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Optimal indolence: a normative
microscopic approach to work and leisure

Ritwik K. Niyogi1, Yannick-Andre Breton2, Rebecca B. Solomon2,
Kent Conover2, Peter Shizgal2 and Peter Dayan1

1Gatsby Computational Neuroscience Unit, University College London, London, UK
2Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada

Dividing limited time between work and leisure when both have their attrac-

tions is a common everyday decision. We provide a normative control-

theoretic treatment of this decision that bridges economic and psychological

accounts. We show how our framework applies to free-operant behavioural

experiments in which subjects are required to work (depressing a lever) for suf-

ficient total time (called the price) to receive a reward. When the microscopic

benefit-of-leisure increases nonlinearly with duration, the model generates be-

haviour that qualitatively matches various microfeatures of subjects’ choices,

including the distribution of leisure bout durations as a function of the pay-

off. We relate our model to traditional accounts by deriving macroscopic,

molar, quantities from microscopic choices.
1. Introduction
What to do, when to do it and how long to do it for are fundamental questions

for behaviour. Different options across these dimensions of choice yield differ-

ent costs and benefits, making for a rich, complex, optimization problem.

One common decision is between working (performing an employer-

defined task) and engaging in leisure (activities pursued for oneself ). Working

leads to external rewards, such as food and money; whereas leisure is supposed

to be intrinsically beneficial (otherwise, one would not want to engage in it). As

these activities are usually mutually exclusive, subjects must decide how to allo-

cate time to each. Note that work need not be physically or cognitively

demanding, but consumes time; equally leisure need not be limited to rest

and may present physical and/or mental demands.

This decision has been studied by economists [1–5], behavioural psychologists

[6–16], ethologists [17] and neuroscientists [18–24]. Tasks involving free-operant

behaviour are particularly revealing, because subjects can choose what, when

and how, minimally encumbered by direct experimenter intervention. We con-

sider the cumulative handling time (CHT) schedule brain stimulation reward

(BSR) paradigm of Shizgal and co-workers [20,21], in which animals have to

invest quantifiable work to get rewards that are psychophysically stationary and

repeatable.

Most previous investigations of time allocation (TA) have focused on molar or

macroscopic characterizations of behaviour [1,2,4,10,18,21–23,25–31], capturing

the average times allocated to work or leisure. Here, we characterize the detailed

temporal topography of choice, i.e. the fine-scale molecular or microscopic structure

of allocation [32–37], that is lost in molar averages (figure 1c). We build an

approximately normative, reinforcement-learning, account, in which microscopic

choices approximately maximize net benefit. Our central intent is to understand

the qualitative structure of the molecular behaviour of subjects, providing an

account that can generalize to many experimental paradigms. Therefore,

although we apply the model to a set of CHT experiments in rats it is the next

stage of the programme to fit this behaviour quantitatively in detail.

Having introduced previous approaches, we describe an example task and

experiments (§2), key molecular features of the data from those (§3), our novel

normative, microscopic approach (§4) and how it captures these key features (§5).
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Figure 1. Task and key features of the data. (a) CHT task. Grey bars denote work (depressing a lever), white gaps show leisure. The subject must accumulate work
up to a total period of time called the price (P) in order to obtain a single reward (black dot) of subjective RI. The trial duration is 25�price ( plus 2 s each time the
price is attained, during which the lever is retracted so it cannot work; not shown). The RI and price are held fixed within a trial. (b) Molar TA functions of a typical
subject as a function of RI and price. Red/grey curves: effect of RI, for a fixed short price; blue/dark grey curves: effect of price, for a fixed high RI; green/light grey
curves: joint effect of RI and price. (c) A molecular analysis may reveal different microstructures of working and engaging in leisure. The three rows show three
different hypothetical trials. All three microstructures have the same molar TA, but are clearly distinguishable. (d ) Molecular ethogram showing the detailed temporal
topography of working and engaging in leisure for the subject in (b). Upper, middle and lower panels show low, medium and high pay-offs, respectively, for a fixed,
short price. Following previous reports using rat subjects, releases shorter than 1 s are considered part of the previous work bout (as subjects remain at the lever
during this period). Graphically, this makes some work bouts appear longer than the others. The subject mostly pre-commits to working continuously for the entire
price duration. When the pay-off is high, the subject works almost continuously for the entire trial, engaging in very short leisure bouts inbetween work bouts.
When the pay-off is low, the subject engages in a long leisure bout after receiving a reward. This leisure bout is potentially longer than the trial, whence it would
be censored. The part of a trial before the reward, price and probability of reward delivery are certainly known is coloured pink/dark and not considered further. Data
collected by Y.-A.B. and R.S. and initially reported in [38]. (Online version in colour.)
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2. Task and experiment
As an example paradigm employed in rodents, consider a

CHT task [20,21] in which subjects choose between work-

ing—the facile task of holding down a light lever—and

engaging in leisure, i.e. resting, grooming, exploring, etc.

(figure 1a). A BSR [38] is given after the subject has accumu-

lated work for an experimenter-defined total time-period

called the price (P; see table 1 for a description of all symbols).

BSR does not suffer satiation and allows precise, psycho-

physically stable data to be collected over many months.

We show data initially reported in [39] (and subsequently

in [40,41]).

The objective strength of the BSR is the frequency of elec-

trical stimulation pulses applied to the medial forebrain

bundle. This is assumed to have a subjective worth, or micro-
scopic utility (to distinguish it from the macroscopic utility
described in [18–23]) called the reward intensity (RI, in arbi-

trary units). The transformation from objective to subjective

worth has been previously determined [42–47]. The ratio of

the RI to the price is called the pay-off. Leisure is assumed

to have an intrinsic subjective worth, although its utility

remains to be quantified. Throughout a task trial, the objec-

tive strength of the reward and price are held fixed. The

total time a subject could work per trial is 25 times the

price (plus extra time for ‘consuming’ rewards) enabling at

most 25 rewards to be harvested. A behaviourally observed

work or leisure bout is defined as a temporally continuous

act of working or engaging in leisure, respectively. Of

course, contiguous short work or leisure bouts are externally

indistinguishable from one long bout. Subjects are free to

distribute leisure bouts in between individual work bouts.

Subjects face triads of trials: ‘leading’, ‘test’ then ‘trailing’

(electronic supplementary material, figure S1). Leading and

http://rsif.royalsocietypublishing.org/
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Table 1. List of symbols.

symbol meaning

1/l mean of exponential effective prior probability

density for leisure time

a [ [0,1] weight on linear component of microscopic

benefit-of-leisure

b [ [0,1) inverse temperature or degree of stochasticity –

determinism parameter

CHT cumulative handling time

CL(.) microscopic benefit-of-leisure

CLmax maximum of sigmoidal microscopic benefit-of-

leisure

CLshift shift of sigmoidal microscopic benefit-of-leisure

d(.) delta/indicator function

Ep expected value with respect to policy p

KL slope of linear microscopic benefit-of-leisure

L leisure

ma(ta) effective prior probability density of choosing

duration ta

P price

pð½a; ta�jsÞ policy or choice rule: probability of choosing

action a, for duration ta from state s

post post-reward

pre pre-reward

Qðs; ½a; ta�Þ expected return or (differential) Q-value of taking

action a, for duration ta from state s

r reward rate

rta opportunity cost of time for taking action a for

duration ta

RI (subjective) reward intensity

RI
P

pay-off

s state

TA time allocation

tL duration of instrumental leisure

tPav Pavlovian component of post-reward leisure

tW duration of work

W work

w [ [0, P) amount of work time so far executed out of the

price

V(s) expected return or value of state s
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trailing trials involve maximal and minimal reward intensities,

respectively, and the shortest price (we use the qualifiers

‘short’, ‘long’, etc., to emphasize that the price is an exper-

imenter determined time-period). We analyse the sandwiched

test trials, which span a range of prices and reward intensities.

Leading and trailing trials allow calibration, so subjects can

stably assess RI and P on test trials. Subjects tend to be at leisure

on trailing trials, limiting physical fatigue. Subjects repeatedly

experience each test RI and price over many months, and so
can readily appreciate them after minimal experience on a

given trial without uncertainty.
3. Molar and molecular analyses of data
The key molar statistic is the TA, namely the proportion of the

available time for working in a test trial that the subject

spends pressing the lever. Figure 1b shows example TAs for

a typical subject. TA increases with the RI and decreases

with the price. Conversely, a molecular analysis, shown in

the ethograms in (figure 1c,d), assesses the detailed temporal

topography of choice, recording when, and for how long,

each act of work or leisure occurred (after the first acquisition

of the reward in the trial, i.e. after the ‘pink/dark grey’ lever

presses in figure 1d ). The TA can be derived from the molecu-

lar ethogram data, but not vice versa, because many different

molecular patterns (figure 1c) share a single TA.

Qualitative characteristics of the molecular structure of

the data (figure 1d ) include: (i) at high pay-offs, subjects

work almost continuously, engaging in little leisure inbetw-

een work bouts; (ii) at low pay-offs, they engage in leisure

all at once, in long bouts after working, rather than distribut-

ing the same amount of leisure time into multiple short

leisure bouts; (iii) subjects work continuously for the entire

price duration, as long as the price is not very long (as

shown by an analysis conducted by Y.-A.B., to be published

separately) and (iv) the duration of leisure bouts is variable.
4. Micro-semi-Markov decision process model
We consider whether key features of the data in figure 1d
might arise from the subject’s making stochastic optimal

control choices, i.e. ones that at least approximately maximize

the expected return arising from all benefits and costs over

entire trials. Following [24], we formulate this computational

problem using the reinforcement-learning framework of infi-

nite horizon (Semi) Markov decision processes ((S)MDPs)

[48,49] (figure 2a). Subjects not only choose which action a
to take, i.e. to work (W ) or engage in leisure (L), but also

the duration of the action (ta). They pay an automatic opportu-
nity cost of time: performing an action over a longer period

denies the subject the opportunity to take other actions

during that period, and thus extirpates any potential benefit

from those actions.

As trials are substantially extended, we assume that the

subjects do not worry about the time the trial ends, and

instead make choices that would (approximately) maximize

their average summed microscopic utility per unit time [24].

Nevertheless, for comparison to the data, we still terminate

each trial at 25� price, so actions can be censored by the

end of the trial, preventing their completion.
4.1. Utility
The utility of the reward is RI. We assume that pressing the

lever requires such minimal force that it does not incur any

direct effort cost. We assume leisure to be intrinsically ben-

eficial according to a function CL(t) of its duration (but

formally independent of any other rewards or costs). The

simplest such function is linear CL(t) ¼ KLt (figure 2b(i),

blue/dark grey line), which would imply that the net utility

http://rsif.royalsocietypublishing.org/
http://rsif.royalsocietypublishing.org/
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only whether to work or to engage in leisure, but also for how long to do so. Pre-reward states are further defined by the amount of work time w that the subject
has so far invested. At a pre-reward state [ pre, w], the subject can choose to work (W ) for a duration tW or engage in leisure (L) for a duration tL. Working for tW

transitions the subject to a subsequent pre-reward state [ pre, wþtW] if wþtW , P, and to the post-reward state if wþtW � P. Engaging in leisure for tL

transitions the subject to the same state. For working, only transitions to the post-reward state are rewarded, with reward intensity RI. Engaging in leisure for tL has
a benefit CL(tL). In the post-reward state, the subject is assumed already to have been at leisure for a time tPav, which reflects Pavlovian conditioning to the lever.
By choosing to engage in instrumental leisure for a duration tL, it gains a microscopic benefit-of-leisure CL(tPavþtL), and then returns to state [ pre, 0] at the start
of the cycle whence the process repeats. ((b)(i)): canonical microscopic benefit-of-leisure functions CL(.); (ii): the net microscopic benefit-of-leisure per unit time
spent in leisure. For simplicity, we considered linear CL(.) (blue/dark grey), whose net benefit per unit time is constant, sigmoidal CL(.) (red/grey), which is initially
supralinear but eventually saturates, and so has a unimodal net benefit per unit time; and a weighted sum of these two (green/light grey). See the electronic
supplementary material, equation (S-3) for details. (c) Time tPav is the Pavlovian component of leisure, reflecting conditioning to the lever. It is decreasing with RI
(here, inversely) and increasing with price (here sigmoidally), so that it decreases with pay-off. (Online version in colour.)
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of several short leisure bouts would be the same as a single

bout of equal total length (figure 2b(ii), blue/dark grey line).

Alternatively, CL(.) could be supralinear (figure 2b(i), red/

grey curve). For this function, a single long leisure bout would

be preferred to an equivalent time spent in several short bouts

(figure 2b(ii), red/grey curve). If CL(.) saturates, the rate of

accrual of benefit-of-leisure dCL(t)/dt will peak at an optimal

bout duration. We represent this class of functions with a sig-

moid, although many other nonlinearities are possible.

Finally, to encompass both extremes, we consider a weighted

sum of linear and sigmoid CL(.), with the same maximal slope

(figure 2b, green/light grey curve. Linear CL(.) has weight a ¼

1, electronic supplementary material, equation (S-3)).

Evidence from related tasks [50,51] suggests that the leisure

time will be subject to Pavlovian as well as instrumental

influences [52–54]. Subjects exhibit high error rates and slow

reaction times for trials with high net pay-offs, even when

this is only detrimental. We formalize this with a leisure

time as a sum of a mandatory Pavlovian contribution tPav (in

addition to the extra time for ‘consuming’ rewards), and an

instrumental contribution tL, chosen, in the light of tPav, to

optimize the expected return. The Pavlovian component

comprises a mandatory pause, which is curtailed by the sub-

ject’s reengagement (conditioned-response) with the reward

(unconditioned-stimulus)-predicting lever (conditioned-

stimulus). As we shall discuss, we postulate a Pavlovian
component to account for the detrimental leisure bouts at

high pay-offs. We assume tPav ¼ fPav (RI, P) decreases with

pay-off—i.e. increases with price and decreases with RI

(figure 2c). The net microscopic benefit-of-leisure is then

CL(tLþ tPav) over a bout of total length tLþ tPav.

4.2. State space
The state s [ S in the model contains all the information

required to make a decision. This comprises a binary com-

ponent (‘pre’ or ‘post’), reporting whether or not the subject

has just received a reward; and a real-valued component, indi-

cating if not, how much work w [ [0, P) out of the price P has

been performed. Alternatively, P–w is how far the subject is

from the price.

4.3. Transitions
At state [pre, w], the subject can choose to work (W ) for a

duration tW or engage in leisure (L) for a duration tL. If it

chooses the latter, it enjoys a benefit-of-leisure CL(tL) for

time tL, after which it returns to the same state. If the subject

chooses to work up to a time that is less than the price, (i.e.

w þ tW , P), then its next state is s0 ¼ ½pre;wþ tW�. How-

ever, if w þ tW � P, the subject gains the work reward RI

and transitions to the post-reward state s0 ¼ ½post�, consum-

ing time P–w. Although subjects can choose work durations

http://rsif.royalsocietypublishing.org/
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tW that go beyond the price, they cannot physically work for

longer than this time, because the lever is retracted as the

reward is delivered.

In the post-reward state s0 ¼ ½post�; the subject can add

instrumental leisure for time tL to the mandatory Pavlovian

leisure tPav discussed above. It receives utility CL(tLþtPav)

over time tLþtPav, and then transitions to state s0 ¼ ½pre; 0�:
The cycle then repeats.

In all the cases, the subject’s next state in the future s0

depends on its current state s, the action a and the duration

ta, but is independent of all other states, actions and dur-

ations in the past, making the model an SMDP. The model

is molecular, as it generates the topography of lever

depressing and releasing. It is microscopic as it commits to

particular durations of performing actions. We therefore

refer to it as a micro-SMDP. In the Discussion section, we con-

sider an alternate, nanoscopic variant which makes choices at

a finer timescale.
0130969
4.4. Policy evaluation
A (stochastic) policy p determines the probability of each

choice of action and duration. It is assumed to be evaluated

according to the average reward rate (see electronic sup-

plementary material, equation (S-1)). In the SMDP, the state

cycles between ‘pre-’ and ‘post-’reward. The average reward

rate is the ratio of the expected total microscopic utility accu-

mulated during a cycle to the expected total time that a cycle

takes. The former comprises RI from the reward and the

expected microscopic utilities of leisure; the latter includes

the price P and the expected duration engaged in leisure.

The total average reward rate is

rp¼
RIþEpð½L;tL�jpostÞ[CLðtPavþtLÞ]þ

Ð P
0 dwEpwL

P
nLj½pre;w�

CLðtLÞ
h i

PþEpð½L;tL �jpostÞ½tL�þtPavþ
Ð P

0 dwEpwL

P
nLj½pre;w�

tL

h i :

ð4:1Þ

Here, p([L, tL]jpost) and pwL
are the probabilities of engaging

in instrumental leisure L for time tL in the post-reward and

pre-reward state [pre, w], respectively; Ep is the expectation

over those probabilities. nLj½pre;w� is the (random) number of

times the subject engages in leisure in the pre-reward state

[pre, w].

For state s ¼ post, the action a ¼ [L, tL] of engaging in

leisure for time tL has differential value Qp(post,[L, tL]) (see

the electronic supplementary material, equation (S-2)) that

includes three terms: (i) the microscopic utility of the leisure,

CL(tLþtPav); (ii) opportunity cost –rp(tLþtPav) for the leisure

time (the rate of which is determined by the overall average

reward rate) and (iii) the long-run value Vp([pre, 0]) of the

next state. The value of state s is defined as

VpðsÞ ¼
X

a

ð
ta

pð½a; ta�jsÞQpðs; ½a; ta�Þ;

averaging over the actions and durations that the policy p

specifies at state s. Thus,

Qpðpost; ½L; tL�Þ ¼ CLðtL þ tPavÞ � rpðtL þ tPavÞ
þ Vpð½pre; 0�Þ: ð4:2Þ

Note the clear distinction between the immediate microscopic

benefit-of-leisure CL (tLþtPav) and the net benefit of leisure,

given by the overall Q-value.
The value Qp([pre, w], [L, tL]) of engaging in leisure for tL

in the pre-reward state has the same form, but without the

contribution of tPav, and with a different subsequent state

Qpð½pre;w�; ½L; tL�Þ ¼ CLðtLÞ � rptL þ Vpð½pre;w�Þ: ð4:3Þ

Finally, the value Qp([pre, w], [W, tW] of working for time

tW in the pre-reward state has two components, depending

on whether or not the accumulated work time wþtW is still

less than the price (defined using a delta/indicator function

as d(w þ tW , P)).

Qpð½pre;w�; ½W ; tW�Þ
¼ dðwþ tW , PÞ½�rptW þ Vpð½pre;wþ tW�Þ�
þ dðwþ tW � PÞ½RI� rpðP� wÞ þ VpðpostÞ�: ð4:4Þ

4.5. Policy
We assume the subject’s policy p is stochastic, based on a soft-
max of the (differential) value of each choice, i.e. favouring

actions and durations with greater expected returns.

Random behavioural lapses make extremely long leisure or

work bouts unlikely; we therefore consider a probability den-

sity ma(ta) of choosing duration ta (potentially depending on

the action a), which is combined with the softmax like prior

and likelihood (see the electronic supplementary material,

text S1). We consider an alternative in the Discussion. For

leisure bouts, we assume mL(tL) ¼ l exp(–ltL) is exponential

with mean 1/l ¼ 10P. The prior mW(tW) for work bouts plays

little role, provided its mean is not too short. This makes

pð½a; ta�jsÞ ¼
exp [bQpðs; ½a; ta�Þ]maðtaÞP

a0
Ð
ta0

exp [bQpðs; ½a0; ta0 �Þ]ma0 ðta0 Þdta0
: ð4:5Þ

Subjects will be more likely to choose the action with the

greatest Q-value, but have a non-zero probability of choosing

a suboptimal action. The parameter b [ [0, 1) controls the

degree of stochasticity in choices. Choices are completely

random if b ¼ 0, whereas b!1 signifies optimal choices.

We use policy iteration [48,49] in order to compute policies

that are self-consistent with their Q-values: these are the

dynamic equilibria of policy iteration (see the electronic sup-

plementary material, text S1). An alternative would be to

compute optimal Q-values and then make stochastic choices

based on them; however, this would lead to policies that are

inconsistent with their Q-values. We shall show that stochastic,

approximately optimal self-consistent choices lead to pre-com-

mitment to working continuously for the entire price duration.
5. Micro-semi-Markov decision process policies
We first use the micro-SMDP to study the issue of stochasticity,

then consider the three main regimes of behaviour evident in

the data in figure 1d: when pay-offs are high (subjects work

almost all the time), low (subjects never work) and medium

(when they divide their time). Finally, we discuss the molar

consequences of the molecular choices made by the SMDP.

All throughout, RI and P are adopted from experimental

data, while the parameters governing the benefit-of-leisure

are the free parameters of interest.

5.1. Stochasticity
To illustrate the issues for the stochasticity of choice, we con-

sider the case of a linear CL(tLþtPav) ¼ KL(tLþtPav) and
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make two further simplifications: the subject does not engage

in leisure in the pre-reward state (thus working for the whole

price); and l ¼ 0, licensing arbitrarily long leisure dura-

tions. Then the Q-value of leisure is linear in tL, so the

leisure duration distribution is exponential (see the electronic

supplementary material, text S2). The expected reward rate

and mean leisure duration can be derived analytically (see

the electronic supplementary material, text S3).

As long as RI� KLP . 1/b

rp ¼ bðRIþ KLtPavÞ � 1

bðPþ tPavÞ

and E½tLjpost� ¼ Pþ tPav

bðRI� KLPÞ � 1

9>>>=
>>>;

ð5:1Þ
Otherwise, if RI� KLP , 1/b, then rp! KL (figure 3a(ii),b(ii))

and the subject would choose to engage in leisure for the

entire trial as E½tLjpost� ! 1 (figure 3a(i),b(i)).

Deterministically optimal behaviour requires b!1. In

that case, provided RI . KLP, the subject would not engage

in leisure at all (E½tLjpost� ¼ 0) but would work the entire

trial (interspersed by only Pavlovian leisure tPav) with optimal

reward rate r* ¼ (RIþKLtPav)/(PþtPav) (figure 3a(i),b(i) and

a(ii),b(ii), respectively, dashed black lines). However, if RI ,

KLP, then it would engage in leisure for the entire trial. Thus,

TA functions would be step functions of the RI and price, as

shown by the dashed black lines in figure 3a(iii),b(iii).

Of course, as is amply apparent in figure 1d, actual behav-

iour shows substantial variability, motivating stochastic

choices, with b , 1. As all the other quantities can be

scaled, we set b ¼ 1 without loss of generality. This leads to

smoothly changing TA functions, expected leisure durations

and reward rates, as shown by the solid lines in figure 3.

We now return to the general case (l= 0, and leisure is

possible in the pre-reward state).
5.2. High pay-offs
The pay-off is high when the RI is high or the price is short,

or both. Subjects work as much as possible, making the reward

rate in equation (4.1) rp � (RIþCL(tPav))/(PþtPav). As tPav is

small for high pay-offs, rp � RI/P is just the pay-off of the

trial. The opportunity cost of leisure time rp(tLþtPav) is then

linear with a very steep slope (dash-dotted line in figure 4a(i)),

which dominates CL(tLþtPav) (dashed line in figure 4a(i)), irre-

spective of which form it follows. The Q-value of engaging in

leisure in the post-reward state then becomes the linear opportu-

nity cost of leisure time, i.e. Qp(post,[L, tL])! –rp(tLþtPav)

(solid bold line in figure 4a(i)).

From equation (4.5), the probability density of engag-

ing in instrumental leisure for time tL is p([L, tL] jpost)/

exp[–(brpþ l)tL]. This is an exponential distribution with

very short mean 1/ðbrp þ lÞ (figure 4a(ii)). The net post-

reward leisure bout, consisting of both Pavlovian and

instrumental components has the same distribution, only

shifted by tPav, i.e. a lagged exponential distribution with

mean tPav þ 1/ðbrp þ lÞ (figure 4f ).
The probability of choosing to engage in leisure in a pre-

reward state (i.e. after the potential resumption of working) is

correspondingly also extremely small. Furthermore, the steep

opportunity cost of not working would make the distribution

of any pre-reward leisure duration also be approximately a

very short mean exponential (but not lagged by tPav, figure

4b,c). Therefore when choosing to work, the duration of the

work bout chosen (tW) barely matters (as revealed by the iden-

tical Q-values and policies for different work bout durations

in figure 4d,e). That is, irrespective of whether the subject per-

forms numerous short work bouts or pre-commits to working

the whole price, it enjoys the same expected return. To the

experimenter, the subject appears to work without interrup-

tion for the entire price. In summary, for high pay-offs, the

subject works almost continuously, with very short, lagged-

exponentially distributed leisure bouts at the end of each

work bout (figure 5a, lowest panel). This accounts well for

key feature (i) of the data.

5.3. Low pay-offs
At the other extreme, after discovering that the pay-off is very

low, subjects barely work (figure 1d(i)). Temporarily ignoring

leisure consumed in the pre-reward state, the reward rate in

equation (4.1) becomes

rp �
Epð½L;tL� jpostÞ[CLðtPav þ tLÞ]
Pþ Epð½L;tL � jpostÞ½tL� þ tPav

;

as shown by the dash-dotted line in figure 6a(i) and is compara-

tively small. The opportunity cost of time grows so slowly

that the Q-value of leisure is dominated by the microscopic

benefit-of-leisure CL(tLþtPav) (dashed curves in figure 6a(i)).

We showed that for linear CL(.), the Q-value is linear and

the leisure duration distribution is exponential (shown again

in figure 6a, left panel). For initially supralinear CL(.), the

Q-value becomes a bump (solid bold curve in figure 6a(i),

centre and right). The probability of choosing to engage in

instrumental leisure for time tL is then the exponential of

this bump, which yields a unimodal, gamma-like distribution

(figure 6a(ii), centre and right). Thus for a low pay-off, a sub-

ject would opt to consume leisure all at one go, if from the

mode of this distribution. This accounts for key feature (ii)

of the data.
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The net duration of leisure in the post-reward state

tLþtPav is then almost the same unimodal gamma-like distri-

bution (figure 6f ). If the Pavlovian component is increased,

the instrumental component p(tLjpost) will decrease leaving

identical the distribution of their sum Pr(tLþtPavjpost)

(cf. figure 6a(ii), right panel).

The location of the mode of the net leisure bout duration

distribution (figure 6f ) is crucial. For shorter prices associated

with low net pay-offs, this mode lies much beyond the trial

duration T ¼ 25P. Hence, a leisure bout drawn from this dis-

tribution would almost always exceed the trial duration, and

so be censored, i.e. terminated by the end of the trial. Our

model successfully predicts the molecular data in this con-

dition (figure 5a, upper panel). We discuss our model’s

predictions for long prices later.
The main effect of changing from partially linear to satur-

ating CL(.) is to decrease both the mean and the standard

deviation of leisure bouts. The tail of the distribution

(figure 6a, centre versus right panel) is shortened, because

the Q-values of longer leisure bouts ultimately fail to grow.

Engaging in leisure in post- and pre-reward states are

closely related. Thus, if the pay-off is too low then the sub-

ject will also choose to engage in long leisure bouts in the

pre-reward states (figure 6b,c). Correspondingly, the subject

will be less likely to commit to longer work times and lose

the benefits of leisure (figure 6d,e). If behaviour is too deter-

ministic, then the behavioural cycle from pre- to post-

reward can fail to complete (leading to non-ergoditicity).

This is not apparent in the behavioural data, so we do not

consider it further.
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5.4. Medium pay-offs
The opportunity costs of time for intermediate pay-offs are

also intermediate. Thus, the Q-value of leisure (solid bold

curves in figure 7a(i)) depends delicately on the balance

between the benefit-of-leisure and the opportunity cost

(dashed and dashed-dotted lines in figure 7a(i), respectively).

For the sigmoidal CL(.), the combination of supra- and sub-

linearity leads to a bimodal distribution for leisure bouts

that is a weighted sum of an exponential and a gamma-like

distribution (figure 7a(ii), centre and right panels; f ).
Bouts drawn from the exponential component will be

short. However, the mode of the gamma-like distribution

lies beyond the trial duration (figure 7f ), as in the low pay-

off case when the price is not long (figure 6f ). Bouts drawn

from this will thus be censored. Altogether, this predicts a

pattern of several work bouts interrupted by short leisure

bouts, followed by a long, censored leisure bout (figure 5a,

middle panel). Occasionally, a long, but uncensored, dur-

ation can be drawn from the distribution in figure 7f. The

subject would then engage in a long, uncensored leisure

bout before returning to work. Our model thus also accounts

well for the details of the molecular data on medium pay-offs,

including variable leisure bouts (key feature (iv)).
5.5. Pre-commitment to working continuously for the
entire price duration

The micro-SMDP model accounts for feature (iii) of the data

that subjects generally work continuously for the entire

price duration. That is, subjects could choose to pre-commit

by working for the entire price P, or divide P into multiple

contiguous work bouts. In the latter case, even if Q-value of

working is greater than that of engaging in leisure, the sto-

chasticity of choice implies that subjects would have some

chance of engaging in leisure instead, i.e. the pessimal
choice (figure 7b,c). Pre-committing to working continuously

for the entire price avoids this corruption (figure 7d,e). In

figure 7e, for any given state [pre, w] the probability of choos-

ing longer work bouts tW increases, until the price is reached.

Corruption does not occur for a deterministic, optimal policy,

so pre-commitment is unnecessary. This case is then similar

to that for a high pay-off (figure 4d,e).

5.6. Molar behaviour from the micro-semi-Markov
decision process

If the micro-SMDP model accounts for the molecular data,

integrating its output should account for the molar character-

izations of behaviour that were the target of most previous

modelling. Consider first the case of a fixed short price

P ¼ 4s, across different reward intensities (figure 8a). After

an initial region in which different CL(.) affect the outcome,

the reward rate rp in equation (4.1) increases linearly with

the RI (figure 8a(i), left panel). Consequently, the opportunity

cost of time increases linearly too. If CL(.) is linear, the resul-

tant linear Q-value of leisure in the post-reward state, and

hence, the mean of the exponential leisure bout duration dis-

tribution decreases (figure 8a(i) and a(ii), centre panels,

respectively). If CL(.) is sigmoidal, the bump corresponding

to the Q-value of leisure shifts leftwards to smaller leisure

durations (figure 8a(i), right panel). Both the mode and the

relative weight of the gamma-like distribution decrease as

the RI increases (figure 8a(i), right panel). Thus, as the

model smoothly transitions from low through medium-to-

high reward intensities, TA increases smoothly from zero to

one (figure 8a(ii), left panel).

The converse holds if the price is lengthened while hold-

ing the RI fixed at a high value, making the TA decrease

smoothly (figure 8b(ii)). The reward rate rp in equation (4.1)

decreases hyperbolically, eventually reaching an asymptote

(at a level depending on CL(.), figure 8b(i), left panel). For
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long prices, the mode of the unimodal distribution does not

increase by much as the price becomes longer. However, by

design of the experiment, the trial duration increases with

the price. When the trial is much shorter than this mode,

most long leisure bouts are censored and TA is near zero.

As the trial duration approaches the mode, long leisure

bouts are less likely to get censored (figure 8c, left panel).

We therefore make the counterintuitive prediction that

as the price becomes longer, subjects will eventually be

observed to resume working after a long leisure bout. Thus

with longer prices, proportionally more work bouts will be

observed (figure 8c, right panel). Consequently, TA would

be observed to not decrease, and even increase with the

price (see the foot of the red/grey curve in figure 8b(ii), left

panel). Such behaviour would be observed for eventually

sublinear benefits-of-leisure. An increase in TA at long

prices is not possible for linear CL(.) (blue/dark grey curve

in figure 8b(ii), left panel). As the price becomes longer, so

does the mean of the resultant exponential leisure bout
duration distribution (figure 8b, centre panels) and long

leisure bouts will still be censored.

In general, for the same RI and price, less time is spent

working for linear than saturating CL(.) (compare the blue/

dark grey and red/grey curves figure 8a(ii),b(ii), left panels),

because linear CL(.) is associated with longer leisure bouts.

Thus, larger pay-offs are necessary to capture the entire

range of TA. The effect of different CL(.) on the reward rate

at low pay-offs is more subtle (compare blue/dark grey and

red/grey curves in figure 8a(i),b(i), left panels). This depends

on the ratio of the expected microscopic benefit-of-leisure

ðEpð½L;tL�jpostÞ½CLðtPav þ tLÞ�Þ and the expected leisure duration

ðEpð½L;tL�jpostÞ½tL� þ tPavÞ in the reward rate equation (equation

(4.1)). This is constant (¼KL) for a linear CL(.). The latter

term can be much greater for a saturating CL(.), leading to a

lower reward rate.

Figure 8 shows that the Pavlovian component of leisure

tPav will mainly be evident at shorter prices. At high

reward intensities, instrumental leisure is negligible and

http://rsif.royalsocietypublishing.org/
http://rsif.royalsocietypublishing.org/


p (
[L

,t
L
]|

[p
re

,w
])

p (
[W

,t
W

]|
[p

re
,w

])

t
Wt

L

0.010

0.09

0.08

0.005

ww

4
4

2 2
0 0

0
4

2 250
500

0 0

Q
p (

[p
re

,w
],

 [
L

,t
L
])

t
L

100

0.02

0.01

1.5

0.5

1.0

50

0

–50

–100

–150 w increase w increase

250 5000
t

W
t

L
+ t

Pav

2 40 250 5000

Q
p (

[p
re

,w
],

 [
W

,t
W

])

P
r(

t L
+

t Pa
v)

250
t

L

5000 250
t

L

5000 250
t

L

5000

250
t

L

5000 250
t

L

5000 250
t

L

5000

Q
p (

po
st

, [
L

,t
L
])

p (
[L

,t
L
]|

po
st

)

200

(i)

(ii)

(a)

(d ) (  f )(b)

(c) (e)

–200

0

0.02

0.01

0.02

0.01

0.02

0.01

200

100

–100

–200
–100

–50

50

100

0

–150

0

a = 0a = 0.5a = 1

Figure 7. (a – f ) Q-values and policies for a medium pay-off. Panel positions as in figure 4. RI ¼ 1.76, price P ¼ 4s. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20130969

10

 on November 27, 2013rsif.royalsocietypublishing.orgDownloaded from 
leisure is mainly Pavlovian. That TA for real subjects saturates

at 1, implies that tPav decreases with pay-off, as argued.
6. Discussion
Real-time decision-making involves choices about when and

for how long to execute actions as well as which to perform.

We studied a simplified version of this problem, considering

a paradigmatic case with economic, psychological, ethologi-

cal and biological consequences, namely working for

explicit external rewards versus engaging in leisure for its

own implicit benefit. We offered a normative, microscopic

framework accounting for subjects’ temporal choices, show-

ing the rich collection of effects associated with the way

that the subjective benefit-of-leisure grows with its duration.

Our microscopic formulation involved an infinite horizon

SMDP with three key characteristics: approximate optimiz-

ation of the reward rate, stochastic choices as a function of
the values of the options concerned and an assumption

that, a priori, temporal choices would never be infinitely

extended (owing to either lapses or the greater uncertainty

that accompanies the timing of longer intervals [55]). The

metrics associated with this last assumption had little effect

on the output of the model. We may have alternately

assumed that arbitrarily long durations could be chosen as

frequently as short ones but more noisily executed; we

imputed all such noise to the choice rule for simplicity.

We exercised our model by examining a psychophysical

paradigm called the CHT schedule involving BSR. The

CHT controls both the (average) minimum inter-reward

interval and the amount of work required to earn a reward.

More common schedules of reinforcement, such as fixed

ratio, or variable interval, control one but not the other.

This makes the CHT particularly useful for studying the

choice of how long to either work or engage in leisure. Never-

theless, it would be straightforward to adapt our model to

treat waiting schedules, such as [56–62] or to add other
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policies for engaging in instrumental leisure for time tL in the post-reward state for linear (centre) and sigmoid (right) CL(.). Black dashed line in panel (i) shows
CL(.); dashed and solid bold coloured/grey curves show the opportunity cost of time and Q-values, respectively. Light blue to dark red denotes increasing RI.
(b) Effect of price for a high RI (RI ¼ 4.96). Panel positions as in (a). Note that the abscissa in the left panel (i) is on a linear scale to demonstrate the hyperbolic
relationship between reward rate and price. Light blue to dark red in the centre and right panels denotes lengthening price. (c) Left: probability of engaging in
leisure for net time tLþtPav in the post-reward state, and right: ethograms for two long prices (dashed cyan: P ¼ 30.1s and solid magenta: P ¼ 21.4s). RI is fixed
at RI ¼ 4.96. As the price is increased, reward rate asymptotes ((b)(i), left panel), and hence the mode of this probability distribution does not increase by much.
The trial duration, proportional to the price does increase. Therefore, more of the probability mass (grey shaded area) is included in each trial. Samples drawn from
this distribution for the lower price get censored more often. For a longer price, the subject is more often observed to resume working after a long leisure bout. The
effect is an increase in observed TA. (Online version in colour.)
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facets. For instance, effort costs would lead to shorter work

bouts rather than the pre-commitment to working for the

duration of the price observed in the data. Costs of waiting

through a delay would also lead subjects to quit waiting ear-

lier than later. Other tasks with other work requirements
could also be fitted into the model by changing the state

and transition structure of the Markov chain. The main

issue the CHT task poses for the model is that it is separated

into episodic trials of different types making infinite horizon

optimization an approximation. However, the approximation

http://rsif.royalsocietypublishing.org/
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is likely benign, because the relevant trials are extended (each

lasts 25 times the price), and the main effect is that work and

leisure bouts can sometimes be censored at the ends of trials.

It is straightforward to account for subjects’ behaviour in

the CHT when pay-offs are high (i.e. when the rewards are

big and the price is short and the subjects work almost all

the time) or low (vice versa, when the subjects barely work at

all). The medium pay-off case involves a mixture of working

and leisure and is more challenging. As the behaviour of the

model is driven by relative utilities, the key quantity control-

ling the allocation of time is the microscopic benefit-of-leisure

function. This qualitatively fits the medium pay-off case

when it is sigmoidal. Then, the predicted leisure duration

distribution is a mixture of an exponential and a gamma-like

component, with the weight on the longer, gamma-like

component decreasing with pay-off.

The microscopic benefit-of-leisure function reflects a sub-

ject’s innate preference for the duration of leisure when only

considering leisure. It is independent of the effects of all other

rewards and costs. It is not the same as the Q-value of leisure,

which is pay-off dependent because it includes the opportunity

cost of time (see equation (4.2)). For intuition about the conse-

quences of different functions, consider the case of choosing

between taking a long holiday all at one go, or taking multi-

ple short holidays of the same net duration. Given a linear

microscopic benefit-of-leisure function, these would be equally

preferred; however, sigmoidal functions (or other functions

with initially supralinear forms) would prefer the former.

A possible alternate form for the benefit-of-leisure could involve

only its maximum utility or the utility at the end of a bout [63];

however, the systematic temporal distribution of leisure in the

data suggest that it is its duration which is important.

Stochasticity in choices had a further unexpected effect in

tending to make subjects pre-commit to a single long work

bout rather than dividing work up into multiple short bouts

following on from each other. The more bouts the subject

used for a single overall work duration, the more probably sto-

chasticity would lead to a choice in favour of leisure, and thus

the lower the overall reward rate. Pre-commitment to a single

long duration avoids this. Our model therefore provides a

novel reason for pre-commitment to executing a choice to com-

pletion: the avoidance of corruption owing to stochasticity.

If there was also a cost to making a decision—either from the

effort expended or from starting and stopping the action at

the beginning and ends of bouts, then this effect would be

further enhanced. Such switch costs would mainly influence

pre-commitment during working rather than the duration of

leisure, because there is exactly one behavioural switch in the

latter no matter how long it lasts.

Even at very high pay-offs, subjects are observed still to

engage in short leisure bouts after receiving a reward—the

so-called post-reinforcement pause (PRP). This is apparently

not instrumentally appropriate, and so we consider PRPs to

be Pavlovian. The PRP may consist of an obligatory initial com-

ponent, which is curtailed by the subject’s Pavlovian response

to the lever. This obligatory component could be owing to the

enjoyment or ‘consumption’ of the reward. The task was set up

so that instrumental rather than Pavlovian components of

leisure dominate, so for simplicity we assumed the latter to

be a pay-off-dependent constant (rather than being a random

variable). We can only model PRPs rather crudely, given the

paucity of independent data to fit—but our main conclusions

are only very weakly sensitive to changes.
By integrating molecular choices we derived molar quan-

tities. A standard molar psychological account assumes that

subjects match their TA between work and leisure to the ratio

of their pay-offs as in a form of the generalized matching law

[8,9,11,14,16]. This has been used to yield a three-dimensional

relationship known as a mountain, which directly relates TA

to objective reward strength and price [19,21]. However, the

algorithmic mountain models depend on a rather simple

assignment of utility to leisure that does not have the para-

metric flexibility to encompass the issues on which our

molecular model has focused. Those issues can nevertheless

have molar signatures—for instance, if the microscopic

benefit-of-leisure is eventually sublinear, then as the price

becomes very long, extended leisure bouts are less likely to

get censored, and so the subject would then be observed

to resume working before the end of the trial. Integrating

this, at long prices, TA would be observed not to decrease,

and even increase with the price, a prediction not made by

any existing macroscopic model. Whereas animals have been

previously shown to consistently work more when work

requirements are greater (e.g. ostensibly owing to sunk costs

[64]), the apparent anomaly discussed here only occurs at

very long prices and is unexpected from a macroscopic per-

spective. Our microscopic model predicts how this anomaly

can be resolved. Experimentally testing whether this prediction

holds true would shed light on the types of nonlinear micro-

scopic benefit-of-leisure functions and their parameters

actually used by subjects.

Another standard molar (but computational) approach

comes from the microeconomic theory of labour supply [1].

Subjects are assumed to maximize their macroscopic utility

over combinations of work and leisure [3,5,18]. If work and

leisure were imperfect substitutes, so leisure is more valuable

given that a certain amount of work has been performed,

and/or vice versa, then perfect maximizers would choose

some of each. Such macroscopic utilities do not distinguish

whether leisure is more beneficial because of recent work,

e.g. owing to fatigue. We propose a novel microscopic

benefit-of-leisure, which is independent of the recent history

of work. We use stochasticity to capture the substantial varia-

bility evident at a molecular scale, and thus also molar TA.

Behavioural economists have investigated real-life TA

[2,3,5], including making predictions which seemingly con-

tradict those made by labour supply theory accounts [4].

For instance, Camerer et al. [4] found that New York City

taxi drivers gave up working for the day once they attained

a target income, even when customers were in abundance.

Contrary to this finding, in the experimental data we

model, subjects work nearly continuously when the pay-off

is high rather than giving up early. Income-targeting could

be used when the income earned from work can be saved,

and then spent on essential commodities and leisure activities

[65]. Once sufficient quantities of the latter can be guaranteed,

there is no need to earn further income from work. In the

experimental data, we model a reward-like BSR cannot be

saved for future expenditures, a possible reason why we do

not see income-targeting effects.

One class of models that does make predictions at mol-

ecular as well as molar levels involves the continuous time

Markov chains popular in ethology [17]. In these models,

the entire stream of observed behaviour (work and leisure

bouts) can be summarized by a small set of parametric dis-

tributions, and the effect of variables, for example pay-off,
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can be assessed with respect to how those parameters change.

These models are descriptive, characterizing what the animal

does, rather than being normative: positing why it does so.

Our micro-SMDP model has three revealing variants. One

is a nanoscopic MDP, for which choices are made at the finest

possible temporal granularity rather than having determin-

able durations (so a long work bout would turn into a long

sequence of ‘work-work-work . . . ’ choices). This model has

a straightforward formal relationship to the micro-SMDP

model [66]. The distinction between these formulations

cannot be made behaviourally, but may be possible in

terms of their neural implementations. The second, minor

alteration, restricts transitions to those between work and

leisure, precluding the above long sequences of choices. The

third variant is to allow a wider choice of actions, notably a

‘quit’, which would force the subject to remain at leisure

until the end of the trial. This is simpler and can offer a norma-

tive account of behaviour for high and low pay-offs. However,

in various cases, subjects resume working after long lei-

sure bouts, whereas this should formally not be possible

following quitting.

Considered more generally, quitting can be seen as an

extreme example of correlation between successive leisure dur-

ations—and it is certainly possible that quantitative analyses

of the data will reveal subtler dependencies. One source of

these could be fatigue (or varying levels of attention or enga-

gement). The CHT procedure (with trailing trials enabling

sufficient rest) was optimized to provide stable behavioural

performance over long periods. However, fatigue together

with the effect of pay-off might explain aspects of the micro-

structure of the data, especially on medium pay-off trials.

Fatigue would lead to runs of work bouts interspersed with

short leisure bouts, followed by a long leisure bout to reset or

diminish the degree of fatigue. Note, however, that fatigue

would make the benefit-of-leisure depend on the recent history

of work.

We modelled epochs in a trial after the RI and price are

known for sure. The subjects repeatedly experience the RI

and price conditions during training over many months,

and so would be able to appreciate them after minimal

experience on a given trial. However, before this minimal

experience, subjects face partial observability, and have to
decide whether to explore (by depressing the lever to find

out about the benefits of working) or exploit the option of

leisure (albeit in ignorance of the price). This leads to a

form of optimal stopping problem. However, the experimen-

tal regime is chosen broadly so that subjects almost always

explore to get at least one sample of the reward and the

price (the pink/dark grey shaded bouts in figure 1d ).

Finally, having raised computational and algorithmic

issues, we should consider aspects of the neural implemen-

tation of the microscopic behaviour. The neuromodulator

dopamine is of particular interest. Previous macroscopic

analyses from pharmacological and drugs of addiction stu-

dies have revealed that an increase in the tonic release of the

neuromodulator dopamine shifts the three-dimensional

relationships towards longer prices [21–23], as if, for instance,

dopamine multiplies the intensity of the reward. Equally,

models of instrumental vigour have posited that tonic dopa-

mine signals the average reward rate, thus realizing the

opportunity cost of time [24,67,68]. This would reduce the pro-

pensity to be at leisure. It has also suggested to affect Pavlovian

conditioning [69,70] to the reward-delivering lever. Except at

very high pay-offs, in our model this by itself would have mini-

mal effect, because instrumental leisure durations would be

adjusted accordingly. Finally, it has been suggested as being

involved in overcoming the cost of effort [71], a factor that

could readily be incorporated into the model. While the ability

to discriminate between these various factors is lost in macro-

scopic analyses, we hope that a microscopic analysis will

distinguish them.
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