Mini-course on representation theoretical methods in ML

2: Harmonic Analysis

Risi Kondor (Gatsby Unit)

So far, we concentrated on G.

Now shift to G acting on \mathcal{X} and $f: \mathcal{X} \rightarrow \mathbb{C}$.

1. G acts on \mathcal{X} by $x \mapsto g(x)$
2. If $f: \mathcal{X} \rightarrow \mathbb{C}$ then the induced action is $f \mapsto f^{g}$, where

$$
f^{g}(g(x))=f(x) \quad f^{g}(x)=f\left(g^{-1}(x)\right)
$$

3. If $L(\mathcal{X})=\{f: G \rightarrow \mathbb{C}\}$, then $T_{g}: f \mapsto f^{g}$ is a linear map

$$
T_{g}: L(\mathcal{X}) \rightarrow L(\mathcal{X})
$$

4. Is T_{g} decomposable?

$$
\begin{aligned}
& L(\mathcal{X})=W_{1} \oplus W_{2} \oplus \ldots \oplus W_{k} \\
& T_{g}(f)=\left[T_{g}\right]_{1}\left([f]_{1}\right) \oplus \ldots \oplus\left[T_{g}\right]_{k}\left([f]_{k}\right) \quad[f]_{k} \in W_{k}
\end{aligned}
$$

5. What are the elementary $\left[T_{g}\right]_{i}$ systems obeying

$$
\left[T_{g_{2}}\right]_{i}\left[T_{g_{1}}\right]_{i}=\left[T_{g_{2} g_{1}}\right]_{i} ?
$$

1. Representation: $\rho: G \rightarrow \mathbb{C}^{d \times d}$

$$
\rho(x) \cdot \rho(y)=\rho(x y)
$$

2. Equivalence: $\quad \rho_{1}(x)=T^{-1} \rho_{2}(x) T$
3. Reducibility:

$$
\rho(x)=T^{-1}\left(\begin{array}{cc}
\rho_{1}(x) & 0 \\
0 & \rho_{2}(x)
\end{array}\right) T
$$

4. Complete set of inequivalent irreducible representations: \mathcal{R}

12 ir $=$

$1.4 \mathrm{w}-\mathrm{I}$

Joseph Fourier 1768-1830

$$
f(x)=\sum_{k=-\infty}^{\infty} f_{k} e^{i k x} \quad f_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i k x} f(x) d x
$$

$$
f(x)=\int e^{2 \pi i k x} \widehat{f}(k) d k \quad \widehat{f}(k)=\int e^{-i 2 \pi k x} f(x) d x
$$

$$
f(x)=\frac{1}{n} \sum_{x=0}^{n-1} e^{2 \pi i k x / n} \widehat{f}(k) \quad \widehat{f}(k)=\sum_{x=0}^{n-1} e^{-2 \pi i k x / n} f(x)
$$

1. Linearity

$$
\widehat{f+g}=\widehat{f}+\widehat{g}
$$

2. Unitarity

$$
\langle f, g\rangle=\langle\widehat{f}, \widehat{g}\rangle
$$

3. Translation

$$
\widehat{f}^{\prime}(k)=e^{-i t k} \widehat{f}(k) \quad f^{\prime}(x)=f(x-t)
$$

4. Convolution

$$
\widehat{f * g}(k)=\widehat{f}(k) \widehat{g}(k)
$$

$$
\widehat{f * g}(x)=\int f(x-y) g(y) d y
$$

5. Differentiation

$$
\widehat{\partial f}(k)=2 \pi i k \widehat{f}(k) \quad \widehat{\partial f}=d f / d x
$$

$\mathcal{F}: L_{2}(\mathbb{R}) \rightarrow L_{2}(\mathbb{R}) \quad$ is a unitary operation that decomposes $L_{2}(\mathbb{R})$ into a sum of orthogonal subspaces that transform independently under translation/ convolution.

$$
L_{2}(\mathbb{R})=\bigoplus_{k} V_{k} \quad \begin{aligned}
& T_{t} V_{k}=V_{k} \\
& f, g \in V_{k}
\end{aligned} \Rightarrow f * g \in V_{k}
$$

This is purely an algebraic statement about how the translation group acts on $L_{2}(\mathbb{R})$.

On the other hand, \mathcal{F} also picks out subspaces of different degrees of smoothness.

Can we generalize all this to groups?

$$
\begin{gathered}
\sqrt{\varnothing}=? \quad \cos \varnothing=? \\
\frac{d}{d x} \otimes=? \quad\left[\begin{array}{ll}
{[} & 0 \\
0 & 1
\end{array}\right]=? \\
F\{\varnothing\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{i t \theta} d t=? \\
M y \text { normal approach } \\
\text { is useless here. }
\end{gathered}
$$

Convolution

Regard $f: G \rightarrow \mathbb{C}$ as $f=\sum_{x \in G} f(x) \boldsymbol{e}_{x}$.
Define $\boldsymbol{e}_{x} \cdot \boldsymbol{e}_{y}=\boldsymbol{e}_{x y}, \quad f g=\sum_{x \in G} \sum_{y \in G} f(x) f(y) \boldsymbol{e}_{x} \boldsymbol{e}_{y}$.
isotypics: irreducible subalgebras

$$
\mathbb{C} G=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k}
$$

group algebra

For compact groups this decomposition is unique.

1. $v \in V_{i}$ is really a linear operator $v: V_{i} \rightarrow V_{i}$

$$
u \mapsto v u=v * u
$$

2. In particular, $\left\{\left[e_{x}\right]_{i} \mid x \in G\right\}$ is a set of operators obeying

$$
\left[e_{x}\right]_{i}\left[e_{y}\right]_{i}=\left[e_{x y}\right]_{i}
$$

3. These are the irreducible representations

$$
\rho_{i}(x)=\left[\boldsymbol{e}_{x}\right]_{i}
$$

4. On non-commutative groups $e_{x y} \neq e_{y x}$, so some V_{i} must be multidimensional.
5. Any f can be written as $f=\sum_{x \in g} f(x) \boldsymbol{e}_{x}$, so

$$
[f]_{i}=\sum_{x \in g} f(x)\left[e_{x}\right]_{i}=\sum_{x \in G} f(x) \rho_{i}(x)
$$

6. This is the Fourier transform!

The Fourier transform on a group is

$$
\widehat{f}(\rho)=\sum_{x \in G} f(x) \rho(x) \quad \rho \in \mathcal{R}
$$

The inverse transform is

$$
f(x)=\frac{1}{|G|} \sum_{\rho \in \mathcal{R}} d_{\rho} \operatorname{tr}\left[\widehat{f}(\rho) \rho\left(x^{-1}\right)\right]
$$

$$
\widehat{f}(\rho)=\sum_{x \in G} f(x) \rho(x) \quad f(x)=\frac{1}{|G|} \sum_{\rho \in \mathcal{R}} d_{\rho} \operatorname{tr}\left[\widehat{f}(\rho) \rho\left(x^{-1}\right)\right]
$$

I. Linearity: $\widehat{f+g}=\widehat{f}+\widehat{g}$
2. Unitarity: $\langle f, g\rangle=\langle\widehat{f}, \widehat{g}\rangle$
3. Left-translation: $\widehat{f^{z}(\rho)}=\rho(z) \widehat{f}(\rho)$
4. Convolution: $\widehat{f * g}(\rho)=\widehat{f}(\rho) \widehat{g}(\rho)$
5. The individual components correspond to different levels of smoothness.

The Fourier transform $\mathcal{F}: f \rightarrow \widehat{f}$ is an isomorphism

$$
\mathcal{F}: \mathbb{C} G \rightarrow \bigoplus_{\rho \in \mathcal{R}} \mathbb{C}^{d_{\rho} \times d_{\rho}} .
$$

