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3.  Fourier transforms and the 
symmetric group



1.      acts on a vector space     via the linear operatorsUG

Tg : U → U

     which must satisfy                             .Tg1Tg2 = Tg1g2

g ∈ G

2.   Equivalent to a system of matrices                            satisfyingρ : G→ Cd×d

ρ(g1) ρ(g2) = ρ(g1g2).

3.  Notion of equivalence and reducibility 

ρ1(x) = T−1ρ2(x) T ρ(x) = T−1

(
ρ1(x) 0

0 ρ2(x)

)
T

leads to complete set of inequivalent irreducible representations     .R

4.  Any         module  reduces in the formG−
U = W1 ⊕W2 ⊕ . . .⊕Wk

Tg(f) = [Tg]1 ([f ]1)⊕ . . .⊕ [Tg]k ([f ]k)



1. G = R ρk(x) = eikx

2. G = SO(3)

l = 2k + 1[ρl(θ,φ, ψ)]m,m′ = e−ilψ Y m
l (θ,φ)



5.  A specific type of        module:G−
U = L(X ) = {f : X → C}

     where      acts on      by                   , and by extensionG X x !→ g(x)
f !→ fg fg(x) = f(g−1(x)).

6.  Now what about taking                 and                          ?X = G g1(g2) = g1g2

fy(x) = f(y−1x).f !→ fy



|ψ〉 "→ U(g) |ψ〉 g ∈ G

Transformations in Quantum Mechanics:

unitary representation of G

symmetry 
group → embed 

in SU(n) →
look at
irreps



Example:   spin

SO(3) ↪→ SU(2) double cover!

SU(2) has one irrep for each d ∈ N

Fermions:

Bosons:

d = 2s

d = 2s + 1 m = −s!,−(s− 1)!, . . . , s!

m = −(s− 1/2)!,−(s− 3/2)!, . . . , (s− 1/2)!



back to Fourier transforms
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G acts on          by           ,                          .L(G) f !→ fy fy(x) = f(y−1x)



Theorem(Peter-Weyl). The decomposition of L(G) into irreducible G-modules
contains each irreducible G-module with multiplicity equal to its degree.

L(G)=
⊕

ρ∈R
⊕dρ

i=1 Wρ

isotypics



The Fourier transform on a group is 

f̂(ρ) =
∑

x∈G

f(x)ρ(x) ρ ∈ R



f̂(ρ) =
∑

x∈G

f(x) ρ(x)

2.  Unitarity: 〈f, g〉 = 〈f̂ , ĝ〉

1.  Linearity: f̂ +g = f̂ + ĝ

3.  Left-translation: f̂z(ρ) = ρ(z) f̂(ρ)

4.  Convolution: f̂ ∗g(ρ) = f̂(ρ) ĝ(ρ)

f(x) =
1

|G |

∑

ρ∈R

dρ tr
[
f̂(ρ) ρ(x−1)

]

5.  The individual components correspond to 
different levels of smoothness.  



What about the isotypics?

Recall the group algebra       :CG

f · g = f ∗ g f ∗ g(x) =
∑

y∈G

f(xy−1) g(y)

The isotypics are just the irreducible sub-algebras.

CG =
⊕

ρ∈R
GL(Cdρ)



CG = V1 ⊕ V2 ⊕ . . .⊕ Vk

isotypics

irreducible G-modules

Vi = W1 ⊕W2 ⊕ . . .⊕Wdρi



The symmetric group

Part 2



is the group of bijections Sn

σ : {1, 2, . . . , n} →{ 1, 2, . . . , n}

under composition of maps.

Clearly,                 .|Sn | = n!



σ =

(

1 2 3 4 5 6

3 2 6 5 4 1

)

1
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1
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6

σ(1) = 3

σ(2) = 2

σ(3) = 6

σ(4) = 5

σ(5) = 4

σ(6) = 1



Cycle notation

σ = (163)(45)(2)

Example:

Cycle type:

σ = (3, 2, 1)



Generators

Transpositions          generate the whole group. (i, j)

In fact, adjacent transpositions are sufficient, 
since (assuming           )i < j

(i, j) = (i, i+1) . . . (j−2,−1)(j−1, j) . . . (i + 1, i+2)(i, i+1)



Subgroups

Cayley’s theorem:

Any finite group       is a subgroup of         .G S|G |



Subgroups

permutesSk < Sn {1, 2, . . . , k}

Sλ = Sλ1
× Sλ2

× . . . × Sλk
< Sn permutes

{1, 2, . . . , λ1} , {λ1 +1, . . . , λ1 +λ2} , . . . , {n−λk, . . . , n}



Normal subgroups

An = { σ ∈ Sn | sgn (σ) = 1 }

For           this is the only one!n≥ 5


