Mini-course on representation theoretical methods in ML

3. Fourier transforms and the symmetric group

Risi Kondor (Gatsby Unit)

1. G acts on a vector space U via the linear operators

$$
T_{g}: U \rightarrow U \quad g \in G
$$

which must satisfy $T_{g_{1}} T_{g_{2}}=T_{g_{1} g_{2}}$.
2. Equivalent to a system of matrices $\rho: G \rightarrow \mathbb{C}^{d \times d}$ satisfying

$$
\rho\left(g_{1}\right) \rho\left(g_{2}\right)=\rho\left(g_{1} g_{2}\right)
$$

3. Notion of equivalence and reducibility

$$
\rho_{1}(x)=T^{-1} \rho_{2}(x) T \quad \rho(x)=T^{-1}\left(\begin{array}{cc}
\rho_{1}(x) & 0 \\
0 & \rho_{2}(x)
\end{array}\right) T
$$

leads to complete set of inequivalent irreducible representations \mathcal{R}.
4. Any G-module reduces in the form

$$
\begin{gathered}
U=W_{1} \oplus W_{2} \oplus \ldots \oplus W_{k} \\
T_{g}(f)=\left[T_{g}\right]_{1}\left([f]_{1}\right) \oplus \ldots \oplus\left[T_{g}\right]_{k}\left([f]_{k}\right)
\end{gathered}
$$

1. $G=\mathbb{R} \quad \rho_{k}(x)=e^{i k x}$
2. $G=S O(3)$

$$
\left[\rho_{l}(\theta, \phi, \psi)\right]_{m, m^{\prime}}=e^{-i l \psi} Y_{l}^{m}(\theta, \phi) \quad l=2 k+1
$$

5. A specific type of G-module:

$$
U=L(\mathcal{X})=\{f: \mathcal{X} \rightarrow \mathbb{C}\}
$$

where G acts on \mathcal{X} by $x \mapsto g(x)$, and by extension

$$
f \mapsto f^{g} \quad f^{g}(x)=f\left(g^{-1}(x)\right)
$$

6. Now what about taking $\mathcal{X}=G$ and $g_{1}\left(g_{2}\right)=g_{1} g_{2}$?

$$
f \mapsto f^{y} \quad f^{y}(x)=f\left(y^{-1} x\right)
$$

Transformations in Quantum Mechanics:

Example: spin

$\mathrm{SO}(3) \hookrightarrow \mathrm{SU}(2)$
 double cover!

$\mathrm{SU}(2)$ has one irrep for each $d \in \mathbb{N}$
Fermions:

$$
d=2 s \quad m=-(s-1 / 2) \hbar,-(s-3 / 2) \hbar, \ldots,(s-1 / 2) \hbar
$$

Bosons:

$$
d=2 s+1 \quad m=-s \hbar,-(s-1) \hbar, \ldots, s \hbar
$$

back to Fourier transforms

$$
\begin{gathered}
\sqrt{\varnothing}=? \quad \cos \varnothing=? \\
\frac{d}{d x} \otimes=? \quad\left[\begin{array}{ll}
{[} & 0 \\
0 & 1
\end{array}\right]=? \\
F\{\varnothing\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{i t \theta} d t=? \\
M y \text { normal approach } \\
\text { is useless here. }
\end{gathered}
$$

G acts on $L(G)$ by $f \mapsto f^{y}, \quad f^{y}(x)=f\left(y^{-1} x\right)$.

Theorem(Peter-Weyl). The decomposition of $L(G)$ into irreducible G-modules contains each irreducible G-module with multiplicity equal to its degree.

$$
\mathrm{L}(\mathrm{G})=\bigoplus_{\rho \in \mathcal{R}} \underbrace{\bigoplus_{i=1}^{d_{\rho}} W_{\rho}}_{\text {isotypics }}
$$

The Fourier transform on a group is

$$
\widehat{f}(\rho)=\sum_{x \in G} f(x) \rho(x) \quad \rho \in \mathcal{R}
$$

$$
\widehat{f}(\rho)=\sum_{x \in G} f(x) \rho(x) \quad f(x)=\frac{1}{|G|} \sum_{\rho \in \mathcal{R}} d_{\rho} \operatorname{tr}\left[\widehat{f}(\rho) \rho\left(x^{-1}\right)\right]
$$

I. Linearity: $\widehat{f+g}=\widehat{f}+\widehat{g}$
2. Unitarity: $\langle f, g\rangle=\langle\widehat{f}, \widehat{g}\rangle$
3. Left-translation: $\widehat{f^{z}(\rho)}=\rho(z) \widehat{f}(\rho)$
4. Convolution: $\widehat{f * g}(\rho)=\widehat{f}(\rho) \widehat{g}(\rho)$
5. The individual components correspond to different levels of smoothness.

What about the isotypics?

Recall the group algebra $\mathbb{C} G$:

$$
f \cdot g=f * g \quad f * g(x)=\sum_{y \in G} f\left(x y^{-1}\right) g(y)
$$

The isotypics are just the irreducible sub-algebras.

$$
\mathbb{C} G=\bigoplus_{\rho \in \mathcal{R}} \mathrm{GL}\left(\mathbb{C}^{d_{\rho}}\right)
$$

$$
\begin{gathered}
\mathbb{C} G=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k} \\
V_{i}=W_{1} \oplus W_{2} \oplus \ldots \oplus W_{d_{\rho_{i}}} \\
\text { irreducible G-modules }
\end{gathered}
$$

Part 2

The symmetric group
\mathbb{S}_{n} is the group of bijections

$$
\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}
$$

under composition of maps.

Clearly, $\left|\mathbb{S}_{n}\right|=n!$.

$$
\begin{aligned}
& \sigma(1)=3 \\
& \sigma(2)=2 \\
& \sigma(3)=6 \\
& \sigma(4)=5 \\
& \sigma(5)=4 \\
& \sigma(6)=1
\end{aligned}
$$

Cycle notation

Example:

$$
\sigma=(163)(45)(2)
$$

Cycle type:

$$
\sigma=(3,2,1)
$$

Generators

Transpositions (i, j) generate the whole group.

In fact, adjacent transpositions are sufficient, since (assuming $i<j$)

$$
(i, j)=(i, i+1) \ldots(j-2,-1)(j-1, j) \ldots(i+1, i+2)(i, i+1)
$$

Subgroups

Cayley's theorem:
Any finite group G is a subgroup of $\mathbb{S}_{|G|}$.

Subgroups

$\mathbb{S}_{k}<\mathbb{S}_{n}$ permutes $\{1,2, \ldots, k\}$
$\mathbb{S}_{\lambda}=\mathbb{S}_{\lambda_{1}} \times \mathbb{S}_{\lambda_{2}} \times \ldots \times \mathbb{S}_{\lambda_{k}}<\mathbb{S}_{n}$ permutes $\left\{1,2, \ldots, \lambda_{1}\right\},\left\{\lambda_{1}+1, \ldots, \lambda_{1}+\lambda_{2}\right\}, \ldots,\left\{n-\lambda_{k}, \ldots, n\right\}$

Normal subgroups

$$
A_{n}=\left\{\sigma \in \mathbb{S}_{n} \mid \operatorname{sgn}(\sigma)=1\right\}
$$

For $n \geq 5$ this is the only one!

