Mini-course on representation theoretical methods in ML

Lecture 1: Groups

Risi Kondor (Gatsby Unit)

What is a group?

G is a group if for any $x, y, z \in G$
I. $x y \in G$,
2. $x(y z)=(x y) z$,
3. there is an $e \in G$ such that $e x=x e=x$,
4. there is an $x^{-1} \in G$ such that $x x^{-1}=x^{-1} x=e$.

Why should we care?

篗一等

$$
\frac{6}{4}
$$

The cyclic group $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$

$$
x y=x+y \quad \bmod n
$$

Klein's Viergruppe $V=\{1, i, j, k\}$

$$
V \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

The quaternion group $Q=\{1, i, j, k,-1,-i,-j,-k\}$

	1	i	j	k	-1	$-i$	$-j$	$-k$
1	1	i	j	k	-1	$-i$	$-j$	$-k$
i	i	-1	k	$-j$	$-i$	1	$-k$	j
j	j	$-k$	-1	i	$-j$	k	1	$-i$
k	k	j	$-i$	-1	$-k$	$-j$	i	1
-1	-1	$-i$	$-j$	$-k$	1	i	j	k
$-i$	$-i$	1	$-k$	j	i	-1	k	$-j$
$-j$	$-j$	k	1	$-i$	j	$-k$	-1	i
$-k$	$-k$	$-j$	i	1	k	j	$-i$	-1

$$
\begin{aligned}
& -1^{2}=1 \\
& (-1) a=a(-1)=-a \\
& i^{2}=j^{2}=k^{2}=-1 \\
& i j=k
\end{aligned}
$$

The icosahedron group $\quad I_{h} \cong A_{5}$

The symmetric groups \mathbb{S}_{n} group of bijections

$$
\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}
$$

i.e., permutations of n objects

The integers \mathbb{Z}

$$
x y=x+y
$$

The reals \mathbb{R} and the Euclidean vector spaces \mathbb{R}^{n}

$$
x y=x+y
$$

The rotation groups $\mathrm{SO}(n)$
group of $n \times n$ orthogonal matrices of det I

The Euclidean group $\operatorname{ISO}(n)$ and group of rigid body motions $\mathrm{ISO}^{+}(n)$

Erlangen program (1872):
"geometry is the study of properties invariant under a group"

The special unitary groups $\mathrm{SU}(n)$
group of $n \times n$ unitary matrices of determinant 1

The general linear group GL(n) group of $n \times n$ invertible matrices

$$
G=\left(\mathbb{Z}_{3}^{7} \times \mathbb{Z}_{2}^{11}\right) \rtimes\left(\left(A_{8} \times A_{12}\right) \rtimes \mathbb{Z}_{2}\right)
$$

The Monster group M
$|M|=8080174247945128758864599049617 \ldots$
... 10757005754368000000000

h	$\#$	Abelian	$\#$	non-Abelian
1	1	$\langle e\rangle$	0	-
2	1	C_{2}	0	-
3	1	C_{3}	0	-
4	2	$C_{4}, C_{2} \times C_{2}$	0	-
5	1	C_{5}	0	-
6	1	C_{6}	1	D_{3}
7	1	C_{7}	0	-
8	3	$C_{8}, C_{2} \times C_{4}, C_{2} \times C_{2} \times C_{2}$	2	D_{4}, Q_{8}
9	2	$C_{9}, C_{3} \times C_{3}$	0	-
10	1	C_{10}	1	D_{5}
11	1	C_{11}	0	-
12	2	$C_{12}, C_{2} \times C_{6}$	3	A_{4}, D_{6}, T
13	1	C_{13}	0	-
14	1	C_{14}	1	D_{7}
15	1	C_{15}	0	-
16	5	$C_{16}, C_{8} \times C_{2}, C_{4} \times C_{4}, C_{4} \times C_{2} \times C_{2}$, $C_{2} \times C_{2} \times C_{2} \times C_{2}$	9	$D_{8}, D_{4} \times C_{2}, Q \times C_{2}, G_{16}^{(4)}, G_{16}^{(5)}, G_{16}^{(6)}, G_{16}^{(7)}, G_{16}^{(8)}$,
	1	C_{17}	0	-
14		1		
			2	

Finite groups $\mathbb{Z}_{n} V Q M \mathbb{S}_{n}$ Infinite groups

Countable groups \mathbb{Z}

Continuous groups
Lie groups

$$
\begin{aligned}
& \text { compact } \mathrm{SO}(n) \mathrm{SU}(n) \\
& \text { non-compact } \mathbb{R}^{n} \mathrm{ISO}^{+}(n)
\end{aligned}
$$

Closed fields

Fields

Rings

Groups $<{ }_{\text {non-commutative }}^{\text {commutative }}$

Semigroups

Applications
\mathbb{Z}_{12}

Galois Theory

$a x^{5}+b x^{4}+c x^{3}+d x^{2}+e x+f=0$

Crystallography

Classical Physics

The invariance group of classical Physics is

$\operatorname{ISO}(3) \times \mathbb{R}$

Galileo Galilei
(1564-1642)

Relativity

To preserve

$(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}-c^{2}\left(\Delta t^{2}\right)$
relativity adopted the Lorentz group $\mathrm{SO}^{+}(1,3)$
$\left(\begin{array}{c}c t^{\prime} \\ x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right)=\left(\begin{array}{cccc}\cosh (\beta) & -\sinh (\beta) & 0 & 0 \\ -\sinh (\beta) & \cosh (\beta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}c t \\ x \\ y \\ z\end{array}\right)$
$\beta=\log \left(\frac{1+v / c}{\sqrt{1-v^{2} / c^{2}}}\right)$

Albert Einstein
(1879-1955)

Noether's Theorem

Symmetry implies conservation:

$$
\frac{d J}{d t}=-\frac{\partial \mathcal{H}}{\partial \theta}
$$

(roughly)
time
\rightarrow energy
\rightarrow momentum
rotation \rightarrow angular mom.

Emmy Noether
(1882-1935)

Standard model and beyond

Eugene Wigner
(1902-1995)
symmetries \rightarrow unitary op. observables \rightarrow generators
pure states \rightarrow dimensions of irreps

$$
\mathrm{SU}(3), \mathrm{SU}(6), \ldots
$$

lead to quarks and even stranger animals...

Engineering

ENGINEERING APPLICATIONS of NONCOMMUTATIVE HARMONC ANALYSIS

With Emphasis on Rotation and Motion Croups

Grcgory S. Chirikjinn Alcxander B. Kyakin

Machine Learning

Invariances images, graphs, etc.

Permutation problems
ranking
multi-object tracking
Search
optimization over combinatorial
structures

Structure

Isomorphism

$G \cong H$ if there is a bijection $\psi: G \rightarrow H$ s.t.

$$
\psi\left(g_{1}\right) \psi\left(g_{2}\right)=\psi\left(g_{1} g_{2}\right)
$$

If ψ is only surjective, then it is a homomorphism.

Direct product

$$
\begin{gathered}
G \times H=\{(g, h) \mid g \in G, h \in H\} \\
\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} h_{2}\right)
\end{gathered}
$$

e.g., $\mathbb{Z}_{2}^{n}, \mathbb{R}^{n}$

Semi-direct product

If H acts on G (by automorphisms), then

$$
\begin{aligned}
& G \rtimes H=\{(x, \Lambda) \mid x \in G, \Lambda \in H\} \\
& \left(x^{\prime}, \Lambda^{\prime}\right)(x, \Lambda)=\left(x^{\prime} \Lambda^{\prime}(x), \Lambda^{\prime} \Lambda\right)
\end{aligned}
$$

e.g., $\mathrm{ISO}_{3}^{+} \cong \mathbb{R}^{2} \rtimes \mathrm{SO}(3) \quad x \mapsto R x+b$

Wreath product

If H is a subgroup of \mathbb{S}_{n}, then

$$
G \imath H \cong G^{n} \rtimes H
$$

$\left(g_{1}^{\prime}, g_{2}, \ldots, g_{n}^{\prime} ; \sigma^{\prime}\right)\left(g_{1}, g_{2}, \ldots, g_{n} ; \sigma\right)=$

$$
\left(g_{1}^{\prime} g_{\sigma^{-1}(1)}, g_{2}^{\prime} g_{\sigma^{-1}(2)}, \ldots, g_{n}^{\prime} g_{\sigma^{-1}(n)} ; \sigma^{\prime} \sigma\right)
$$

Subgroups

$H \subseteq G$ is a subgroup of G if it is closed wrt. the group operation.
left cosets: $\quad x H=\{x h \mid h \in H\}$
$x_{1} H, x_{2} H, \ldots, x_{k} H$ partition G
e.g., take $G=\mathbb{Z}$ and $H=3 \mathbb{Z}$

Normal subgroups

$H \triangleleft G$ if $y H=H y$ for any $y \in G$

Want to define $(x H)(y H)=(x y H)$.

If $x^{\prime}=x h_{1}$ and $y^{\prime}=y h_{2}$ must still get the same coset.

$$
\begin{aligned}
x h_{1} y h_{2} & =x y h \quad \text { for some } \quad h \in H \\
h_{1} y h_{2} & =y h \\
h_{1} y & =y h \\
y^{-1} h_{1} y & =h \\
y^{-1} h_{1} y & \in H
\end{aligned}
$$

$\longrightarrow y H=H y \quad$ for any $\quad y \in G$

Normal subgroups

$H \triangleleft G$ if $y H=H y$ for any $y \in G$
$\longrightarrow G / H$ is also a group

No normal factors \longrightarrow simple group

Jordan-Hölder theorem

Up to permutation of factors the subnormal series

$$
1 \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{k}=G
$$

is unique for any finite group.

The Enormous Theorem (I983)

Every finite simple group belongs to one of the following classes:

- \mathbb{Z}_{p},
- $A_{n}(n \geq 5)$,
- simple groups of Lie type,
- the 26 sporadic groups.

Group	Order (sequence A001228 [in OEIS)	1SF	Factorized order
F_{1} or M	808017424794512875886459904961710757005754368000000000	$\approx 8 \times 10^{53}$	$2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$
F_{2} or B	4154781481226426191177580544000000	$\approx 4 \times 10^{33}$	$2^{41} \cdot 3^{13} \cdot 5^{6} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47$
$\mathrm{Fi}_{24}{ }^{\prime}$ or F_{3+}	1255205709190661721292800	$\approx 1 \times 10^{24}$	$2^{21} \cdot 3^{16} \cdot 5^{2} \cdot 7^{3} \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 29$
Fi_{23}	4089470473293004800	$\approx 4 \times 10^{18}$	$2^{18} \cdot 3^{13} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 23$
Fi_{22}	64561751654400	$\approx 6 \times 10^{13}$	$2^{17} \cdot 3^{9} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$
F_{3} or Th	90745943887872000	$\approx 9 \times 10^{16}$	$2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 7^{2} \cdot 13 \cdot 19 \cdot 31$
Ly	51765179004000000	$\approx 5 \times 10^{16}$	$2^{8} \cdot 3^{7} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 31 \cdot 37 \cdot 67$
F_{5} or $H N$	273030912000000	$\approx 3 \times 10^{14}$	$2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 19$
CO_{1}	4157776806543360000	$\approx 4 \times 10^{18}$	$2^{21} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 23$
CO_{2}	42305421312000	$\approx 4 \times 10^{13}$	$2^{18} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 23$
CO_{3}	495766656000	$\approx 5 \times 10^{11}$	$2^{10} \cdot 3^{7} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 23$
ON	460815505920	$\approx 5 \times 10^{11}$	$2^{9} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 11 \cdot 19 \cdot 31$
Suz	448345497600	$\approx 4 \times 10^{11}$	$2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$
Ru	145926144000	$\approx 1 \times 10^{11}$	$2^{14} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 13 \cdot 29$
He	4030387200	$\approx 4 \times 10^{9}$	$2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 7^{3} \cdot 17$
McL	898128000	$\approx 9 \times 10^{8}$	$2^{7} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11$
HS	44352000	$\approx 4 \times 10^{7}$	$2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11$
J_{4}	86775571046077562880	$\approx 9 \times 10^{19}$	$2^{21} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11^{3} \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 43$
J_{3} or HJM	50232960	$\approx 5 \times 10^{7}$	$2^{7} \cdot 3^{5} \cdot 5 \cdot 17 \cdot 19$
J_{2} or HJ	604800	$\approx 6 \times 10^{5}$	$2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$
J_{1}	175560	$\approx 2 \times 10^{5}$	$2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$
M_{24}	244823040	$\approx 2 \times 10^{8}$	$2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23$
M_{23}	10200960	$\approx 1 \times 10^{7}$	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23$
M_{22}	443520	$\approx 4 \times 10^{5}$	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$
M_{12}	95040	$\approx 1 \times 10^{5}$	$2^{6} \cdot 3^{3} \cdot 5 \cdot 11$
M_{11}	7920	$\approx 8 \times 10^{3}$	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$

Summary

Groups are the elementary building blocks of structure in mathematics.

Symmetries and systems of transformations always have a group lurking in the background.

Three types of product, subgroups, cosets, normal subgroup, factor group, composition series.

Very powerful and general machinery.

Next time: putting groups to work

I. Acting on vector spaces
2. Representation theory
3. Harmonic analysis

