Mini-course on representation theoretical methods in ML

# 2: Harmonic Analysis

Risi Kondor (Gatsby Unit)

#### So far, we concentrated on G.

Now shift to G acting on  $\mathcal{X}$  and  $f: \mathcal{X} \to \mathbb{C}$ .

- 1. *G* acts on  $\mathcal{X}$  by  $x \mapsto g(x)$
- 2. If  $f: \mathcal{X} \to \mathbb{C}$  then the induced action is  $f \mapsto f^g$ , where  $f^g(g(x)) = f(x)$   $f^g(x) = f(g^{-1}(x))$
- 3. If  $L(\mathcal{X}) = \{f : G \to \mathbb{C}\}$ , then  $T_g : f \mapsto f^g$  is a linear map  $T_g : L(\mathcal{X}) \to L(\mathcal{X})$
- 4. Is  $T_g$  decomposable?

$$L(\mathcal{X}) = W_1 \oplus W_2 \oplus \ldots \oplus W_k$$
$$T_g(f) = [T_g]_1 ([f]_1) \oplus \ldots \oplus [T_g]_k ([f]_k) \qquad [f]_k \in W_k$$

5. What are the elementary  $[T_g]_i$  systems obeying  $[T_{g_2}]_i [T_{g_1}]_i = [T_{g_2g_1}]_i$ ?

1. Representation:  $\rho: G \to \mathbb{C}^{d \times d}$  $\rho(x) \cdot \rho(y) = \rho(xy)$ 

2. Equivalence:  $\rho_1(x) = T^{-1}\rho_2(x)T$ 

3. Reducibility:

$$\rho(x) = T^{-1} \begin{pmatrix} \rho_1(x) & 0\\ 0 & \rho_2(x) \end{pmatrix} T$$

4. Complete set of inequivalent irreducible representations:  $\mathcal{R}$ 







### Joseph Fourier 1768-1830

$$f(x) = \sum_{k=-\infty}^{\infty} f_k e^{ikx} \qquad f_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ikx} f(x) \, dx$$

$$f(x) = \int e^{2\pi i kx} \hat{f}(k) \, dk \qquad \hat{f}(k) = \int e^{-i2\pi kx} f(x) \, dx$$

$$f(x) = \frac{1}{n} \sum_{x=0}^{n-1} e^{2\pi i k x/n} \widehat{f}(k) \qquad \widehat{f}(k) = \sum_{x=0}^{n-1} e^{-2\pi i k x/n} f(x)$$

| 1. Linearity       | $\widehat{f+g} = \widehat{f} + \widehat{g}$                     |                                |
|--------------------|-----------------------------------------------------------------|--------------------------------|
| 2. Unitarity       | $\langle f,g \rangle = \langle \widehat{f},\widehat{g} \rangle$ |                                |
| 3. Translation     | $\widehat{f'}(k) = e^{-itk} \widehat{f}(k)$                     | f'(x) = f(x - t)               |
| 4. Convolution     | $\widehat{f \ast g}(k) = \widehat{f}(k)\widehat{g}(k)$          | A                              |
|                    | $\widehat{f \ast g}(x) =$                                       | $\int f(x-y) g(y)  dy$         |
| 5. Differentiation | $\widehat{\partial f}(k) = 2\pi i k \widehat{f}(k)$             | $\widehat{\partial f} = df/dx$ |

 $\mathcal{F}: \overline{L_2(\mathbb{R})} \to \overline{L_2(\mathbb{R})}$  is a unitary operation that decomposes  $L_2(\mathbb{R})$  into a sum of orthogonal subspaces that transform independently under translation / convolution.

$$L_2(\mathbb{R}) = \bigoplus_k V_k \qquad \begin{array}{c} T_t V_k = V_k \\ f, g \in V_k \end{array} \Rightarrow f * g \in V_k \end{array}$$

This is purely an algebraic statement about how the translation group acts on  $L_2(\mathbb{R})$ .

On the other hand,  $\mathcal{F}$  also picks out subspaces of different degrees of smoothness.

## Can we generalize all this to groups?

♥ = ?  $\cos \varphi = ?$  $\frac{d}{dx} \mathbf{\nabla} = ?$  $F\left\{ \mathbf{\nabla}\right\} = \frac{1}{\sqrt{2\pi}} \int f(t) e^{it \mathbf{\nabla}} dt = ?$ My normal opproach is useless here.

xkcd.com

#### Convolution

Regard  $f: G \to \mathbb{C}$  as  $f = \sum_{x \in G} f(x) e_x$ . Define  $e_x \cdot e_y = e_{xy}$ ,  $fg = \sum_{x \in G} \sum_{y \in G} f(x) f(y) e_x e_y$ .

> isotypics: irreducible subalgebras  $\mathbb{C}G = V_1 \oplus V_2 \oplus \ldots \oplus V_k$   $\swarrow$ group algebra

For compact groups this decomposition is unique.

1.  $v \in V_i$  is really a linear operator  $v: V_i \to V_i$ 

 $u \mapsto vu = v * u$ 

- 2. In particular,  $\{ [e_x]_i \mid x \in G \}$  is a set of operators obeying  $[e_x]_i [e_y]_i = [e_{xy}]_i$
- 3. These are the irreducible representations  $\rho_i(x) = [\boldsymbol{e}_x]_i$
- 4. On non-commutative groups  $e_{xy} \neq e_{yx}$ , so some  $V_i$  must be multidimensional.

5. Any f can be written as  $f = \sum_{x \in g} f(x) e_x$ , so  $[f]_i = \sum_{x \in g} f(x) [e_x]_i = \sum_{x \in G} f(x) \rho_i(x)$ 

6. This is the Fourier transform!

The Fourier transform on a group is

$$\widehat{f}(\rho) = \sum_{x \in G} f(x) \rho(x) \qquad \rho \in \mathcal{R}$$

#### The inverse transform is

$$f(x) = \frac{1}{|G|} \sum_{\rho \in \mathcal{R}} d_{\rho} \operatorname{tr} \left[ \widehat{f}(\rho) \rho(x^{-1}) \right]$$

$$\widehat{f}(\rho) = \sum_{x \in G} f(x) \,\rho(x) \qquad f(x) = \frac{1}{|G|} \sum_{\rho \in \mathcal{R}} d_{\rho} \operatorname{tr} \left[ \widehat{f}(\rho) \,\rho(x^{-1}) \right]$$

- **I.** Linearity:  $\widehat{f+g} = \widehat{f} + \widehat{g}$
- **2.** Unitarity:  $\langle f, g \rangle = \langle \widehat{f}, \widehat{g} \rangle$
- **3. Left-translation:**  $\widehat{f^{z}(\rho)} = \rho(z) \, \widehat{f}(\rho)$
- **4. Convolution:**  $\widehat{f * g}(\rho) = \widehat{f}(\rho) \,\widehat{g}(\rho)$
- 5. The individual components correspond to different levels of smoothness.

# The Fourier transform $\mathcal{F}\colon f\to \widehat{f}$ is an isomorphism

$$\mathcal{F}\colon \mathbb{C}G \to \bigoplus_{\rho \in \mathcal{R}} \mathbb{C}^{d_{\rho} \times d_{\rho}}.$$