Mini-course on representation theoretical methods in ML

Lecture 1: Groups

Risi Kondor (Gatsby Unit)

What is a group?

G is a group if for any $x, y, z \in G$

- $1. xy \in G,$
- 2. x(yz) = (xy)z,
- 3. there is an $e \in G$ such that ex = xe = x,
- **4.** there is an $x^{-1} \in G$ such that $xx^{-1} = x^{-1}x = e$.

Why should we care?

The cyclic group $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$

$$xy = x + y \mod n$$

Klein's Viergruppe $V = \{1, i, j, k\}$

	1				
1	1	i	j	k	$V\cong \mathbb{Z}_2 imes \mathbb{Z}_2$
i	i	1	k	\dot{j}	$V = 2 \times 2$
j	j	k	1	i	
k	k	\overline{j}	\overline{i}	1	

The quaternion group $Q = \{1, i, j, k, -1, -i, -j, -k\}$

	1	i	\overline{j}	k	-1	-i	-j	-k
	1							
$i \mid \mid$	i	-1	k	-j	-i	1	-k	j
$j \mid \mid$	j	-k	-1	i	-j	k	1	-i
$k \mid$	k	j	-i	-1	-k	-j	i	1
$\overline{-1}$	-1	-i	$\overline{-j}$	-k	1	i	\overline{j}	k
-i	-i	1	-k	j	i	-1	k	-j
$-j \parallel$	-j	\overline{k}	1	-i	j	-k	$\overline{-1}$	\overline{i}
	-k					j		

$$-1^{2} = 1$$

$$(-1)a = a(-1) = -a$$

$$i^{2} = j^{2} = k^{2} = -1$$

$$ij = k$$

The icosahedron group $I_h \cong A_5$

The symmetric groups \mathbb{S}_n

group of bijections

$$\sigma \colon \{1, 2, \dots, n\} \to \{1, 2, \dots, n\}$$

i.e., permutations of n objects

The integers \mathbb{Z}

$$xy = x + y$$

The reals $\mathbb R$ and the Euclidean vector spaces $\mathbb R^n$

$$xy = x + y$$

The rotation groups SO(n)

group of $n \times n$ orthogonal matrices of det l

The Euclidean group ${\rm ISO}(n)$ and group of rigid body motions ${\rm ISO}^+(n)$

Erlangen program (1872):

"geometry is the study of properties invariant under a group" The special unitary groups SU(n)

group of $n \times n$ unitary matrices of determinant 1

The general linear group GL(n)

group of $n \times n$ invertible matrices

$$G = \left(\mathbb{Z}_3^7 \times \mathbb{Z}_2^{11}\right) \rtimes \left(\left(A_8 \times A_{12}\right) \rtimes \mathbb{Z}_2\right)$$

The Monster group $\,M\,$

```
|M| = 8080174247945128758864599049617... ... 107570057543680000000000
```

h	#	Abelian	#	non-Abelian	total
1	1	$\langle e \rangle$	0	-	1
2	1	C_2	0	-	1
3	1	C ₃	0	-	1
4	2	C_4 , $C_2 \times C_2$	0	-	2
5	1	C ₅	0	-	1
6	1	C_6	1	D_3	2
7	1	C7	0	-	1
8	3	C_8 , $C_2 \times C_4$, $C_2 \times C_2 \times C_2$	2	D_4 , Q_8	5
9	2	C_9 , $C_3 \times C_3$	0	-	2
10	1	C_{10}	1	D_5	2
11	1	C_{11}	0	-	1
12	2	C_{12} , $C_2 \times C_6$	3	A_4 , D_6 , T	5
13	1	C_{13}	0	-	1
14	1	C_{14}	1	D_7	2
15	1	C ₁₅	0	-	1
16	5	C_{16} , $C_8 \times C_2$, $C_4 \times C_4$, $C_4 \times C_2 \times C_2$, $C_2 \times C_2 \times C_2 \times C_2$	9	$D_8, D_4 \times C_2, Q \times C_2, G_{16}^{(4)}, G_{16}^{(5)}, G_{16}^{(6)}, G_{16}^{(7)}, G_{16}^{(8)}, G_{16}^{(9)}, G_{$	14
17	1	C ₁₇	0	-	1

Finite groups \mathbb{Z}_n V Q M \mathbb{S}_n Infinite groups Countable groups Z Continuous groups Lie groups compact SO(n) SU(n)non-compact \mathbb{R}^n ISO⁺(n)

Closed fields

Fields

Rings

Groups commutative non-commutative

Semigroups

Applications

 \mathbb{Z}_{12}

Galois Theory

$$ax^5 + bx^4 + cx^3 + dx^2 + ex + f = 0$$

Crystallography

Classical Physics

Galileo Galilei (1564-1642)

The invariance group of classical Physics is

 $ISO(3) \times \mathbb{R}$

Relativity

To preserve

$$(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2 - c^2(\Delta t^2)$$

relativity adopted the Lorentz group $\mathrm{SO}^+(1,3)$

$$\begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cosh(\beta) & -\sinh(\beta) & 0 & 0 \\ -\sinh(\beta) & \cosh(\beta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}$$

$$\beta = \log\left(\frac{1 + v/c}{\sqrt{1 - v^2/c^2}}\right)$$

Albert Einstein (1879-1955)

Noether's Theorem

Symmetry implies conservation:

$$\frac{dJ}{dt} = -\frac{\partial \mathcal{H}}{\partial \theta}$$

(roughly)

time → energy

space → momentum

rotation \rightarrow angular mom.

Emmy Noether (1882-1935)

Standard model and beyond

Eugene Wigner (1902-1995)

symmetries → unitary op.

observables → generators

pure states → dimensions of irreps

 $SU(3), SU(6), \dots$

lead to quarks and even stranger animals...

Engineering

Lecture Notes in Computer Science

Edited by G. Goos and J. Hartmanis

413

Reiner Lenz

Group Theoretical Methods in Image Processing

Machine Learning

```
Invariances images, graphs, etc.
```

Permutation problems

ranking
multi-object tracking

Search

optimization over combinatorial structures

Structure

Isomorphism

 $G\cong H$ if there is a bijection $\psi\colon G\to H$ s.t.

$$\psi(g_1)\,\psi(g_2) = \psi(g_1g_2)$$

If ψ is only surjective, then it is a homomorphism.

Direct product

$$G \times H = \{ (g,h) \mid g \in G, h \in H \}$$

$$(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1h_2)$$

e.g., \mathbb{Z}_2^n , \mathbb{R}^n

Semi-direct product

If H acts on G (by automorphisms), then

$$G \rtimes H = \{ (x, \Lambda) \mid x \in G, \Lambda \in H \}$$

$$(x', \Lambda')(x, \Lambda) = (x'\Lambda'(x), \Lambda'\Lambda)$$

e.g.,
$$ISO_3^+ \cong \mathbb{R}^2 \rtimes SO(3)$$
 $x \mapsto Rx + b$

Wreath product

If H is a subgroup of \mathbb{S}_n , then

$$G \wr H \cong G^n \rtimes H$$

$$(g'_1, g_2, \dots, g'_n; \sigma')(g_1, g_2, \dots, g_n; \sigma) =$$

 $(g'_1 g_{\sigma^{-1}(1)}, g'_2 g_{\sigma^{-1}(2)}, \dots, g'_n g_{\sigma^{-1}(n)}; \sigma'\sigma)$

Subgroups

 $H \subseteq G$ is a subgroup of G if it is closed wrt. the group operation.

left cosets:
$$xH = \{ xh \mid h \in H \}$$

$$x_1H, x_2H, \ldots, x_kH$$
 partition G

e.g., take $G = \mathbb{Z}$ and $H = 3\mathbb{Z}$

Normal subgroups

$$H \lhd G$$
 if $yH = Hy$ for any $y \in G$

Want to define
$$(xH)(yH) = (xyH)$$
.

If $x' = xh_1$ and $y' = yh_2$ must still get the same coset.

$$xh_1yh_2 = xyh$$
 for some $h \in H$
 $h_1yh_2 = yh$
 $h_1y = yh$
 $y^{-1}h_1y = h$
 $y^{-1}h_1y \in H$

$$\rightarrow \qquad yH=Hy \qquad \text{for any} \qquad y\in G$$

Normal subgroups

$$H \lhd G$$
 if $yH = Hy$ for any $y \in G$

$$\longrightarrow$$
 G/H is also a group

No normal factors — simple group

Jordan-Hölder theorem

Up to permutation of factors the subnormal series

$$1 \triangleleft H_1 \triangleleft \cdots \triangleleft H_k = G$$

is unique for any finite group.

The Enormous Theorem (1983)

Every finite simple group belongs to one of the following classes:

- ullet \mathbb{Z}_p ,
- $A_n \quad (n \geq 5)$,
- simple groups of Lie type,
- the 26 sporadic groups.

Group	Order (sequence A001228 & in OEIS)	1SF	Factorized order
F ₁ or M	80801742479451287588645990496171075700575436800000000	≈ 8×10 ⁵³	$2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$
F ₂ or B	4154781481226426191177580544000000	≈ 4×10 ³³	$2^{41} \cdot 3^{13} \cdot 5^6 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47$
Fi ₂₄ ' or F ₃₊	1255205709190661721292800	≈ 1×10 ²⁴	$2^{21} \cdot 3^{16} \cdot 5^2 \cdot 7^3 \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 29$
Fi ₂₃	4089470473293004800	≈ 4×10 ¹⁸	2 ¹⁸ · 3 ¹³ · 5 ² · 7 · 11 · 13 · 17 · 23
Fi ₂₂	64561751654400	≈ 6×10 ¹³	2 ¹⁷ · 3 ⁹ · 5 ² · 7 · 11 · 13
F ₃ or Th	90745943887872000	≈ 9×10 ¹⁶	2 ¹⁵ · 3 ¹⁰ · 5 ³ · 7 ² · 13 · 19 · 31
Ly	51765179004000000	≈ 5×10 ¹⁶	$2^8 \cdot 3^7 \cdot 5^6 \cdot 7 \cdot 11 \cdot 31 \cdot 37 \cdot 67$
F ₅ or HN	273030912000000	≈ 3×10 ¹⁴	2 ¹⁴ · 3 ⁶ · 5 ⁶ · 7 · 11 · 19
Co ₁	4157776806543360000	≈ 4×10 ¹⁸	$2^{21} \cdot 3^9 \cdot 5^4 \cdot 7^2 \cdot 11 \cdot 13 \cdot 23$
Co ₂	42305421312000	≈ 4×10 ¹³	2 ¹⁸ · 3 ⁶ · 5 ³ · 7 · 11 · 23
Co ₃	495766656000	≈ 5×10 ¹¹	$2^{10} \cdot 3^7 \cdot 5^3 \cdot 7 \cdot 11 \cdot 23$
O'N	460815505920	≈ 5×10 ¹¹	$2^9 \cdot 3^4 \cdot 5 \cdot 7^3 \cdot 11 \cdot 19 \cdot 31$
Suz	448345497600	≈ 4×10 ¹¹	2 ¹³ · 3 ⁷ · 5 ² · 7 · 11 · 13
Ru	145926144000	≈ 1×10 ¹¹	$2^{14} \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 13 \cdot 29$
He	4030387200	≈ 4×10 ⁹	2 ¹⁰ · 3 ³ · 5 ² · 7 ³ · 17
McL	898128000	≈ 9×10 ⁸	$2^7 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$
HS	44352000	≈ 4×10 ⁷	$2^9 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 11$
J ₄	86775571046077562880	≈ 9×10 ¹⁹	$2^{21} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11^3 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 43$
J₃ or HJM	50232960	≈ 5×10 ⁷	2 ⁷ · 3 ⁵ · 5 · 17 · 19
J ₂ or HJ	604800	≈ 6×10 ⁵	$2^7 \cdot 3^3 \cdot 5^2 \cdot 7$
J ₁	175560	≈ 2×10 ⁵	2 ³ · 3 · 5 · 7 · 11 · 19
M ₂₄	244823040	≈ 2×10 ⁸	$2^{10} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$
M ₂₃	10200960	≈ 1×10 ⁷	$2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 23$
M ₂₂	443520	≈ 4×10 ⁵	$2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$
M ₁₂	95040	≈ 1×10 ⁵	2 ⁶ · 3 ³ · 5 · 11
M ₁₁	7920	≈ 8×10 ³	2 ⁴ · 3 ² · 5 · 11

Summary

Groups are the elementary building blocks of structure in mathematics.

Symmetries and systems of transformations always have a group lurking in the background.

Three types of product, subgroups, cosets, normal subgroup, factor group, composition series.

Very powerful and general machinery.

Next time: putting groups to work

- I. Acting on vector spaces
- 2. Representation theory
- 3. Harmonic analysis

