ρ2 = 0.2 regression

coefficients were randomly selected with remaining coefficients set to zero. The regression

coefficients remained fixed within each regime.

In order to benchmark the performance of the proposed RAP framework, streaming

penalized lasso models were also estimated using a fixed and piece-wise constant sparsity

parameters. As a result, the RAP algorithm was benchmarked against three distinct offline

methods for selecting the regularization parameter. In the case of a fixed sparsity parameter,

K = 10 fold cross-validation as well as Bayesian optimization were employed. Finally,

cross-validation was also employed to learn a piece-wise constant regularization parameter.

This was achieved by performing cross-validation for the data within each regime. For each

of these methods, their offline nature dictated that the entire dataset should be analyzed

simultaneously (as opposed to in a streaming fashion by the RAP algorithm). As such,

they serve to provide a benchmark but would infeasible in the context of streaming data.



Chapter 5. Adaptive penalization in streaming regression models 123

Algorithm ĀCt F̄t
Fixed (CV) 0.58 (0.05) 0.49 (0.05)

Fixed (SMBO) 0.63 (0.05) 0.50 (0.07)
Piecewise 0.51 (0.04) 0.56 (0.04)

RAP 0.47 (0.04) 0.64 (0.06)
RAP (Approx) 0.48 (0.05) 0.63 (0.07)

Table 5.1: Detailed results consisting of the mean negative log-likelihood, C̄t, as well as
the mean F -score, F̄t. Standard errors are provided in brackets.

Results are shown in Figure [5.3], where the left panel shows the estimated regulariza-

tion parameter as a function of time. These results provide further evidence to indicate that

the RAP algorithm is able to reliably track the piece-wise constant parameters selected by

cross-validation. As expected, there is some lag directly after each change occurs, however,

the estimated regression parameters quickly adapt. The right panel of Figure [5.3] shows

the mean residual error, Ct+1, for unseen data. We note there are abrupt spikes every 100

observations, corresponding to the abrupt changes in the underlying dependence structure.

Detailed results are provided in Table 5.1. We note that the proposed framework is able to

outperform the alternative offline approaches. In the case of the offline cross-validation and

SMBO, this is to be expected as a fixed choice of regularization parameter is misspecified.

5.3 Application

In this section we present an application of the RAP algorithm to task-based fMRI data.

This data corresponds to time-series measurements of blood oxygenation, a proxy for neu-

ronal activity, taken across a set of spatially remote brain regions [105]. Our objective in

this work is to quantify pairwise statistical dependencies across brain regions, typically

referred to as functional connectivity within the neuroimaging literature [157].

While traditional analysis of functional connectivity was rooted on the assumption of

stationarity, there is growing evidence to suggest this is not the case [90]. This particularly

true in the context of task-based fMRI studies. Several methodologies have been proposed

to address the non-stationary nature of fMRI data [3, 122], many of which are premised

on the use of penalized regression models such as those studied in this work. While such
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methods have made important progress in the study of non-stationary connectivity net-

works, they have typically employed fixed regularization parameters. This is difficult to

justify in the context of non-stationary data and plausible biological justifications are not

readily available. The RAP algorithm is therefore ideally suited to both accurately estimat-

ing non-stationary connectivity structure as well as providing insight regarding whether the

assumption of a fixed sparsity parameter is reasonable.

5.3.1 HCP Emotion task Data

Emotion task data from the Human Connectome Project (HCP) was studied with 20 sub-

jects selected. During the task participants were presented with blocks of trials that either

required them to decide which of two faces presented on the bottom of the screen match the

face at the top of the screen, or which of two shapes presented at the bottom of the screen

match the shape at the top of the screen. The faces had either an angry or fearful expression

while the shapes represented the emotionally neutral condition. Preprocessing involved re-

gression of Fristons 24 motion parameters from the fMRI data. Sixty-eight cortical and

16 subcortical ROIs were derived from the Desikan-Killiany atlas and the ASEG atlas, re-

spectively. Mean BOLD time series for each of these 84 ROIs were extracted and further

cleaned by regressing out time series sampled from white matter and cerebrospinal fluid.

Finally, the extracted time courses were high-pass filtering using a cut-off frequency of 1
130

Hz. Neurosynth, a platform for large-scale automated synthesis of neuroimaging data,was

employed to reduce the number of regions studied [185]. This provided an automatically

generated forward inference map based on 790 studies quantifying the activation all regions

in emotion studies. Twenty regions identified as core emotion hubs were selected. Data for

each subject therefore consisted of n = 175 observations across p = 20 nodes.

5.3.2 Results

Data for each subject was analyzed independently and the time-varying estimates of the

conditional dependence structure where obtained for each node. A fixed forgetting factor

of r = .95 was employed throughout with a stepsize parameter η = .025. The exact

gradient was employed when updating the sparsity parameter at each iteration. In order to
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avoid unreliable initial performance of the algorithms a burn-in of twenty observations was

employed. Finally a time-varying estimate of the functional connectivity was employed by

applying neighborhood selection, introduced in Section 2.2.2.

The mean sparsity parameter over all subjects is shown in the top panel Figure [5.4].

We observe decreased sparsity parameters for blocks in which subjects were presented

with emotional (i.e., angry or fearful) faces (top panel, purple shaded areas) as compared

to blocks in which subjects were shown neutral shapes (top panel, green shaded areas).

The oscillation in sparsity parameter is highly correlated with task onset. When inspecting

the networks estimated using the time varying sparsity parameter (bottom panel), we find

strong coupling amongst many of the regions during the emotion processing blocks (A and

C) compared to a clearly sparser network representation for blocks that require no emotion

processing (i.e., neutral shapes, block B). This is to be expected as the selected regions

are core hubs involved with emotion processing; therefore explaining the higher network

activity during the emotion task when compared to the neutral task

5.4 Conclusion

In this work we have presented a novel framework through which to learn a time-varying

sparsity parameters in the context of streaming lasso models. An approximate algorithm is

also provided to address issues concerning computational efficiency; a factor of paramount

importance in the context of high-dimensional data. We provide theoretical results regard-

ing the convergence in a non-stochastic scenario. These results hold for both the exact and

approximate gradient algorithms as well as in the context of mini-batch updates. Finally,

empirical evidence is provided to validate the proposed algorithm.

We present two simulation studies which demonstrate the capabilities of the proposed

method. These simulations demonstrate that the proposed RAP framework is capable of

tracking the regularization parameter both in a stationary as well as non-stationary con-

text. Finally, we present an application to fMRI data, which is widely accepted to be

non-stationary.

Future work will involve extending the RAP framework to consider alternative regular-

ization schemes. In particular, the popular ridge or `2 penalty could be incorporated as the
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Figure 5.4: Top: the mean sparsity parameter is shown as a function of time. The back-
ground color indicates the nature of the task at hand (green indicates neutral task while
blue indicates the emotion task). Bottom: estimated networks visualizing the estimated
connectivity structure at three distinct points in time. Edge colors indicate the nature of the
dependence (blue indicates a positive dependence, red a negative dependence).

derivative, ∂β
∂λ

, is also available in closed form. Furthermore, it would also be possible to

extend the framework to consider a wider range of models. In this setting, the results of

[146] could be leveraged to consider time-varying sparsity for generalized linear models.
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Chapter 6

Linear graph embedding methods for

dynamic networks

The focus of previous chapters has been to propose novel algorithms through which to

accurately infer sparse covariance structure in time-varying GGMs. Such methods are rel-

evant in a wide range of applications. In particular, within the context of neuroscience they

may be used to study the dynamic properties of functional connectivity networks. This

corresponds to an exciting avenue of modern neuroscientific research [31]. As a result, the

methods presented in Chapters 3 to 5 form part of a larger ecosystem of methods dedicated

to the study of time-varying connectivity networks [90]. These methods have provided

unprecedented insights relating to the dynamic restructuring and temporal evolution of the

human connectome and may potentially provide important insights relating to various neu-

rological and psychiatric conditions [39, 44, 160].

However, obtaining robust and easily interpretable insights from the results of such

algorithms raises novel statistical challenges. Difficulties arise both due to the need to

summarize high-dimensional graphs intuitively as well as the need to compare multiple

estimated graphs. Such difficulties are further exacerbated by the fact that often a distinct

network is estimated at each observation and potentially across many subjects, resulting in

a large number of estimated networks. One potential solution involves testing for statistical

correlations across the estimated edge structure and underlying changes in cognitive task,

thereby recovering the set of edges which are functionally modulated by a given task. Such
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an approach was taken in Chapter 4 and is widely advocated [90, 123, 184]. However,

it fails to account for the structured nature of networks. Crucially, by studying edges on

an individual basis such methods fundamentally ignore the notion that the brain is a func-

tionally connected network [28, 162]. A related approach involves the use of clustering

methods: for example [3] employ k-means clustering on estimates of time-varying covari-

ance matrices. Such methods are able to identify state networks which may capture the

current connectivity structure at specific points in time. However, clustering based meth-

ods require the definition of a distance metric which is difficult to define in the context of

graphs [144]. Finally, time-varying graph metrics may also be employed, where metrics

such as the degree or betweenness centrality are tracked over time. This was the approach

taken in Chapter 3. However, it if often difficult to know a priori which metrics to consider

and there is no guarantee that predefined metrics will necessarily capture all the relevant

changes in connectivity structure.

In this chapter, we look to address the challenges associated with interpreting time-

varying, high-dimensional networks via the use of linear graph embedding methods. Gen-

erally speaking, the objective of graph embedding techniques is to map estimated graphs

into a (potentially low-dimensional) vector space [183]. This facilitates tasks such as vi-

sualization and classification by translating the problem from the graph domain into a Eu-

clidean space, where traditional classification and visualization techniques can be readily

applied.

While a wide range of graph embedding techniques may be employed, in this work we

limit ourselves to consider only methods based on linear projections over the edge struc-

ture of an estimated graph. This allows us to obtain a clear interpretation of the embedding

in the context of functional connectivity. Moreover, the proposed embeddings are based

on the Laplacian of the estimated graphs. This serves to normalize the estimated edge

weights. As a result, we consider two distinct graph embedding algorithms. The first em-

bedding considered is based on Principal Component Analysis (PCA). This embedding,

which is closely related to the work of [103], can be interpreted as mapping graphs into a

low-dimensional vector space that captures the maximal variability. Due to the unsuper-

vised nature of this embedding, it is ideally suited for the study of both resting-state as well

as task-based fMRI data. The second approach is based on regularized Linear Discrim-
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inant Analysis (LDA). This method serves to recover a low-dimensional embedding that

maximizes the discriminatory power across various tasks or states. The supervised nature

of such an embedding is particularly suitable for task-based experiments, where changes

in cognitive task are known and the objective is to recover the associated changes in the

connectivity structure.

The remainder of this chapter is organized as follows: linear graph embedding tech-

niques based on principal component and linear discriminant analysis are presented in Sec-

tion 6.1. A simulation study is presented in Section 6.2. Finally, in Section 6.3 we present

an application of the proposed graph embedding methods to working memory task data

taken from the Human Connectome Project (HCP).

6.1 Linear embedding methods

Throughout this section it is assumed that estimates of time-varying functional connec-

tivity networks have been obtained across a cohort of S subjects. Recall that we write

Θ
(s)
i ∈ Rp×p to denote the estimated precision for the sth subject at the ith observation.

Each Θ
(s)
i therefore captures the statistical dependencies across p regions of interest (ROIs)

at the ith observations and may be subsequently interpreted as a encoding the functional

dependencies across such ROIs. The dynamic properties of functional connectivity net-

works can be quantified in many ways. One popular method for estimating such networks

involves the use of sliding windows, discussed in Chapter 4. Alternative methods, based

on approaches such as change-point detection [38] and forgetting factors have also been

proposed [123].

In this work our objective is to understand dynamic functional connectivity networks

using linear graph embedding methods. Such methods allow for the representation of

graphs or networks in real-valued vector spaces, resulting in two advantages. First, by

embedding graphs in a Euclidean vector spaces we are able to employ traditional visual-

ization and classification techniques. Second, by focusing on linear projections over the

set of all edges we are able to directly interpret the embeddings in the context of functional

connectivity networks. The linear embedding methods considered in this work are based

on PCA and regularized LDA. Such methods correspond to unsupervised and supervised
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learning algorithms respectively, indicating the they may be used in conjunction to further

understand dynamic connectivity networks.

The remainder of this section is organized as follows: we introduce and discuss graph

Laplacians in Section 6.1.1. In Sections 6.1.2 and 6.1.3 we introduce two distinct graph

embedding methods.

6.1.1 Graph Laplacians

The graph embedding techniques described in this work are based on the Laplacian of each

estimated functional connectivity network, formally defined as:

L
(s)
i =

(
D

(s)
i

)− 1
2
(
D

(s)
i −Θ

(s)
i

)(
D

(s)
i

)− 1
2
, (6.1)

where D(s)
i is a diagonal matrix containing the diagonal elements of Θ

(s)
i . The use of a

Laplacian is desirable as it serves to normalize the estimated edge weights (corresponding

to the off-diagonal entries) of estimated networks. It therefore follows that each Laplacian

matrix, L(s)
i , is fully characterized by its upper-triangular entries. We define the set of

Laplacian matrices for a given subject to be L(s) = {L(s)
i : i = 1 . . . , n}. In the remaining

sections, we employ L(s) directly as input to the proposed graph embedding algorithms.

We define

vec(L(s)) = Rn×(p2) (6.2)

as a matrix where the ith row corresponds to the vectorized upper-triangular entries of the

Laplacian at the ith observation. The matrix, L, consisting of all vectorized Laplacians

across all subjects can subsequently be defined as:

L =
[
vec(L(1))T , . . . , vec(L(S))T

]T ∈ RSn×(p2). (6.3)

This process is described in Figure [6.1]. It follows that each column of L corresponds

directly to one of the
(
p
2

)
possible edges. As both embeddings studied here consist of linear

projections of L onto lower-dimensional subspaces, they can each be understood as a a

linear combination of edges and interpreted as functional connectivity networks.



Chapter 6. Linear graph embedding methods for dynamic networks 131

Figure 6.1: The various steps involved in the proposed embedding method are visualized:
1) the SINGLE algorithm is used to obtain estimates of time-varying precision matrices. 2)
The precision matrices are transformed to Laplacian matrices. 3) The Laplacian matrices
are vectorized by taking their upper-triangular components. 4) The vectorized Laplacians
of all subjects are stacked vertically. 5) Finally the PCA/LDA-driven embeddings are esti-
mated.

6.1.2 Unsupervised PCA-driven embedding

Here we look to obtain a low-dimensional embedding that maximizes the amount of ex-

plained variance. Following from the method described in [103], we look to achieve this

by applying PCA to L. Recall that L is a matrix consisting of vectorized graph Laplacians

across all S subjects. In particular, each row of L corresponds to a specific edge. This

will yield the linear combination of edges that best summarize the variability in functional

connectivity networks over time.

Formally, PCA is an unsupervised dimensionality reduction technique which produces

a new set of uncorrelated variables from the original data. This is achieved by considering

the k leading eigenvectors of the covariance matrix LTL, defined as the principal compo-

nents Pk ∈ Rk×(p2). The principal components, Pk, can be studied in two ways. First, by
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considering the entries of each principal component we are able to quantify the contribution

of the corresponding edges. Edges which vary highly within a dataset can therefore be ex-

pected to provide a large contribution to the leading principal components. The set of these

edges can subsequently be interpreted as pertaining to a network which is strongly mod-

ulated by underlying cognitive task. Second, the embedding produced by Pk is obtained

as:

Pk · vec(L(s)) ∈ Rk×n. (6.4)

This yields a k-dimensional graph embedding for each subject at each of the n observations.

This serves as a low-dimensional representation of the time-varying networks which can

be employed in tasks such as classification or visualization.

6.1.3 Supervised LDA-driven embedding

While the PCA-driven embedding was motivated by understanding the components of

functional connectivity which demonstrated the greatest variability, we may also be in-

terested in understanding which components of the functional networks are most discrimi-

native across multiple tasks. To this end, a supervised learning approach is taken here.

We propose the use of LDA to learn the functional connectivity networks which are

most discriminative across tasks. LDA is a simple and robust classification algorithm which

can also be interpreted as a linear projection. As a result, LDA reports the linear combi-

nation of edges which are most discriminative between tasks. These can subsequently be

interpreted as a discriminative embedding which reports changes in functional connectivity

induced by a given task.

In high-dimensional supervised learning problems, such as the one considered in this

work, it is of paramount importance to avoid overfitting. Two popular methods to guard

against overfitting involve the introduction of regularization, thereby penalizing overly

complex models which are more susceptible to overfitting, and cross-validation. Here a

combination of both approaches is employed. First a variable screening procedure is ap-

plied, reducing the number of candidate variables (in our case edges) to p′ <<
(
p
2

)
. This

serves to greatly reduce the risk of overfitting as well as yield a sparse embedding which

is easily interpretable. The remaining p′ selected edges are subsequently used to train an
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LDA classifier. Such a classifier will learn the linear projection of selected edges which is

most discriminative across tasks. This projection will serve as our LDA-driven embedding.

The screening method employed in this work selected the most reproducible edges

across all S subjects. This was achieved by fitting an independent LDA classifier for the

data of each subject. Due to the limited observations per subject, regularization was intro-

duced in the form of an l1 penalty. As a result, an l1 penalized LDA model was estimated

for each subject. Such models can be estimated efficiently as described in [35] and pro-

vide the additional benefit of performing variable selection. As discussed on Chapter 5,

the choice of regularization parameter will play a fundamental role in the variable selection

procedure and must therefore be carefully tuned. The gradient-based methods for selecting

the regularization parameter discussed in Chapter 5 are not easily extended to the context

of LDA. As a result, a distinct regularization parameter was selected for each subject via

cross-validation. A regularized LDA model was then estimated for each subject and the ac-

tive variables were noted. In this manner, variables which were consistently active across

all subjects where retained while all others were discarded.

Such a screening approach is analogous to performing stability selection, as described

in [118], where the sub-sampling is performed by studying each subject independently.

This serves to discard a large number of noisy and non-informative variables, yielding a

Laplacian matrix, L′ ∈ RS·n×p′ , consisting of only selected variables which have demon-

strated reproducible discriminative power across all subjects. In practice, a threshold

ρ ∈ [0, 1] is proposed and all edges which are active in at least ρ% of subjects are included

in the final model. The screening procedure is summarized in Algorithm 3.

6.2 Simulation study

In this section we provide empirical evidence to demonstrate the capabilities of the two

graph embeddings methods introduced in Section 6.1. Throughout these simulations, we

produce simulated time series data giving rise to a number of connectivity patterns which

reflect those reported in real fMRI data. The data is generated such that the underlying

connectivity varies over time and the SINGLE algorithm, introduced in Chapter 3, was

subsequently employed to obtain estimates of time-varying connectivity networks. While
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Algorithm 3: Screening procedure for sparse LDA-driven embedding
Input: Threshold ρ ∈ [0, 1]

1 begin
2 for each subject s ∈ {1, . . . , S} do
3 - Perform 10-fold cross-validation to select regularization parameter ;
4 - Estimate a regularized LDA model using subject specific data (i.e., vec(L(s)) );
5 - Selected variables (i.e., edges) stored;

6 - All edges present in at least ρ% of subjects are retained to obtain the screened
Laplacian matrix L′;

7 return L′

the SINGLE algorithm was employed in this work, it follows that any alternative algorithm

could also have been used. The objective of this simulation is therefore to quantify how re-

liably the proposed graph embedding algorithms are able to capture changes in connectivity

structure.

6.2.1 Simulation settings

In order to thoroughly test the capabilities of the proposed graph embedding algorithms, we

follow the simulation study described in previous chapters. This involved the use of vector

autoregressive (VAR) processes to generate autocorrelated, multivariate time-series. The

use of VAR models allowed for the encoding of both autocorrelations within components

as well as cross-correlations across nodes. Furthermore, we validate the performance of

each graph embedding method using three distinct random graph algorithms: Erdős-Rényi

random graphs [56], scale-free random graphs obtained by using the preferential attach-

ment model of Barabási and Albert [11] and small-world random graphs obtained using

the Watts-Strogatz model [177]. Each of these random graph algorithms is discussed in

detail in Appendix C.

Following from the simulations detailed in Chapter 3, we fix the edge strength between

nodes to be 0.6 in the case of Erdős-Rényi random networks. In the case of the scale-

free and small-world networks we randomly sample the edge strengths uniformly from

[−1/2,−1/4] ∪ [1/4, 1/2]. This serves to introduce additional variability and further increase

the difficulty of the task at hand.
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In many task based studies, subjects are required to alternate between performing a

cognitive task and resting in a cyclic fashion. As such, the simulations presented in the

work consist of a cyclic connectivity structure, where the underlying connectivity varies

between two simulated networks. As a result, multivariate, simulated data was generated

where the underlying covariance structure alternated in a cyclic fashion. Three distinct

network structures were considered: Erdős-Rényi, scale-free and small-world networks.

Furthermore, networks were simulated with p = 10, 25 and 50 nodes respectively while

the number of observations within each segment remained fixed at n = 100. This allows

for the study of the behavior the proposed of graph embedding techniques as the ratio n/p

decreases. Throughout this simulation, S = 20 datasets where independently simulated as

described above.

6.2.2 Performance metrics

In order to evaluate the empirical performance of the graph embedding methods we con-

sider the discriminatory power of the estimated embeddings when predicting the underlying

covariance structure. As the underlying covariance structure is simulated to alternate be-

tween two network structures, this corresponds to binary classification task and traditional

classification scores, such as the area under the ROC curve (AUC), can be employed [97].

The nature of the AUC score implies that the embedding scores obtained from the proposed

methods can be directly employed. In the case of the PCA-driven embedding, the leading

principal component score was considered while in the case of the LDA-driven embedding

the discriminant scores where employed.

6.2.3 Results

Data was simulated as described in Section 6.2.1. The SINGLE algorithm, introduced in

Chapter 3, was subsequently applied in order to estimate time-varying functional connec-

tivity networks for each subject. The application of the SINGLE algorithm required the

specification of three hyper-parameters which were selected as follows: the kernel width

parameter was estimated once across all subjects using cross-validation. The remaining

regularization parameters were selected by minimizing AIC on a subject-by-subject basis.
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Given the estimated networks, the two graph embedding methods introduced in Section

6.1 were applied. Half of the S = 20 subjects were selected as a training sample, and the

networks for the remaining subjects were kept as a validation set.

PCA-driven embeddings

We begin by studying the performance of the PCA-driven embeddings. Recall that the

objective of this method is to obtain a low-dimensional embedding which maximizes the

amount of explained variance. Figure [6.2] provides an initial flavor for the capabilities

of the proposed method where the embedding based on the leading principal component

has been visualized over unseen subjects. Recall that the underlying covariance structure

has been simulated in a cyclic fashion such that the first and third segments share the same

connectivity structure. Change points are denoted by dashed, vertical lines. The results

presented in Figure [6.2] therefore indicate that the proposed embedding has accurately

captured the cyclic variations which occur in the underlying connectivity structure. More-

over, as these results corresponds to the mean embedding over unseen subjects, this serves

as an indication that the estimated PCA-driven embedding is robust and reproducible on

unseen data.

In order to obtain a more comprehensive understanding regarding the performance of

the embedding, we consider the predictive power of the embeddings when trying to uncover

the underlying covariance structure. In this setting, the underlying covariance structure was

treated as a binary variable with two classes: each of which serves to indicate one of the two

underlying connectivity regimes. The embedding corresponding to the leading principal

component was then employed to discriminate across the class. The AUC score was then

employed to obtain a measure of the discriminative capabilities of the embedding [97].

Detailed results are provided in Table [6.1a] where the mean AUC score across all unseen

simulated subjects is reported together with the standard deviation. As expected, there is

a clear decline in the discriminative capabilities of the embedding as the dimensionality

of the network increases. As reported in previous chapters, we note there is a drop in the

performance as the underlying network structure changes from Erdős-Rényi to scale-free

and finally to small-world.
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Figure 6.2: An example visualization of the results for the PCA-driven embedding for sim-
ulations with p = 25 and p = 50 nodes (results for p = 10 are omitted in the interest of
clarity). Each panel shows the mean PCA-driven embedding over 10 unseen, simulated
datasets (i.e., 10 unseen subjects). This corresponds to the loading over the leading prin-
cipal component. Standard deviations are indicated by the shaded regions. Results are
shown when the underlying connectivity structure was simulated using three distinct graph
algorithms: Erdős-Rényi, scale-free and small-world random graphs. Vertical dashed lines
indicate a change in covariance structure.

LDA-driven embeddings

While the PCA-driven embeddings are motivated by the need to understand components

of estimated networks which demonstrate the greatest variability, it is also important to

consider embeddings which are discriminative across multiple cognitive tasks. The LDA-

driven embeddings introduced in Section 6.1.3 are one potential method through which to

achieve this. Briefly, the objective of such an embedding is to learn a linear combination of

edges which are maximally discriminative across across tasks.

The fundamental difference between the PCA and LDA-driven embeddings is that the

latter is a supervised embedding. As a result, it is crucial to avoid any potential overfitting.

As described in Section 6.1.3, the proposed method employs a variable screening procedure

based on `1 regularized models. This use of regularization also serves to penalize complex

models which are naturally more prone to overfit.

We note that the underlying covariance structure was simulated in a cyclic fashion
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p Erdős-Rényi Scale-free Small-world
10 0.94 (0.02) 0.94 (0.04) 0.92 (0.05)
25 0.95 (0.03) 0.88 (0.07) 0.80 (0.08)
50 0.91 (0.03) 0.84 (0.06) 0.79 (0.07)

(a) PCA-driven

p Erdős-Rényi Scale-free Small-world
10 0.97 (0.01) 0.96 (0.05) 0.97 (0.06)
25 0.95 (0.03) 0.93 (0.06) 0.83 (0.07)
50 0.90 (0.04) 0.89 (0.06) 0.78 (0.07)

(b) LDA-driven

Table 6.1: Mean AUC scores for each of the proposed graph embeddings are shown when
the underlying covariance structure is simulated using three distinct methods. Results are
presented for networks with varying numbers of nodes, p. Standard deviation are provided
in brackets.

which alternated between two distinct regimes. As a result, the objective of the proposed

embedding is to differentiate between two distinct classes. Due to the properties of LDA,

this results in a 1-dimensional embedding [76]. This embedding is visualized in Figure

[6.3], which provides an initial demonstration of the capabilities of the LDA-driven em-

bedding.

More comprehensive results are provided in Table [6.1b], where the mean AUC score

over unseen datasets is reported. As with the PCA-driven embeddings, we note there is a

drop in performance as the number of nodes, p, increases. However, the effect does not

appear to be as dramatic in the case of the LDA-driven embedding. We attribute this to the

supervised nature of this embedding. Formally, the objective of PCA-driven embedding is

to learn a low-dimensional representation which captures maximal variance. A decrease

in the ratio n/p leads to a corresponding increase in the variability of estimated networks.

This may be partially responsible for the difference in embeddings shown in Figure [6.3]

as p increases. On the other hand, the objective of the proposed LDA-driven embedding

is to learn a linear combination of edges which is discriminative across multiple classes.

As such, the drop in the ratio n/p does not result in significant changes to the magnitude of

estimated embeddings.

6.3 Application

In this section we present an application of the proposed graph embedding techniques to

task-based fMRI dataset taken from the HCP.



Chapter 6. Linear graph embedding methods for dynamic networks 139

Figure 6.3: An example visualization of the results for the LDA-driven embedding for sim-
ulations with p = 25 and p = 50 nodes (results for p = 10 are omitted in the interest of
clarity). Each panel shows the mean LDA-driven embedding over 10 unseen, simulated
datasets (i.e., 10 unseen subjects). Standard deviations are indicated by the shaded regions.
Results are shown when the underlying connectivity structure was simulated using three
distinct graph algorithms: Erdős-Rényi, scale-free and small-world random graphs. Verti-
cal dashed lines indicate a change in covariance structure. Vertical dashed lines indicate a
change in covariance structure. Embeddings are based on unseen data.

6.3.1 HCP Working Memory task data

The data consisted of working memory task data taken from the Human Connectome

Project [55]. During the tasks subjects where presented with blocks of trials consisting

of either 0-back or 2-back working memory tasks. Two datasets were provided for each

subject, corresponding to a left-right (LR) and right-left (RL) acquisitions. Throughout this

work, they were treated as separate scans and studied independently. Data corresponding to

S = 206 of the possible 500 subjects was selected at random. Thus a total of 2×206 = 412

datasets where studied.

Data pre-processing

Preprocessing involved regression of Fristons 24 motion parameters from the fMRI data.

Sixty-eight cortical and 16 subcortical ROIs were derived from the Desikan-Killiany atlas

and the ASEG atlas, respectively. Mean BOLD timeseries for each of these 84 ROIs were
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extracted and further cleaned by regressing out timeseries sampled from white matter and

cerebrospinal fluid. Finally, the extracted timecourses were high-pass filtered using a cut-

off frequency of 1
150

Hz.

Network estimation

As in the simulation study, time-varying functional connectivity networks were estimated

for each subject using the SINGLE algorithm. This required the specification of three

hyper-parameters: the width, h, of the Gaussian kernel as well as the regularization pa-

rameters, λ1 and λ2. A fixed kernel width of h = 15, selected via cross-validation, was

employed across all subjects. The regularization parameter were selected on a subject-by-

subject basis by minimizing AIC. This involved an extensive grid-search over all possible

combinations of λ1 and λ2. In order to reduce the computational burden associated with

selecting λ1 and λ2, an initial search was performed on a reduced subset of the subjects.

This served to identify a region of the parameter space that was consistently selected across

subjects, thereby greatly reducing the computational cost associated with the grid-search

performed for each subject.

6.3.2 Results

The estimated functional connectivity networks produced by the SINGLE algorithm were

subsequently analyzed using the proposed graph embedding methods.

Recall that the objective of the PCA-driven embedding was to provide a low-dimensional

embedding which captures a large portion of the variability present in the data. This was

achieved in an unsupervised manner by considering the embeddings associated with the

k = 2 leading principal components. We note that both the LR and RL acquisitions for

each subject where considered simultaneously as the goal was to understand variability

across the entire population.

The left panel of Figure [6.4a)] shows the functional connectivity networks associ-

ated with each of the two principal component embeddings. Red edges indicate positive

associations while blue edges indicate the opposite. The associated functional connec-

tivity networks appear to reflect independent network dynamics. The network associated
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with the first principal component displays strong interhemispheric coupling, especially

across motor regions but also for other mid-range connections, such as between motor

and frontal regions as well as between frontal and medial temporal regions. Decreased

inter-hemispheric coherence has previously been linked to poor working working memory

performance in patients with traumatic brain injury [98]. In addition, interactions between

the medial temporal lobe and frontal areas has been demonstrated for working memory

tasks [8]. On the other hand, the network associated with the second principal appears

to show increased long-range coupling between frontal and parietal regions in the brain.

This is in-line with the well-established engagement of the frontoparietal attention network

during working memory tasks [36, 173, 174]. Finally, we note that the ordering of the

embeddings is itself significant. In the context of resting state data we would expect the

leading embedding to correspond to the DMN. However, from Figure [6.4a)] we note this

is not the case, suggesting that the networks recovered are induced by the associated task.

Figure [6.4b)i)] shows the mean PCA-driven embeddings across all S = 206 subjects∗.

The background is colored to denote the task taking place at each point in time: red is used

to denote 2-back working memory task while purple denotes a 0-back working memory

task and a white background is indicative of rest. The embeddings associated with the first

and second leading principal components display a clear oscillatory pattern which appears

to be loosely correlated with the underlying task. Due to the unsupervised nature of the

PCA-driven embedding, interpreting the root cause driving the embedding is non-trivial

(we note the LDA-driven embedding does not share this deficiency). We hypothesize that

the oscillatory nature of the PCA-driven embeddings may be the result of several factors:

for example it may be associated with oscillations in the brain networks orthogonal to the

underlying task. From a methodological perspective it is also important to consider the

effect of the initial network estimation algorithms. In the context of this application the

SINGLE algorithm was employed and it follows that the associated hyper-parameters will

affect the resulting embeddings. An especially relevant hyper-parameter in the case of the

SINGLE algorithm is the kernel bandwidth, h, discussed in Section 3.1.3. Finally, we note

there is a lag between the 1st and 2nd principal component embeddings, suggesting that

∗note that only LR acquisition datasets plotted here, as the task design varied from LR to RL acquisitions.



6.3 Application 142

distinct dynamics in the connectivity structure may be capture by each.

In contrast to the PCA-driven embeddings, the LDA-driven embeddings are supervised

methods which seek to identify a reduced subset of edges which are discriminative across

tasks. In this section we study the contrast between 0-back and 2-back working memory

tasks. As noted previously, two datasets where available for each subject. In such a su-

pervised learning task care was taken to differentiate between the LR and RL acquisition

datasets as there were small differences in task-design. The approach taken here was to

build an LDA-driven embedding using only the LR acquisition datasets across all subjects

and then validate this model using the unseen RL acquisition datasets. All
(
p
2

)
potential

edges were screened as described previously and only those selected over 60% of the time

were studied. This reduced the number of candidate edges to p′ = 126 <<
(
p
2

)
.

The results for the LDA-driven embedding are shown in Figure [6.4b)ii)]. This corre-

sponds to the results of applying the LDA-driven embedding to the unseen RL acquisitions,

averaged across all S subjects. The resulting embedding is strongly correlated with the on-

set of the 0-back working memory task (denoted by purple shading in the figure). This

serves as an empirical validation that the embedding is able to discriminate across the two

classes. The discriminative performance of the LDA-driven embedding was subsequently

studied on a subject by subject basis by calculating the AUC score over the unseen RL

acquisition dataset. The mean AUC score across all subjects was 0.69 with a standard

deviation of 0.14, indicating the robustness of the embedding.

We are also able to study the embedding in the context of the associated functional

connectivity network, shown in Figure [6.4a)iii)]. While the networks associated with

the PCA-driven embedding recovered edges which displayed high variability, the edges

reported by the LDA-driven embedding are discriminative across the 0-back and 2-back

working memory tasks. We find a distinct patterns that seems to separate between two

conditions differing in their cognitive load. In particular, for the 2-back condition (corre-

sponding to a high cognitive load and denoted by red edges) we observe stronger inter-

hemispheric coupling across lateral prefrontal cortices. This result is in line with studies

reporting that inter-hemispheric coupling improves the ability to perform high cognitive

demand tasks [6]. This relationship has also been observed in patients suffering from

schizophrenia, where disrupted prefrontal inter-hemispheric coupling was related to poor
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Figure 6.4: Visualization of results when linear graph embedding methods are applied to
HCP data. a) The brain networks visualize the functional connectivity networks associated
with each of the embeddings. The networks shown correspond to the following embed-
dings: i) 1st principal component embedding, ii) 2nd principal component embedding and
iii) the LDA-driven embedding. b) Visualizations are provided for the PCA (left) and LDA
(right) driven embeddings. The shaded background regions indicate the underlying cogni-
tive task (blue indicates a 0-back task while red indicates a 2-back working memory task).

working memory performance [180].

6.4 Conclusion

The study of dynamic functional connectivity networks is a novel and important avenue

of neuroscientific research [31]. As a result, many novel methodologies have been pro-

posed through which to estimate time-varying connectivity networks. However, one aspect

that has been overlooked has been how to effectively interpret and visualize the estimated
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networks in order to thoroughly understand how such networks are modulated by the under-

lying task. In the past this issue has been partially addressed via the use of a wide methods

including univariate testing on edges, tracking of graph metrics such as degree centrality

and clustering methods.

In this work we look to address these issues via the use of graph embedding methods

based on linear projections over the set of edges. The motivation behind the use of linear

methods stems from the fact that they may subsequently be interpreted in the context of

functional connectivity. As a result, such methods allow for the identification of entire

networks (as opposed to only edges or nodes) which vary throughout a task. In this manner,

we are able obtain a more holistic understanding of the dynamic reconfigurations which

occur throughout a task.

Formally, the two embedding methods presented in this work are based on PCA and

regularized LDA respectively. These two approaches correspond to unsupervised and su-

pervised learning methods respectively, and can therefore be seen as complementary tools

through which to understanding dynamic functional connectivity in further detail. The

PCA-driven embedding presented is closely related to the eigen-connectivity approach in-

troduced by [103]. Here PCA is employed to report a weighted combination of edges which

demonstrates the largest variability over time. In the context of task-based fMRI, we hy-

pothesize such edges will be related to the underlying task, however such an approach can

also be applied in the context of resting-state data, indeed this is the original application

presented by [103]. Conversely, the LDA-driven embedding corresponds to a novel super-

vised embedding algorithm which is explicitly designed for task-based fMRI data. First, a

screening procedure is applied in order to weed out non-informative edges and yield sparse

and interpretable networks. LDA is subsequently employed to learn an embedding which

is discriminative across tasks.

While the proposed graph embedding methods have the advantage that they yield eas-

ily interpretable results, it is also important to consider their shortcomings. One significant

limitation of the both graph embedding methods is that they fail to account for autocorre-

lation which may be present in the data over time. One potential way to address this issue

may be consider dynamic PCA models, as proposed by [25, 151]. A further shortcoming of

the proposed PCA-driven embedding is that the components recovered need not necessarily
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be associated with temporal changes in the functional connectivity structure. For example,

if the variability across subjects far exceeds any dynamic variability in the connectivity,

the associated embedding will be difficult to interpret. As noted in the application to the

HCP data, it is also important to consider the relationship between the graph embedding

and network estimation methodologies. While this lies beyond the scope of this chapter,

further work will look to provide a more detailed understanding of such a relationship and

may provide guidance regarding the tuning of hyper-parameters.

We demonstrate that the empirical capabilities of the proposed embeddings methods

using simulated data where the underlying network structure is simulated in a variety of

different ways, each highlighting distinct properties which are frequently encountered in

functional connectivity networks. The simulation study provides compelling empirical evi-

dence demonstrating that the proposed methods are able to recover changes in the underly-

ing connectivity structure and are robust when applied to unseen datasets. The capabilities

of the proposed graph embedding methods are also highlighted in an application to task-

based fMRI data.

Future work may consider more complex graph embeddings which further exploit the

properties of networks, for example via the use of heat kernels [33, 34]. Moreover, graph

embedding methods could be employed in a variety of contexts. An exciting potential

application is in personalized neurofeedback based on functional connectivity [108, 109,

110, 126]. In such a setting, the use of graph embedding methods could potentially be

employed to provide an easily interpretable score for subjects to optimize via the use of

neurofeedback.
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Chapter 7

Covariance selection in the context of

heterogeneous data

The focus of preceding chapters has been largely associated with estimating time-varying

Gaussian graphical models (GGMs). This has been motivated by the study of neuroimaging

data where the underlying statistical dependencies across brain regions are assumed to vary

over time [31]. More precisely, the methods described in previous chapters have been

rooted on the introduction of regularization penalties, such as those introduced in Section

2.1, in order accurately quantify covariance structure at each observation.

In this chapter we consider a distinct problem, that of understanding heterogeneity in

covariance structure across multiple GGMs. As a result, the methods presented in this

chapter revolve around the estimation of multiple related GGMs. In many applied settings

the data available corresponds to observations across several different classes. A pertinent

example correspond to the study of functional connectivity networks across a population of

subjects. In such a setting we may consider each subject as a distinct class and typical ob-

jectives include both estimating GGMs for each class as well as a population GGM. A third

objective which is often overlooked corresponds to understanding and quantifying variabil-

ity across estimated GGMs. In particular, it is imperative to understand variability on an

edge-by-edge basis as this will allow researchers to distinguish edges shared across the en-

tire population from subject-specific idiosyncrasies. It follows that quantifying variability

across multiple subjects and relating this to physiological or genetic traits is an important
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neuroscientific problem [51].

One of the hallmarks of neuroimaging data is its reproducible nature. Observed patterns

in connectivity have been shown to demonstrate reproducible properties across subjects

[41, 191]. This motivates the need for novel methodologies with two overriding objectives.

First, there is a need to exploit the presence of shared connectivity structure in order to yield

more accurate network estimates for each subject. Second, there is also a critical need to

understand and quantify inter-subject variability in the context of functional connectivity

[94, 127]. By quantifying variability across a cohort of subjects, such methods are able to

untangle the characteristics which define a population from subject-specific idiosyncrasies.

Such methods therefore open the door to a more intimate understanding of the properties

of brain networks [60].

To date, the aforementioned challenges have not been simultaneously addressed in

a comprehensive manner. Instead, previous work has considered one of two main ap-

proaches. The first involves learning a separate GGM for each subject. While methods

such as the Graphical lasso are often employed to address the high-dimensional nature of

the data, more sophisticated techniques are able to exploit the reproducible nature of con-

nectivity via the introduction of novel regularization schemes [42, 172]. Such methods

propose to jointly estimate networks across subjects under some constraints over edges. In

this manner, the edge structure of each subject is informed by the estimated structure of all

remaining subjects.

The second approach is to learn a single GGM that is representative of the entire pop-

ulation of brain networks. Such a strategy is able to alleviate issues caused by the high-

dimensional nature of the data by combining observations across subjects (albeit in a po-

tentially naı̈ve manner). However, the question of understanding variability across the

population is often sidelined [60].

The objective of the work presented in this chapter is to reconcile the two popular ap-

proaches presented above, thus allowing for accurate network estimation at subject-specific

and population levels while also quantifying variability present across a cohort. The pro-

posed methodology, named Mixed Neighborhood Selection (MNS), is based on the neigh-

borhood selection method introduced in Section 2.2. By recasting covariance selection as a

series of linear regression problems, neighborhood selection methods are able to learn the
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local network topology of each region. MNS extends neighborhood selection by incorpo-

rating an additional random effect component. This corresponds to learning a novel model

for covariance structure across a cohort of subjects. In the proposed model the conditional

dependence structure for each subject is decomposed as the union of a population covari-

ance structure together with subject-specific idiosyncrasies. This serves to directly model

inter-subject variability and provides a much richer model of functional connectivity. In

particular, the proposed method is able to partition edges according to their reproducibility

across the cohort. In doing so, MNS provides an additional layer of information which can

be exploited to further understand functional connectivity. Moreover, by effectively differ-

entiating between reproducible edges present across the entire cohort and highly variable

edges, the proposed method is able to share information across subjects in a discriminative

manner, leading to more reliable network estimates.

In order to illustrate the capabilities of the proposed method we present a brief motivat-

ing example, shown in Figure [7.1]. We consider a scenario where the population consists

of four individuals whose functional connectivity networks share a common structure but

also demonstrate some variability. In particular, one edge varies across subjects such that

two subjects exhibit the functional connectivity shown in Figure [7.1a] and the remaining

two Figure [7.1b]; the edge in question (edge A) is shown to vary from positive to negative

across groups. In such a scenario, it is of scientific interest both to uncover the correct func-

tional connectivity networks as well as to correctly identify edges which are variable within

the population. This is precisely what MNS is capable of achieving. The results are shown

in Figure [7.1c] where the blue lines indicate edges shared across the entire population.

The thick gray edges indicate random effect edges that demonstrate high variability. Figure

[7.1d] shows the estimated edge coefficients for two edges of interest when estimated using

the proposed method and the Graphical lasso. We note that in addition to correctly recov-

ering the sparsity structure, the proposed method is able to discriminate edges according

to their reproducibility over the cohort. This is in contrast to what could be achieved by

studying the networks estimated for each subject independently. This point is demonstrated

in Figure [7.1d] where the estimated edge coefficients for the Graphical lasso∗ are shown to

∗The Graphical lasso was run independently for each subject. The regularization parameter for each
subject was selected using cross-validation.
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Figure 7.1: Toy motivating example to illustrate the capabilities of the proposed method.
Networks were simulated with p = 5 nodes and with n = 8 observations per subject for
N = 4 subjects. The networks for two of the subjects is shown in (a) while the networks for
the remaining two is shown in (b). Blue and red edges indicate positive and negative partial
correlations respectively. A significant proportion of the edges are shared across subjects
with a single variable edge. The results for our proposed method are shown in (c): blue
lines indicate edges shared by the entire population while thick gray edges indicate highly
variable edges. Estimated edge coefficients for edges A and B are shown as obtained by the
MNS algorithm as well as by applying the Graphical lasso to each dataset independently
in (d): Dashed blue lines indicate the estimated population edge value while the solid back
line is the estimated probability density function of that edge based on the random effects.
Blue, triangular points indicate edge values as estimated by the Graphical lasso while red,
circular points indicate subject-specific MNS estimates.

be variable across both edges, one of which is does not vary across subjects. As a result, it

follows that identifying variable edges in a two-step procedure is challenging, even in low

dimensions.

The remainder of this chapter is organized as follows. The proposed method is detailed

in Section 7.1. We present an extensive simulation study in Section 7.2. The proposed

method is applied to resting-state fMRI data from the ABIDE consortium in Section 7.3.

7.1 Mixed neighborhood selection

To set notation, we assume we have access to fMRI time series across a cohort of S subjects.

For the ith subject, it is assumed we observe an n-dimensional fMRI time series across p
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fixed regions of interest. We write V = {1, . . . , p} to denote the set of regions or nodes

and refer to the dataset for the ith subject by X(i) ∈ Rn×p. Further, we write X(i)
v ∈ Rn to

denote the time-series for any node v ∈ V . Similarly, we let X(i)
\v ∈ Rn×(p−1) denote the

times-series across all remaining nodes.

Throughout this work it is assumed that the data of each subject follows a stationary

multivariate Gaussian distribution. Since our primary interest is the estimation of functional

connectivity networks, summarized in the inverse covariance matrix, we assume without

loss of generality that each X(i) corresponds to n samples from a multivariate Gaussian

distribution with zero mean and covariance given by Σ(i).

Under the assumption of Gaussianity, estimating functional connectivity networks based

on partial correlations is equivalent to learning the conditional dependence structure for

each subject. This can be succinctly represented as a graphical model, G(i) =
(
V,E(i)

)
,

where the edge set, E(i), encodes conditional dependencies across a fixed set of nodes, V .

Formally, the edge set summarizes the non-zero entries in the precision matrix, thus:

E(i) = supp
((

Σ(i)
)−1
)

=
{

(j, k) :
(
Σ(i)
)−1

j,k
6= 0
}
. (7.1)

The objective of the proposed Mixed Neighborhood Selection (MNS) algorithm is to

accurately infer the edge structure across a cohort of subjects. Due to the aforementioned

properties of functional connectivity networks, we wish to exploit information across mul-

tiple subjects in order to obtain more accurate network estimates for each subject. We also

wish to accurately identify the set of highly variable edges. This allows us to distill the set

of stable edges, which are predominant across the entire cohort, from highly variable edges.

In order to achieve this we introduce a model for the covariance structure across subjects,

discussed in Section 7.1.1. The corresponding estimation framework and algorithm are

discussed in Section 7.1.2.

7.1.1 A novel covariance model

We propose to model the covariance structure for each subject as the union of a shared

covariance structure together with subject-specific idiosyncrasies. This corresponds to the

assumption that there exists a shared covariance structure which manifests itself across all
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subjects together with subject-specific deviations from this structure. The latter allows our

model to accommodate inter-subject variability which cannot be ignored. As a result, we

model the conditional dependence structure of each subject as the union of the support of

a sparse population network and a subject-specific network. Formally, the support for each

subject’s conditional dependence structure, originally defined in equation (7.1), is modeled

as:

E(i) = Epop ∪ Ẽ(i) (7.2)

Here we interpret Epop as the population edges which encode the conditional dependence

structure shared across the entire population. Under the assumption of Gaussianity, it

follows that Epop is associated with a population precision matrix, Θpop ∈ Rp×p. From

the perspective of covariance structure, Epop encodes the maximal conditional dependence

structure shared across all subjects. On the other hand, it is Ẽ(i) which encodes subject-

specific deviations from the population covariance structure. We define Ẽ =
⋃N
i=1 Ẽ

(i) as

the set of edges demonstrating variability across the entire population of N subjects. This

variability may either be attributed to the nature of the edge (i.e., positive or negative partial

correlations as in the motivating example described in Figure [7.1]) or partial presence of

the edge (i.e., the edge is only present in some subjects).

The objective of the proposed method therefore corresponds to accurately identifying

both Epop and Ẽ(i). Given Epop and Ẽ(i), one can infer E(i) and Ẽ. However, by focusing

on Epop and Ẽ(i), as opposed to directly considering subject-specific edges, a far richer

description of functional architecture is obtained. In the case of the motivating example

presented in Figure [7.1], Ẽ = Ẽ(i) = {A} while the remaining edges are captured in Epop.

From the perspective of neuroimaging, partitioning edges in this manner is fundamental to

further understanding the functional architecture of the brain [93].

It is useful to note that the model described in equation (7.2) generalizes two typical

approaches in the study of functional connectivity. The traditional method of estimating a

single population network, Θpop, by concatenating data across all subjects is equivalent to

the assumption that Ẽ = ∅. This corresponds to the strong assumption that all observations

across all subjects share an identical conditional dependence structure. Conversely, the

approach of estimating a functional connectivity network for each subject independently
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corresponds to the assumption that Epop = ∅. In such a scenario, there is no advantage

to be gained by sharing information across subjects. Typically, we would expect the true

underlying network structure across subjects to lie somewhere along the spectrum between

these two extremes; thus justifying the proposed model.

7.1.2 Estimation framework

The covariance model described in Section 7.1.1 provides a rich framework through which

to understand connectivity across a cohort of subjects. In order to learn the associated

parameters, we look to extend neighborhood selection. As a result, we consider learning

the neighborhood of node v ∈ V over a cohort of N subjects by studying the following

linear mixed effect model:

X(i)
v = X

(i)
\v β

v +X
(i)
\v b̃

(i),v + ε(i),v for i = 1, . . . N . (7.3)

Recall that X(i)
v denotes the time series at node v for subject i. The model described in

equation (7.3) directly extends traditional neighborhood selection model by introducing

random effect terms, b̃(i),v, for each subject. We note that βv corresponds to the shared

population neighborhood.

The random effects are assumed to follow a multivariate Gaussian distribution, b̃(i),v ∼
N (0,Φv), independently of ε(i),v. The choice of covariance structure for random effects is

crucial to both estimating the model as well as to its interpretability. While it is possible to

motivate many choices for Φv ∈ Rp−1×p−1, in this work we limit ourselves to the scenario

where Φv = σ2diag(σv2). Here σv ∈ Rp−1 is a vector describing the standard deviation

of the neighborhood of v across the cohort of N subjects. A large value of σvu would be

indicative of heterogeneity in the edge between nodes v and u.

For any node v ∈ V , the model described in equations (7.3) is easily interpretable.

The population, or fixed effects, neighborhood is captured in βv. These are the effects that

are shared across the entire cohort of subjects and correspond to the set of edges in Epop.

Meanwhile, the random effects are able to capture subject-specific deviations from the

population neighborhood and can thereby be employed to obtain a network for each subject.

Formally, the random effects captured in σv correspond to the set of highly variable edges,
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Ẽ. Finally, we are also able to obtain estimates of b̃(i),v, which can be employed to obtain

subject-specific networks. These values correspond to the subject-specific idiosyncrasies,

Ẽ(i).

Estimation algorithm

The model described in Section 7.1.2 contains the following parameters, φv = (βv, σv, σ2) ∈
R2(p−1)+1, which must be estimated for each node v ∈ V . Given φv we can subsequently

obtain the best linear unbiased predictions (BLUPs) for each of the random effects, b̃(i),v,

across subjects [139]. In this work φv is estimated in a maximum likelihood framework,

where the negative log-likelihood for node v is proportional to:

L(φv) =
N∑

i=1

1

2
log det V (i)

v +
1

2

(
X(i)
v −X

(i)
\v β

v
)T

V (i)
v

−1
(
X(i)
v −X

(i)
\v β

v
)
, (7.4)

where we define V (i)
v to be the variance structure for node v at subject i:

V (i)
v = σ2

(
X

(i)
\v diag(σv2)

(
X

(i)
\v

)T
+ I

)
. (7.5)

where we write I to denote the identity matrix.

We re-parameterize the random effects component of the mixed effect model, described

in equation (7.3), as follows:

b̃(i),v = diag(σv) b(i),v, (7.6)

where b(i),v ∼ N (0, σ2I). This serves to simplify the discussion of the estimation proce-

dure.

In this work random effects are treated as latent variables and an EM algorithm is em-

ployed [115]. Fitting linear mixed effects models in this manner is a popular approach

first posited by [45] and for which many efficient algorithms have been proposed [119]. In

the context of this work, such an approach will prove beneficial when regularization con-

straints are introduced. Assuming the random effects, b(i),v, are observed the complete data
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log-likelihood is proportional to:

Lc(φv) =

N∑

i=1

n+ p

2
log σ2 +

1

2σ2

(∣∣∣
∣∣∣X(i)

v −X
(i)
\v β

v −X(i)
\v diag(σv)b(i),v

∣∣∣
∣∣∣
2

2
+ b(i),v

T
b(i),v

)
. (7.7)

Regularization is introduced for two reasons. First, sparse solutions remain feasible

when only a reduced number of observations or subjects are available. Second, parsimo-

nious solutions remain easily interpretable even in the presence of many nodes. As a result,

we impose an `1 penalty on both the fixed as well as random effects. In terms of the ran-

dom effects we penalize the variance terms, σv. Should a variance be shrunk to zero, the

resulting random effect is effectively removed from the model. The introduction of sparsity

inducing penalties yields the following penalized complete-data log-likelihood:

Lλ1,λ2c (φv) = Lc(φv) + λ1||βv||1 + λ2||σv||1, (7.8)

where λ1 and λ2 are regularization parameters. Sparsity at the population level is enforced

by λ1, while λ2 encourages sparsity in the random effects by shrinking the standard devia-

tion terms, σv.

The proposed EM algorithm involves iteratively computing the conditional expectation

of latent variables, Q(φ;φv), in our case the random effects, and minimizing the expected

conditional log-likelihood with respect to parameters φv. The expectation step (E-step) can

be computed in closed form as follows:

b(i),v =
(

diag(σv)X
(i)
\v
T
X

(i)
\v diag(σv) + I

)−1

X
(i)
\v
T

diag(σv)
(
X(i)
v −X

(i)
\v β

v
)

(7.9)

independently for each subject i = 1, . . . , N . This follows from computing the conditional

expectation of the latent random effect variables given the observed data and current pa-

rameter estimates [45]. It is clear from equation (7.9) that if σvu is shrunk to zero then the

uth entry of b(i),v will also be zero for all subjects.

In the minimization step (M-step) the latent variables, b(i),v, are assumed to be observed.

We therefore learn (βv, σv) by solving the following convex problem:

(βv , σv) = argmin
(βv∈Rp−1,σv∈Rp−1

+ )

{∣∣∣∣∣∣X(i)
v −X

(i)
\v β

v −X(i)
\v diag(b(i),v)σv

∣∣∣∣∣∣2
2

+ λ1||βv ||1 + λ2||σv ||1
}
. (7.10)
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We note that equation (7.10) is a lasso problem with distinct regularization parameters ap-

plied to the fixed and random effects components respectively. A vast range of efficient

algorithms can be employed to solve equation (7.10). In this work gradient descent algo-

rithms [67], such as those discussed in Section 2.3, were employed. The motivation behind

this choice was that due to the iterative nature of the EM algorithm employed, a lasso prob-

lem must be solved at each iteration. It follows that while solutions from one iteration to

the next will typically not be identical they will be similar. As a result, computational gains

can be obtained by using past solutions as warm-starts. Gradient descent algorithms are

particularly well-suited for such tasks. Algorithm 4 details the proposed method.

Algorithm 4: Mixed neighborhood selection algorithm
Input: Data across N subjects, {X(i) : i = 1, . . . , N}

1 begin
2 for v in {1, . . . , V } do
3 Define initial estimates: βv = 0, σv = 1, σ = 1 and b(i),v = 0
4 while not converged do
5 Update (βv, σv) by solving equation (7.10) // M-step
6 Estimate latent variables using equation (7.9) // E-step

7 Store βv, σv and
{
b(i),v

}N
i=1

8 Epop = {(u, v) : βvu 6= 0 and βuv 6= 0}
9 Ẽ = {(u, v) : σvu 6= 0 and σuv 6= 0}

10 Ẽ(i) = {(u, v) : b
(i),v
u 6= 0 and b(i),u

v 6= 0}
11 return Epop, Ẽ and Ẽ(i) for i = 1, . . . , N

7.1.3 Tuning parameters

The proposed method requires the tuning of two regularization parameters which govern

the nature of the estimated population and subject-specific networks respectively. Large

values of λ1 will lead to sparse networks at the population level. Conversely, selecting

large λ2 will penalize the variance of the random effects leading to sparse subject-specific

contributions to covariance structure.

Moreover, in the class of models considered in this work each covariate can contribute

to the fixed as well as random effect structure. This can potentially lead to problems re-
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garding the interpretability of estimated models. For example, over-penalizing the fixed

effects may lead to over-estimation of the random effect variances as compensation [153].

The choice of regularization parameters is therefore a delicate issue which must be handled

with care.

While information theoretic methods such as the AIC may be employed for the purpose

of tuning regularization parameters, in this work we employ cross-validation. We note that

such an approach is frequently employed within neuroimaging applications [172, 171].

Formally, the data across all subjects is divided into K folds. For each fold, the data from

the remaining K − 1 folds is employed to fit the penalized linear mixed model described

in Section 7.1.2. The resulting model is then used to predict the unseen data and the mean

square error is noted. This procedure is repeated over all nodes and across all subjects, with

the parameters minimizing total mean square error selected.

7.2 Simulation study

In this section we evaluate the performance of the proposed method using simulated data

that is representative of functional imaging data. We assess the empirical performance

of the MNS algorithm in three distinct settings which correspond to correctly reporting

the edge structure of the population, subject-specific and highly variable network edges

respectively. The first task corresponds to correctly recovering Epop while the second re-

quires learning subject-specific edge structure, E(i), defined in equation (7.1). Finally, the

task of recovering variable edges is equivalent to learning the set of variable edges, Ẽ.

7.2.1 Simulation settings

In order to perform such a study we require a method through which to simulate population

and subject-specific networks. While numerous algorithms have been proposed to generate

random individual networks, there has been limited work on algorithms to simulate multi-

ple clustered networks. Notably, there is no documented method through which to generate

networks from a cohort of related subjects that demonstrate the characteristics observed in

real fMRI data; namely a shared core structure which is reproducible across all subjects

together with significant inter-subject variability in the remaining edges [30].
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In order to address this issue we propose a novel method of simulating multiple, related

networks. The proposed algorithm is motivated by an exploratory data analysis of resting

state fMRI data. We briefly outline the proposed algorithm in this section with further

details provided in Appendix C.2.

The underlying idea behind the proposed network simulation method is that key prop-

erties observed in fMRI data should be present. As such, the proposed method consists of

a set of population edges Epop which are sampled according to the preferential attachment

model of [11]. These edges constitute the core, reproducible connectivity structure which

will be present across all subjects. Thereafter, a set of variable edges, Ẽ, is selected uni-

formly at random across all edges. For each subject, edges in Ẽ, are included in the subject-

specific network, Ẽ(i), with some fixed probability τ . This yields clustered networks where

there is a clear shared structure together with diverse subject-specific idiosyncrasies.

The proposed method was employed to simulate synthetic data for a cohort of N = 10

subjects. The number of nodes was fixed at p = 50. For each subject, data consisted of

n samples from a multivariate Gaussian with zero mean and covariance specified by Ẽ(i).

Data was simulated with a varying number of observations per subject, n ∈ {50, 100, 200}.

7.2.2 Alternative methods

Throughout this simulation the performance of the MNS algorithm was benchmarked against

the current state of the art in each of the three settings described above. In the case of esti-

mating the population network, the Graphical lasso [65] was employed. Such an approach

has been used extensively in the neuroimaging community to learn functional connectivity

networks across populations [157]. An approach based on resampling and randomization

was also employed. This approach, which we refer to as the Stability approach, is outlined

in Appendix B.2. We note that while this approach is inspired by the recently proposed R3

method of [129], the objective here is different.

The problem of estimating subject-specific functional connectivity networks has re-

ceived considerable attention. In this simulation study we compare the performance of the

proposed method with the two penalized likelihood methods presented in [172] and [42].

Each of these methods can be seen as a special case of the Joint Graphical lasso (JGL)
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framework proposed by [42], as a result we refer to each as the the JGL-Group or the

JGL-Fused algorithms respectively. The Graphical lasso algorithm is also employed in this

context.

As far as we are aware there are no alternative methods available which address the

problem of recovering highly variable edges. In order to provide a benchmark for the MNS

algorithm, the aforementioned Stability approach was employed in this context.

7.2.3 Performance measures

Throughout this simulation the task of recovering covariance structure is treated as a bi-

nary classification task. Thus performance is measured according to the proportion of

edges which are correctly reported as being either present or absent. In order to compare

performance across various algorithms we employ receiver operating characteristic (ROC)

curves, which illustrate the performance of a binary classifier by plotting the true positive

rate against false positive rate across a range of regularization parameters [97].

The use of ROC curves requires a single, sparsity-inducing parameter to be varied

across a range of possible values. In the case of the MNS algorithm both the population

and subject-specific parameters can affect sparsity. As a result, we look to reparameterize

the MNS penalty as follows:

λ1 = αλ (7.11)

λ2 =
√

2(1− α)λ (7.12)

where α controls the ratio of sparsity between the population and subject-specific contri-

butions and λ the overall sparsity. Thus α is fixed allowing λ to vary. While no such

adjustments are needed in the case of the JGL-Fused algorithm, we follow the same param-

eterization described in equations (7.11) and (7.12) in the case of the JGL-Group algorithm.

We note this is the same parameterization employed by [42].
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7.2.4 Results

In this section we present the results to the simulation study described above. We begin by

first considering performance in the context of recovering the set of variable edges. Results

for the more frequently studied problems of recovering population and subject covariance

structure are presented thereafter.

Throughout this simulation the MNS algorithm was run with α = 0.25 while sparsity

parameter λ varied as described in equations (7.11) and (7.12). The same parameterization

was employed for the JGL-Group algorithm with α = 0.15 selected. In the case of the

JGL-Fused algorithm, λ2 = 0.2 was employed. Finally, the Stability algorithm was run

with B = 10, 000 bootstrap iterations per subject and c = 0.25.

Variable network recovery

Understanding variability in covariance structure across a cohort of subjects is a funda-

mental problem in neuroscience. In particular, understanding whether this variation can

be attributed to phenotypic characteristics or other sources of noise is crucial in further

understanding the human connectome.

The results shown in the top panel of Figure [7.2] demonstrate that the proposed MNS

algorithm is able to accurately identify edges which demonstrate variability across a cohort

of subjects. Recall that the MNS algorithm jointly estimates the population connectivity

as well as the variance of a subject-specific random effect. Thus by considering the esti-

mated variances for the random effects, the proposed MNS algorithm is able to discrimi-

nate between edges which are heterogeneous and homogeneous throughout the population.

This is in contrast to the Stability method. Briefly, the Stability method (described in Ap-

pendix B.2) treats the presence or absence of edges at a subject level as a Bernoulli random

variable. A hierarchical random effects model is then proposed to model the presence

or absence of an edge across all subjects. The resulting estimate of the edge variability

is then employed to discriminate between variable and non-variable edges. The Stability

method therefore corresponds to a two-step procedure where variability is only studied

after networks have been estimated for subjects independently. This is in contrast to the

proposed method where subject-specific, population and variable networks are learnt si-
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Figure 7.2: Simulation results for all five algorithms across all tasks. Recovery of vari-
able edges is considered in the top panel, population network recovery in shown in the
middle panel and finally the bottom panel shows subject-specific network recovery. This
simulation was performed with p = 50 nodes and n ∈ {50, 100, 200} observations.

multaneously, resulting in significant improvements in performance. Further results are

given in Table [7.1] where the true positive rate (TPR) and false positive rate (FPR) are

reported for selected regularization parameters.

Population network recovery

Obtaining an accurate understanding of a population level covariance structure is a chal-

lenging problem due to the high inter-subject variability. As mentioned previously, it is

imperative to differentiate between subject-specific idiosyncrasies and behavior which is

reproducible across the entire cohort. A popular approach often taken in neuroimaging
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Algorithm n Population Subject Variable
TPR FPR TPR FPR TPR FPR

MNS
50 0.76 0.12 0.75 0.33 0.54 0.06

100 0.77 0.11 0.80 0.32 0.70 0.03
200 0.75 0.11 0.82 0.30 0.79 0.02

Glasso
50 0.69 0.27 0.88 0.83

NA100 0.70 0.27 0.83 0.66
200 0.68 0.27 0.85 0.58

Stability
50 0.56 0.20

NA
0.54 0.24

100 0.59 0.20 0.64 0.18
200 0.78 0.35 0.71 0.15

JGL Group
50

NA
0.86 0.71

NA100 0.83 0.62
200 0.82 0.57

JGL Fused
50

NA
0.78 0.51

NA100 0.79 0.51
200 0.79 0.50

Table 7.1: Performance of all five algorithms. The true positive rate (TPR) and false pos-
itive rate (FPR) is reported for each of the three tasks: recovering population, subject and
variable networks.

studies is to estimate a single network using data from all subjects [157], thus effectively

concatenating all data. This corresponds to the tenuous assumption that Ẽ = ∅. Such an

approach is included in this simulation together with the aforementioned Stability approach.

Results are shown in the middle panel of Figure [7.2]. It is interesting to note that for

small sample sizes (i.e., n = 50 or n = 100) the Stability approach is out-performed by

the Graphical lasso. As in the case of variable network recovery, we attribute this drop

in performance to the two-step design of the Stability method where information is only

shared across subjects after networks have been estimated. It is only when the number of

observations increases that reliable estimates of uncertainty can be obtained. Conversely,

the difference in performance between the Graphical lasso algorithm and the MNS algo-

rithm is due to the presence of heterogeneous edges, implying Ẽ 6= ∅. Thus, by providing a

more sophisticated model for inter-subject variability, the MNS algorithm is able to obtain

more reliable population network estimates.
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Subject-specific network recovery

Finally, we consider the recovery of subject-specific networks. This problem has received

considerable attention in recent years and a range of methods have been proposed. The

underlying theme in these methods revolves around effectively sharing information across

subjects. In the case of the methods proposed by [172] and [42] this is achieved via the

introduction of a regularization penalty over the edge structure. In this manner, the covari-

ance structure of an individual subject is informed by the estimated covariance structure

across all remaining subjects. However, a short coming of the aforementioned methods is

that regularization is applied in an indiscriminate manner. By enforcing either a group or

fused lasso penalty on all entries of precision matrices, such methods effectively encourage

information to be shared homogeneously across all edges. We envisage a scenario where

edges can be ordered according to their variability (or reproducibility). This is a well-

documented phenomenon in neuroimaging. In particular for fMRI data there is evidence to

suggest that variability in connectivity is directly modulated by factors such as the distance

between regions [141, 152].

The proposed MNS algorithm is able to address precisely this issue. By discriminating

between subject-specific and population edges, it is able to effectively vary the how ex-

tensively information is shared across subjects on an edge-by-edge basis. As a result, the

MNS algorithm is able to more reliably recover subject-specific covariance structure.

7.2.4.1 Further experiments

One of the assumptions of the proposed method is that data follow a multivariate Gaussian

distribution. While this assumption is commonplace in the analysis of fMRI data [105], we

also consider the performance of the MNS algorithm in the context of non-Gaussian data.

In order to study the robustness of the MNS algorithm, the simulation study presented

above was repeated with data generated according to a multivariate t-distribution. Detailed

results are reported in Appendix D. The results indicate that in comparison to alternative

methods, the MNS algorithm is robust in the presence of non-Gaussian data. We attribute

this behavior to the fact that the covariance model underlying the MNS algorithm explicitly

models heterogeneity over subjects, thus allowing the MNS algorithm to better tolerate
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contaminated data.

Furthermore, simulating networks as described in Section 7.2.1 is one of many possible

methods which could be employed. In order to provide a thorough and fair comparison

an additional simulation was also performed where networks were simulated as described

in [42]. This simulation was proposed with the objective of providing empirical evidence

regarding how accurately subject-specific networks could be reported. It is therefore not

well suited for examining how reliably the population or variance networks can be reported.

The results are presented in Appendix D.

7.3 Application

In this section the proposed MNS algorithm is applied to resting-state fMRI data from the

ABIDE consortium [48]. While the ABIDE dataset contains data corresponding to healthy

subjects and Autism Spectrum Disorder (ASD) subjects, we chose only to study healthy

controls here as the focus of this work consisted in fully understanding uncertainty across a

single population of subjects. The decision to study the ABIDE dataset in this manner was

motivated by the fact that it is an open-source dataset which has been previously studied in

the context of functional connectivity. Data from the University of Utah School of Medicine

(USM) site was considered here, a choice motivated by results suggesting the USM site

contained high-quality data [133]. The data therefore consisted of 43 healthy subjects with

ages ranging from 8 to 40 years old.

7.3.1 ABIDE data

Data was downloaded from the Autism Brain Imaging Data Exchange (ABIDE) [48]. Data

were preprocessed via a CPAC† pipeline from the ABIDE repository. Briefly, this involved

slice time correction, motion correction and intensity normalization followed by regression

of motion parameters. Linear and quadratic trends were removed from the time series

to account for low frequency drifts. Mean time-courses were then extracted from 116

regions defined by the Automated Anatomical Labeling (AAL) atlas. This resulted in 200

†see http://fcp-indi.github.com for further details
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observations over 116 nodes for each subject.

7.3.2 Results

The MNS algorithm requires the specification of two regularization parameters, each of

which controls the population and subject-specific topology of each node. As discussed in

Section 7.1.3, parameters were selected on the basis of a 10-fold cross-validation frame-

work.

One of the advantages of the proposed MNS algorithm is that it is able to simultane-

ously estimate both a population network, corresponding to reproducible edges which are

present across the entire cohort of subjects, as well as a network quantifying variability

on an edge-by-edge basis. The latter network is able to succinctly summarize variability

across a cohort of subjects. Finally, the MNS algorithm also yields estimates of subject-

specific connectivity networks. This allows connectivity to be studied in three distinct yet

complimentary approaches which we discuss below.

The top panel of Figure [7.3] shows the estimated population network, indicating the

edges which were identified as being consistently present across the entire cohort. The

network has an estimated edge density of around 10% and we note there is strong inter-

hemispheric coupling as would be expected in resting-state connectivity. More importantly,

the bottom panel of Figure [7.3] shows the estimated variability network. This corresponds

to the collection of edges that were identified as demonstrating variability across the co-

hort of subjects. In the case of the variability network, the edge thickness is proportional

to the estimated variance of the random effect. We note that is strong inter-hemispheric

variability, in particular between the left and frontal gyrus as well as between the left and

right postcentral gyrus. There also appears to be a region of variability centered around

the cerebellum. We note that the aforementioned regions are in brain areas with relatively

high susceptibility to artifact and sensitivity to changes in brain shape, such as the medial

prefrontal cortex [133].

One of the strengths of the MNS algorithm is that this variability can be further stud-

ied to obtain a deeper understanding regarding the characteristics that define differences

in connectivity over a cohort. In Figure [7.4] the variability of two edges is studied in
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Figure 7.3: Estimated population network (top) and variable edge network (bottom). Edge
thickness is proportional to the magnitude of the partial correlation across edges (or vari-
ance in the case of variance network). In the case of the population network we note there
is high inter-hemispheric coupling which is to be expected in resting-state data. Similar
patterns occur in the variable edge network.

detail. The edges correspond to inter-hemispheric connectivity between the left and right

frontal gyrus and postcentral gyrus respectively. The histograms capture the distribution of

estimated edges across the cohort of subjects. As these edges are estimated to be variable

across subjects, the proposed method learns a distinct partial correlation for each subject.

The color of histograms visualizes the mean age of subjects within each bin, thereby indi-

cating that bilateral connectivity across frontal gyrus and postcentral gyrus was estimated

to increase with age. This was further verified to be significant at the α = 1% level using

Spearman’s rank correlation coefficient. At a higher level, these results are consistent with

previous literature which suggests that connectivity increases across distant brain regions

during development [58] and serve to highlight the maturation of a dual-control system

within brain networks [59].

Finally, the MNS algorithm also provides estimates of subject-specific functional con-

nectivity networks. As a result, the proposed method can be used to study connectivity on

a subject-by-subject basis. Here we study various properties associated with the estimated

functional connectivity network for each subject, in particular we look to study potential
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Figure 7.4: The two histograms show the estimated partial correlations across two edges
highlighted on the left. Each of the histograms shows the distribution over estimated partial
correlations between the left and right frontal gyrus and postcentral gyrus respectively. The
color of bins is indicative of mean age of subjects within that bin.

changes in connectivity that are associated with the age of subjects.

It has been suggested that the structure of functional connectivity networks in children

is driven by anatomical proximity, with a high connectivity between spatially adjacent re-

gions, while the corresponding structure in adults reflects the integration of remote brain

regions. In order to study this hypothesis the average distance between functionally con-

nected brain regions was estimated on a subject-by-subject basis (i.e., using the subject-

specific estimates of functional connectivity). The left panel of Figure [7.5] shows the

average distance between functionally connected brain regions as a function of the subjects

age. We note there is a significant positive correlation at the α = 1% level using Spear-

man’s rank-order correlation, placing the results in line with other results in the literature

[59, 58].

In order to obtain a more detailed understanding of changes occurring in the functional

connectivity two further network statistics are studied; the mean betweenness centrality of

nodes and the transitivity of estimated networks. The betweenness centrality is a measure

of node centrality or importance in a network [147] and is defined as the fraction of all

shortest paths passing through a node. Nodes with high betweenness centrality are seen to

be bridge connections across many nodes, thereby making their presence in a network im-

portant. The mean betweenness centrality across all nodes can be interpreted as a measure

of the efficiency in a network. On the other hand, transitivity is a measure of network segre-
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Figure 7.5: Multiple network properties are plotted as a function of the subject ages. Esti-
mated p-values, obtained using Spearman’s rank-order measure of correlation, are shown in
bottom right corner of each plot. Left: the anatomical distance between functionally con-
nected regions. Middle: the mean betweenness centrality of nodes. Right: the transitivity
(i.e., clustering coefficient).

gation which quantifies the presence of clusters in the network. In the context of functional

connectivity networks, high transitivity suggests an organization of statistical dependencies

indicative of segregated neural processing [147].

The middle and right panels of Figure [7.5] shows the mean betweenness centrality and

the transitivity of estimated networks as a function of age. These results would indicate

an increase in network segregation and specialization during development, a finding that is

consistent with previous literature [59, 58].

7.4 Conclusion

We have considered the task of estimating multiple related GGMs. In particular, we have

focused on three closely related challenges: recovering population and subject-specific

covariance structure as well as identifying the set of edges demonstrating heterogeneity

across networks. The latter is fundamental in the context of many applications, yet it has

received limited attention. The proposed methodology is able to simultaneously address

all three aforementioned challenges by considering a novel model for covariance structure

across a cohort of subjects. Formally, the proposed model looks to decompose covariance

structure as the union of population effects, which are reproducible across subjects, with
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subject-specific idiosyncrasies.

The underlying covariance model results in several important benefits, principal among

which is the ability of the MNS algorithm to accurately identify heterogeneous edges. As a

result, the MNS algorithm is able to borrow information across subjects in a discriminative

manner. This is in contrast to many of the current methodologies which share information

in an indiscriminate fashion (e.g., via the use of regularization penalties whose parameter-

ization is fixed across edges).

The capabilities of the proposed MNS algorithm have been demonstrated using both

simulated as well as resting-state data taken from the ABIDE consortium [48]. Throughout

the simulation study, care was taken to ensure that the underlying covariance structure

closely resembled the frequently reported properties of fMRI data as well as to consider

the robustness of the proposed algorithm.

The MNS algorithm requires the specification of two regularization parameters, λ1 and

λ2, each of which has a natural interpretation. The first parameter controls the sparsity in

the population node topologies while the second controls the sparsity of the subject-specific

edges. We employ a cross-validation to tune both parameters, as is frequently the case in

the context neuroimaging data analysis [171]. The MNS algorithm, together with network

simulation methods described in this work have been implemented as an R package named

MNS. This can be downloaded from the Comprehensive R Archive Network (CRAN).

In conclusion, the MNS algorithm provides a novel methodology through which to un-

derstand variability across multiple related GGMs. This work corresponds to a first attempt

to modeling functional connectivity in a hierarchical manner in the presence of regulariza-

tion penalties. Furthermore, by providing a refined model for the covariance structure, the

proposed method is also able to accurately recover both population and subject-specific

functional connectivity networks.
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Chapter 8

Conclusion

Covariance selection is a challenging statistical problem which is often studied under the

assumption of stationarity. However, in many applied settings, such assumptions are not

reasonable. This indicates the need for novel methodology. Throughout this thesis, we have

employed the estimation of functional connectivity networks from fMRI as a motivating

application. Such networks are now widely accepted to display non-stationary properties,

especially during task-based studies.

The results presented in this thesis can broadly be split into studying non-stationarity

across two distinct axes. Firstly, we focus on accurately quantifying non-stationarity over

time. This is studied in Chapters 3 to 6. These chapters study non-stationary both in an

offline as well as an online setting, where the latter setting is motivated by the study of fMRI

in real-time. The second axis corresponds to non-stationarity in covariance structure across

multiple related subjects. This work, presented in Chapter 7, is motivated by the need to

understand variability in connectivity across a cohort of subjects. The contributions of this

thesis can therefore be summarized as follows:

• We propose an algorithm through which to estimate time-varying GGMs in the con-

text of non-stationary data in Chapter 3. The proposed SINGLE algorithm enforces

both sparsity and temporal homogeneity constraints in order to ensure that the esti-

mated graphs accurately reflect the true underlying covariance structure. Throughout

a series of simulation studies, the SINGLE algorithm was shown to empirically out-

perform alternative methods based on sliding windows and change-point detection.
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• We extend the proposed SINGLE algorithm to the real-time scenario in Chapter 4.

This is motivated by an exciting avenue of modern neuroscientific research which

involves the study of fMRI data in real-time. The proposed algorithm is based on the

combination of adaptive filtering and convex optimization methods. The proposed

rt-SINGLE algorithm thus allows for the estimation of GGMs in real-time, thereby

facilitating the potential use of functional connectivity networks in the context of

neurofeedback or brain decoding applications.

• A formal framework through which to tune sparsity inducing regularization parame-

ters in the context streaming and potentially non-stationary data is presented in Chap-

ter 5. Whilst regularized methods are frequently used in the context of streaming,

non-stationary data, the choice of the associated regularization parameter has not

been formally addressed to date. The proposed framework effectively recasts the se-

lection of a sparsity parameter in the context of adaptive filtering, thereby relegating

the choice of such a parameter to the data. This reformulation is the first of its kind

in allowing for the tracking of a time-varying regularization parameter as well as the

derivation of convergence guarantees in a non-stochastic setting.

• In order to provide robust and interpretable results for estimated graphical models,

we derive and validate two graph embedding methods based on linear projections

over the edge set. The proposed graph embedding algorithms are based on principal

component analysis and regularized linear discriminant analysis respectively. The

capabilities of the proposed embeddings are empirically validated throughout a series

of simulation studies.

• We propose a novel algorithm through which to estimate multiple related graphical

models inspired from the random effects hierarchical regression model. Moreover,

unlike previous approaches, the proposed MNS algorithm is focused on understand-

ing uncertainty in covariance structure across multiple graphs. It therefore provides a

far more detailed insight into differences in graphical structure which may be present.

This is achieved by proposing a novel model for covariance structure. In the proposed

model, the set of edges is partitioned in to set of shared edges together with subject-
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specific idiosyncrasies. This further allows for a population GGM to be accurately

estimated. Throughout an extensive series of simulations, the MNS algorithm is

shown to consistently outperform state-of-the-art competitors.

Future work

At a high level, the work presented in this thesis can be split into two distinct avenues of

research: the first proposes machinery in order to estimate time-varying GGMs while the

second is interested in jointly estimating multiple related graphical models and therefore

studying heterogeneity across a cohort of subjects. While there are a number of potential

future projects perhaps the most obvious would be to combine the two aforementioned

avenues. This would involve jointly estimating multiple time-varying GGMs and could

allow for the investigation of inter-subject variability in a task-based setting.

Further work could also be undertaken within each specific avenue. In the context of

studying time-varying GGMs there is room for further work relating the tuning of regular-

ization parameters in a streaming scenario. This would involve extending this work to con-

sider alternative regularization penalties, for examples ridge penalization, or considering a

more general family of likelihoods, such as exponential family models. In both cases, the

derivative with respect to the regularization parameter can be computed or approximated in

closed-form.

In the context of estimating multiple related GGMs, a future avenue for research would

involve jointly estimating multiple clustered GGMs. In the context of functional connec-

tivity, this could involve jointly estimating networks across a cohort that contained both

healthy controls together with subjects suffering some neurological pathologies. This

would be particularly interesting in the case of disorders such as Autism which are hy-

pothesized to be related to differences in functional connectivity.

Furthermore, while the study of functional connectivity networks has provided a clear

motivation for this work described in Chapter 7, it would be interesting to consider alterna-

tive applications. There are certainly many other biomedical applications such as the study

of gene-gene networks, indeed this was the motivation behind the work of [42]. Looking

beyond biomedical applications, an alternative application for such methodology could be



Chapter 8. Conclusion 172

related to the study of sensor networks within electronic devices. Such devices, for exam-

ple mobile phones or laptops, all feature data-generating processes which yield multivariate

data similar to that studied in this thesis and which could potentially provide an exciting

application.

Finally, it would also be interesting to consider the relationship between the methodol-

ogy discussed throughout this thesis and its Bayesian counterparts. In recent years likelihood-

based methods, such as the penalized likelihood methods considered throughout this thesis,

have established themselves as competitors to Bayesian modeling approaches. Such meth-

ods are often preferred due to the fact that they can often be cast as optimization problems,

thereby avoiding difficult integrals which are often associated with Bayesian approaches.

This yields important advantages such as computational efficiency and numerical stability.

However, due to recent advances in variation inference methods [16] as well as Markov

Chain Monte Carlo (MCMC) [130], it is now possible to consider Bayesian models of in-

creasing complexity. As such, it would be interesting to consider the Bayesian counterparts

of each of the two aforementioned axes.
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Appendix A

Derivative of adaptive filtering gradient

In this section we derive the gradient of the adaptive filtering objective function detailed

in equation (4.9). The results presented are taken from [5]. The log-likelihood for unseen

observation, Xt+1 is given by

C(Xt+1) = C((Xt+1; x̄t, St) = −1

2
log det(St)−

1

2
(Xt+1 − x̄t)TS−1

t (Xt+1 − x̄t). (A.1)

The approach taken here is to approximate the derivative of C(Xt+1) with respect to adap-

tive forgetting factor rt by calculating the exact derivative of Lt+1 with respect to a fixed

forgetting factor r. Then under the assumption that changes in rt occur sufficiently slowly,

this will serve as a good approximation to the derivative of Lt+1 with respect to rt.

We begin by noting the following results from [138]:

∂ log det (St)

∂r
= Trace (S−1

t S ′t) (A.2)

∂(S−1
t )

∂r
= −S−1

t S ′tS
−1
t . (A.3)

Moreover, we note that we do not need to explicitly invert St. By noting that St is a rank one

update of St−1 we are able to directly obtain S−1
t using the Sherman-Woodbury formula.
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Further, from equations (4.2), (4.3), (4.4) and (4.5) we can see that:

x̄′t =

(
1− 1

ωt

)
x̄′t−1 +

ω′t
ω2
t

(Xt − x̄t−1) (A.4)

ω′t = rt−1ω
′
t−1 + ωt (A.5)

Π′t =

(
1− 1

ωt

)
Π′t−1 +

ω′t
ω2
t

(
XtX

T
t − Πt−1

)
(A.6)

S ′t = Π′t − x̄′tx̄Tt − x̄t(x̄′t)T , (A.7)

where we have used the notation A′ to denote the derivative of a vector or matrix A with

respect to r. Using the results from equations (A.2) to (A.7) we can directly differentiate

the Lt+1 to obtain equation (4.9).
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Appendix B

Alternative methods

In this appendix we provide details regarding alternative algorithms which have been pre-

sented throughout the thesis as benchmarks. In Appendix B.1 we detail the Dynamic Con-

nectivity Regression (DCR) algorithm [38] which is provided as a benchmark for the SIN-

GLE algorithm in Chapter 3. In Appendix B.2 we present a stability approach to estimating

multiple related GGMs, which is presented as a benchmark in Chapter 7. Such an approach

is inspired by the R3 method of [129].

B.1 Dynamic connectivity regression algorithm

In this section a brief overview is provided of the Dynamic Connectivity Regression (DCR)

algorithm proposed by [38]. The principal objective of the DCR algorithm is to provide a

data-driven methodology through which to partition the experimental time-course asso-

ciated with an fMRI experiment. In this manner, the data is split into distinct temporal

intervals, each of which is associated with an estimated covariance structure. A greedy

procedure based upon change-point detection is employed to segment the data.

The DCR algorithm begins by estimating the covariance structure (i.e., the functional

connectivity) for the entire dataset under an `1 regularization penalty. The choice of regu-

larization parameter is selected by minimizing the Bayesian Information Criterion (BIC).

The data, {Xi ∈ R1×p : i = 1, . . . , T}, is then segmented using a greedy partitioning

scheme. The DCR algorithm proceeds to partition the data into subsets Aγ = {Xi : i =
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1, . . . , γ} and Bγ = {Xi : i = γ + 1, . . . , T} for γ ∈ {∆ + 1 . . . , T − ∆}. Thus ∆

represents the minimum number of observations between change-points. For each of these

partitions a network is estimated for Aγ and Bγ and their joint BIC is noted. This step

therefore involves O(n) iterations of the Graphical lasso.

Subsequently, the value of γ resulting in the greatest reduction in BIC relative to the

global network is proposed as a change-point. The DCR algorithm then employs a boot-

strap permutation test in order to verify the statistical significance of such a change-point.

Under the null hypothesis, no change-point occurs and observations are independent and

identically distributed. The data can therefore be repeatedly permuted in order to obtain a

non-parametric pivotal quantity. In order to account for the auto-correlated nature of fMRI

data, a block bootstrap permutation test is employed. The 1 − α
2

and α
2

quantiles of the

permutation distribution are calculated and interpreted as confidence bounds, allowing for

the proposed change-point to be accepted or rejected in a traditional hypothesis test frame-

work. The procedure described above is repeated recursively until no further partitions are

reported.

B.1.1 Computational cost

We begin by noting that the computational complexity of the Graphical lasso is O(p3).

While it is possible to reduce the computational complexity in some special cases we do

not consider this below.

The first stage of the DCR algorithm involves the proposal of a change-point which will

be subsequently tested using a non-parametric hypothesis test. Points are proposed based

on an extensive search across all candidate change-points, thereby incurring a computa-

tional cost of O(np3).

In order to check the statistical significance of the proposed change-point a block boot-

strap permutation permutation test is performed. This step involves a further b iterations of

the Graphical lasso where b is the number of bootstrap permutations performed. As a result

this step has a computational complexity of O(bp3).

This procedure is repeated until all significant change-points have been reported. We

therefore conclude that the computational complexity of the DCR algorithm is O((n +
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b)p3).

B.2 A stability approach to estimating a cohort of related networks

In this section we briefly overview a stability selection (i.e., bootstrap) approach for study-

ing multiple, related graphical models. This approach is inspired by the R3 approach pro-

posed in [129], however, it has a fundamentally different objective. As a result, some

adjustments are introduced.

As in the R3 method, this approach is based upon resampling, randomized penaliza-

tions and random effects. The method, described in Algorithm 5, proceeds by iteratively

obtaining bootstrapped estimates of covariance structure for each subject. These results are

subsequently incorporated into a Beta-Binomial random effects model. Each of these steps

is described below, for further discussion and motivation of these steps we refer the reader

to [128] and [129].

B.2.1 Resampling

In order to obtain reliable estimates of covariance structure the bootstrap is employed;

resulting in B bootstrap estimates of connectivity structure per subject. Recall that the

dataset for the ith subject, X(i) ∈ Rn×p, consists of n observations across p nodes. At

the bth bootstrap iteration, n observations are sampled with replacement in order to form a

bootstrapped dataset, X(i),b ∈ Rn×p, which is subsequently used to obtain an estimate for

the covariance structure using the Graphical lasso, as described in Section B.2.2.

B.2.2 Randomization penalization

In order to alleviate possible bias introduced by the use of an `1 penalty we employ ran-

domized penalization techniques, an approach first introduced by [118]. The objective of

randomized penalization schemes is to reduce the influence of inclusion/exclusion of any

edge on the presence of remaining edges. Thus when estimating the network for the bth

bootstrap sample, a random, symmetric penalty matrix, Λ(i),b ∈ Rp×p, is employed.
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In order to obtain Λ(i),b, we first estimate the regularization parameter for the ith subject

using the StARS method of [107]. This is performed only once using the entire (non-

bootstrapped) dataset, X(i), and is denoted by λ(i) ∈ R. The randomized penalization

matrix is defined as follows:

(
Λ(i),b

)
k,j

=
(
Λ(i),b

)
j,k

= λ(i) + cλ(i)
maxWj,k ∀j < k, (B.1)

where λ(i)
max is the value of sparsity parameter leading to a null model andW ∈ {−1,+1}p×p

is defined as:

Wj,k =





+1, w.p. 0.5

−1, w.p. 0.5
.

We are then able to obtain a penalized estimate of the precision as follows:

Θ(i),b = argmin
Θ

{
−log det Θ + trace

(
1

n
X(i),bTX(i),bΘ

)
+ ||Λ(i),b ◦Θ||1

}
, (B.2)

where ◦ denotes element-wise multiplication.

B.2.3 Random effects

Finally, we look to formally quantify the presence or absence of edges at a population level.

In order to achieve this a Beta-Binomial model is employed. For the ith subject we treat

the presence of any given edge at each bootstrap iteration as a Binomial random variable.

We thus define Y (i),B ∈ Rp×p such that

Y
(i),B
j,k =

1

B

B∑

b=1

I
(

Θ
(i),b
j,k 6= 0

)
. (B.3)

Following [129], Y (i),B
j,k is modeled as follows:

Y
(i),B
j,k |µ

(i)
j,k ∼ Binomial (µ

(i)
j,k, B) and µ

(i)
j,k ∼ Beta (µpopj,k , ρ

pop
j,k ), (B.4)
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where µpopj,k is the population mean and ρpopj,k the variance. They can be estimated as follows:

µpopj,k =
1

N

N∑

i=1

Y
(i),B
j,k (B.5)

ρpopj,k =
B

B − 1

∑N
i=1

(
µpopj,k − Y

(i),B
j,k

)2

µpopj,k (1− µpopj,k )(N − 1)
− 1

B − 1
(B.6)

These parameters are subsequently used to infer population networks (using µpop) as

well as report highly variable edges (using ρpop). Pseudo-code for the Stability approach is

provided in Algorithm 5.

Algorithm 5: Stability algorithm for estimating multiple related GGMs
Input: Data across N subjects, {X(i)}, number of bootstrap samples to perform, B.

1 begin
2 for i ∈ {1, . . . , N} do
3 Select λ(i) using the StARS method [107]
4 for b ∈ {1, . . . , B} do
5 Obtain X(i),b be sampling n times with replacement from X(i)

6 Set randomization penalization matrix, Λ(i),b, as in equation (B.1)
7 Estimate penalization precision matrix, Θ(i),b, as in equation (B.2)

8 Estimate µpop, ρpop using equations (B.5) and (B.6)

9 return µpop, ρpop



201

Appendix C

Network simulation methods

Producing synthetic data where the true underlying covariance structure is known is fun-

damental to providing an empirical validation of any algorithm. In this section we focus

on a host of distinct methods through which to generate synthetic network structures which

accurately reproduce many of the empirical properties reported in fMRI datasets.

We begin by discussing the wide variety of algorithms which have been proposed

through which to simulate individual networks in Appendix C.1. Each of the algorithms

discussed demonstrates some of the properties known to be present in functional connec-

tivity networks. A brief overview is provided for three such algorithms. A related problem

corresponds to simulating multiple related random networks. This is an issue which has

not been addressed in the literature to date. As a result, a novel algorithm is proposed to

this end in Appendix C.2. This algorithm is motivated by an exploratory data analysis of

resting state fMRI, which is also presented.

C.1 Simulating individual networks

In this section we outline three algorithms which are frequently employed to simulate func-

tional connectivity networks and which are subsequently employed throughout this thesis.

They correspond to the Erdős-Rényi, Barabási and Albert and Watts-Strogatz models. We

briefly detail each model and provide a detail the properties displayed by the resulting sim-

ulated networks.
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C.1.1 Erdős-Rényi model

Perhaps the simplest and most intuitive form of random network model is the Erdős-Rényi

model [56]. Such a model is parameterized by a single parameter, α ∈ [0, 1], which dictates

the probability of an edge being present between any pair of nodes. As a result, all edges

are equally likely to occur. Such a model therefore does not demonstrate many of the

empirical properties typically reported of functional connectivity networks such as high-

clustering across nodes and the presence of hub nodes [13, 30, 54]. In particular, the use

of such a model results in random networks with a low clustering coefficient and fails to

generate graphs where the degree distribution follows a power law. Nonetheless, such a

model in included throughout the simulations presented in this thesis as it corresponds to

the simplest and most widely studied random network.

It follows that the value of α dictates the density of the simulated network. Large values

of α (i.e., close to 1) will result in simulated networks with a high edge density while the

converse is true if α is close to 0. The left panel of Figure [C.1] contains an example

visualization of a random network generated using the Erdős-Rényi model. There is no

clear structure present across the nodes due to the fact that edges are added independently.

C.1.2 Barabási-Albert model

A more realistic model for generating synthetic networks is the Barabási and Albert model

[11]. Such a model is able to produce scale-free networks where the degree distribution

of nodes follows a power law. From a biological perspective, this implies that there exists

a small number of hub regions which have access to most other regions [54]. This is

in contrast to Erdős-Rényi random graphs, which may be conceptually simple but fail to

generate networks where the degree distribution follows a power law.

The generating mechanism behind such a model is fundamentally different to that of

the Erdős-Rényi model. While the latter model proceeded by randomly added edges with

a fixed probability, the Barabási and Albert model is based on a preferential attachment

mechanism. In this mechanism, nodes are iteratively added to the network. At each iter-

ation a new node is added and edges between to the previous nodes are added with prob-

ability that is proportional to the current number of edges at each node. This encourages
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Figure C.1: Visualizations of three random graph generated each of the three simulation
models discussed. The left network visualizes a sample from the Erdős-Rényi model,
where edges are each independently added with a fixed probability. As a result there is no
clear edge structure present. The middle panel visualizes a Barabási-Albert model where a
preferential attachment mechanism is employed. This yields networks with hubs but where
there is a high average path length across nodes. Finally, on the right panel contains a
random network generated according to the Watts-Strogatz model. Such a model is able
to generate random networks where there is a high clustering across nodes together with a
low average path length.

the presence of hub nodes, which contain a large number of edges and therefore continue

to attract more edges as the network grows. The middle panel of Figure [C.1] shows a

visualization produced using the Barabási and Albert model. We note the presence of hub

nodes on the right of the network which contain the majority of edges across the network

while connectivity across the remaining nodes is sparse.

C.1.3 Watts-Strogatz model

While the Barabási and Albert model is able to produce random networks where the degree

distribution follows a power law, the resulting networks also result in large average path

lengths between nodes. This is in contrast to the empirical properties of brain networks,

which are reported to display low average path lengths across nodes [162, 164]. In partic-

ular, brain networks are characterized by a low average path length together with a high

clustering coefficient across nodes. Networks displaying such characteristics are often said

to display a small-world topology [13].

The Watts-Strogatz model is one candidate method which can be employed to simulate

networks which display a small-world topology [177]. The model is initialized with a
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regular lattice, which consists of a graph where each node is connected to its K nearest

neighbors. Each of the edges in then randomly re-weired with a fixed probability β ∈ [0, 1].

It follows that as β tends to 1 the majority of edges are randomly re-wired and an Erdős-

Rényi random graph is obtained. Conversely, as β tends towards 0 fewer edges are re-wired

and a highly structured lattice network is obtained. For intermediate value of β, such an

algorithm is able to generate random networks where there is a tendency for nodes to form

clusters, formally referred to as a high clustering coefficient. This is desirable as both

anatomical as well as the functional brain networks have been reported as exhibiting such

a network topology [13, 162]. The right panel of Figure [C.1] contains a random network

produced via the Watts-Strogatz model. We note there are hub nodes present which contain

a large number of edges. In addition to this, there is also a low average path length across

nodes. This is a result of the lattice initialization which is employed.

C.2 Simulating a cohort of networks

In order to validate the methodology presented in Chapter 7, it is important to be able

to simulate multiple related networks which recreate many of the reproducible properties

often encountered in fMRI data analysis. However, the problem of simulating networks for

multiple related subjects has not been thoroughly considered in the literature. While there

is a vast literature on the properties which can be expected for subject-specific networks

(see e.g., [30]), there is limited knowledge of the behavior which can be expected across a

cohort of related subjects. In this work we look to address this issue by empirically studying

resting state data from healthy subjects taken from the ABIDE consortium [48].

In this section we present an exploratory data analysis of the ABIDE dataset presented

in Section 7.3.1. This exploratory analysis is employed to propose a novel algorithm

through which to generate multiple related random networks.

C.2.1 Exploratory data analysis

The data employed consisted of a resting state scan for N = 43 healthy subjects taken

from the USM site. For each subject, n = 230 BOLD measurements were collected over

p = 92 regions. We consequently estimated functional connectivity networks for each
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Figure C.2: Clustering coefficients for the population network (in blue) as well as for 10
randomly selected subjects. We note there is a clear drop in clustering coefficient from the
population network to the subject-specific networks.

subject independently while employing a Graphical lasso penalty. A stability selection

procedure was employed, whereby a block bootstrap was used to resample the data for each

subject multiple times. Randomized penalization was also employed to further correct for

systematic bias in model selection. At each iteration, selected edges were recorded. This

allowed us to obtain a network per subject by selecting only edges that where consistently

present across all iterations. A population network was also obtained by selecting the edges

that where consistently present across all subjects.

The properties of the resulting networks where studied in the hope of obtaining notable

properties which could subsequently be re-created synthetically. In particular, we chose to

focus on graph theoretic measures as these can be easily interpreted and calculated on sim-

ulated data [147]. Specifically, the clustering coefficient was studied across all networks.

This provides a measure of how tightly nodes in a network tend to group together, thereby

expressing the cohesiveness of a network [12].

The results, shown in Figure [C.2], show that the clustering coefficient is significantly

larger in the population network when compared the each of the subject-specific networks.

We hypothesize that this is a manifestation of the fact that there is a highly structured pop-

ulation network present. We further hypothesize that it is the large inter-subject variability
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Algorithm 6: Generate multiple related random networks
Input: Number of nodes p, number of subjects N , size of random effects network

eran = |Ẽ|, a random effects edge probability τ ∈ [0, 1] and connectivity
strength r ∈ R+

1 begin
2 Simulate Epop according to [11] model;
3 Build Θpop by uniformly sampling edge weights from the interval

[−r,− r
2
] ∪ [ r

2
, r] ;

4 Simulate Ẽ according to [56] model with eran edges;
5 for i ∈ {1, . . . , N} do
6 for each edge (j, k) do
7 if (j, k) ∈ Ẽ then
8 E(i) ← E(i) ∪ (j, k) with probability τ

9 Randomly select edge weights and signs for Θ(i)

10 return Epop, Ẽ, {E(i)} and Θpop, {Θ(i)}

which accounts for some of the drop in clustering coefficient at the subject-specific level.

C.2.2 Proposed algorithm

In order to generate synthetic networks we demonstrate the aforementioned empirical prop-

erties we proceed as follows. We begin by first simulating a population network according

to the Barabási and Albert model [11]. This results in a highly structure population network

which also demonstrates many of the properties known to be present in neuroimaging data

(e.g., power law distribution and the presence of hub nodes). A subset of highly variable

edges, denoted by Ẽ, is then randomly selected according to the Erdős-Rényi model [56].

For each subject, each edge in Ẽ is added to the subject-specific network with a given

probability, τ . This yields variable edges that are only present across a subset of the popu-

lation. The introduction of these random edges serves to reduce the clustering coefficient of

the subject-specific network, thereby recreating the properties observed in our exploratory

analysis. Pseudo-code is provided in Algorithm 6.
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Ensuring positive definiteness

Through algorithm 6 we are able to simulate a population precision, Θpop, together with

subject-specific deviations, Θ(i). We define the precision for each subject to be Θpop+Θ(i),

however, care must be taken to ensure this sum is positive-definite. In this work we follow

[42] and ensure the subject-specific precision matrices are positive definite by rescaling

the matrix. Formally, each off-diagonal element is divided by the sum of the absolute

values of all off-diagonal elements in its row. This yields a non-symmetric matrix which is

subsequently averaged with its transpose.
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Appendix D

Sensitivity analysis for Mixed

Neighbourhood Selection

D.1 Sensitivity analysis

The proposed method is based upon several assumptions, the most significant of which

is the assumption of that observations across all subjects follow a multivariate Gaussian

distribution. While such an assumption is typically made in the context of fMRI data [105],

it is important to acknowledge that deviations from normality may impact performance of

the proposed method. This problem has been studied extensively by [61], however, they

only consider the task of estimating a single GGM.

In this section we perform a sensitivity analysis of the proposed method. We follow

experimental setup of [61] and simulate data according to a multivariate t-distribution.

This is achieved by first simulating multivariate Gaussian random variables, X ∼ N (0,Σ)

for some given covariance Σ ∈ Rp×p. A Gamma random variable, τ ∼ Γ(v/2, v/2), is then

simulated independently. It then follows that X/√τ follows a p-dimensional t-distribution

with τ degrees of freedom. As in the Gaussian case, the covariance structure is specified by

Σ−1. In this manner, we are able to generate datasets following multivariate t-distributions

where the covariance structure is known.

The sensitivity analysis performed in this section proceeds as follows: data is first sim-

ulated as described in Section 6.2. This yields a dataset for each subject, X(i) ∈ Rn×p, fol-
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lowing a multivariate Gaussian distribution. An n-dimensional vector, τ (i), is the generated

independently for each subject where each entry follows a Gamma(v/2, v/2) distribution.

Each row of X(i) is subsequently divided by the square-root of the corresponding entry of

τ (i), as described above. As a result, we obtain data for each subject following a multivari-

ate t-distribution with a known covariance structure. The proposed method, together with

various alternatives, was then employed in an attempt to recover underlying GGMs.

The procedure described was employed to simulate synthetic data for a cohort of N =

10 subjects. The number of nodes was fixed at p = 50. Data was simulated with varying

numbers of observations per subject, n ∈ {50, 100, 200}. The degrees-of-freedom of the

t-distribution was fixed at v = 3 throughout this study. We note that the simulated data

in this sensitivity analysis shares the same covariance structure as data employed for the

simulation study of Section 7.2. The only difference is the nature in which multivariate ob-

servations were generated. This allows us to directly compare the results of the sensitivity

analysis with those presented in Section 7.2.

As in Section 7.2, the MNS algorithm was run with α = 0.25 while sparsity parame-

ter λ varied as described in equations (7.11) and (7.12). The same parameterization was

employed for the JGL-Group algorithm with α = 0.15 selected. In the case of the JGL-

Fused algorithm, λ2 = 0.2 was employed. Finally, the Stability algorithm was run with

B = 10, 000 bootstrap iterations per subject and c = 0.25.

Results are shown in Figure [D.1] and detailed results are provided in Table [D.1].

As expected, the performance of all algorithms considered was adversely affected by the

departure from Gaussianity. This is most notable in the estimation of variable edges, where

the performance of both the MNS and Stability algorithms suffered. While we attribute this

drop in performance to the added variability and heavy-tailed nature of the data generation

mechanism, it is reassuring to note that proposed algorithm is still able to identify variable

edges with high accuracy.

In the context of recovering population networks, all algorithms proved to be relatively

robust. As in the previous simulation, the proposed MNS algorithm is able to comfortably

outperform alternative approaches. Finally, a drop in performance was also observed across

all methods in the context of recovering the covariance structure for each subject. However,

the proposed method is still able to compete at a high level. We attribute this behavior to
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Figure D.1: Sensitivity analysis results for all five algorithms across all tasks. Data were
generated following multivariate t-distributions with known covariance structure. Recov-
ery of variable edges is considered in the top panel, population network recovery in shown
in the middle panel and finally the bottom panel shows subject-specific network recovery.
This simulation was performed with p = 50 nodes and n ∈ {50, 100, 200} observations.

the fact that the covariance model underlying the MNS algorithm explicitly models het-

erogeneity over subjects. This allows the MNS algorithm to better tolerate contaminated

data.

In conclusion, the sensitivity analysis presented provides compelling empirical evi-

dence that while the proposed method may be adversely affected when the assumption

of Gaussianity is not valid, its performance remains robust. It is also important to note that

the performance of the proposed method remains competitive when compared to alternative

algorithms, whose performance is equally affected by non-Gaussian data.
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Algorithm n Population Subject Variance
TPR FPR TPR FPR TPR FPR

MNS
50 0.60 0.11 0.60 0.20 0.49 0.08

100 0.71 0.11 0.62 0.21 0.60 0.08
200 0.76 0.10 0.73 0.22 0.70 0.08

Glasso
50 0.63 0.26 0.68 0.60

NA100 0.63 0.27 0.74 0.69
200 0.61 0.24 0.79 0.55

Stability
50 0.55 0.21

NA
0.43 0.16

100 0.57 0.22 0.51 0.15
200 0.61 0.22 0.59 0.14

JGL Group
50

NA
0.82 0.77

NA100 0.80 0.61
200 0.81 0.53

JGL Fused
50

NA
0.71 0.48

NA100 0.73 0.38
200 0.77 0.35

Table D.1: Sensitivity analysis performance of all five algorithms. Data were generated
following multivariate t-distributions with known covariance structure. The true positive
rate (TPR) and false positive rate (FPR) is reported for each of the three tasks: recovering
population, subject and variance networks.

D.1.1 Further simulations

In Section 6.2 networks were simulated as described in Algorithm 6. While this algorithm

was derived from an exploratory analysis of resting-state fMRI data, a wide range of al-

ternative algorithms could also be proposed. In this section we look to provide further

empirical evidence by recreating the simulation study of [42].

While [42] are able to simulate networks where variability is present, their proposed

method is designed primarily to provide empirical evidence on how accurately subject-

specific networks could be recovered. We therefore follow [42] and focus exclusively on

recovering subject-specific covariance structure here.

Two simulations where performed where data was simulated for N = 3 subjects and

p = 100 and p = 250 nodes respectively. Within each simulation, nodes where divided

into 10 equally sized and unconnected components. The connectivity structure within each

component was simulated according to scale-free model of [11], resulting in 10 scale-free
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Figure D.2: Results for simulations 1 and 2. These simulations sought to re-create the
simulation study presented in [42] with p = 100 and p = 250 nodes respectively.

sub-networks. Of the 10 sub-networks, eight were shared across all three subjects. Of the

remaining two sub-networks, one was present in two out of three subjects and the final

sub-network was only present in the first subject. For further details see [42].

D.1.1.1 Simulation 1: p = 100, n ∈ {50, 100, 200}

In the first simulation p = 100 nodes were employed resulting in 10 sub-networks each

with 10 nodes. The number of observations per subject was allowed to vary from n = 50

through to n = 200. The results over 100 simulations are shown in top row of Figure [D.2].

The MNS algorithm performs competitively with respect to the JGL-Fused algorithm and

outperforms both the JGL-Group and graphical lasso algorithms across all values of n. In

particular, we note that the MNS algorithm remains competitive even as the number of
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p n MNS Glasso JGL Fused JGL Group

100
50 0.346 0.006 0.175 0.016 0.343 0.007 0.221 0.012
100 0.477 0.003 0.282 0.008 0.503 0.005 0.353 0.005
200 0.594 0.002 0.429 0.004 0.632 0.005 0.514 0.003

250
50 0.287 0.002 0.125 0.007 0.292 0.003 0.161 0.005
100 0.443 0.002 0.215 0.003 0.451 0.002 0.295 0.003
200 0.573 0.001 0.370 0.002 0.584 0.002 0.465 0.002

Table D.2: Performance of all four algorithms when recovering subject specific functional
connectivity structure

observations, n, falls drastically. Detailed results are provided in Table D.2.

D.1.2 Simulation 2: p = 250, n ∈ {50, 100, 200}

The second simulation employed p = 250 nodes which were divided into 10 sub-networks

of 25 nodes each. The number of observations per subject was allowed to vary from n = 50

through to n = 200 as before. The results over 100 simulations are shown in bottom row

of Figure [D.2]. As before, the MNS algorithm performs competitively against alternative

algorithms. As with the previous simulation, we note there is a trend for ROC curves to

improve as the number of observations, n, increases. Detailed results are provided in Table

D.2.


