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Abstract

Background. Apathy, a disabling and poorly understood neuropsychiatric symptom, is char-
acterised by impaired self-initiated behaviour. It has been hypothesised that the opportunity
cost of time (OCT) may be a key computational variable linking self-initiated behaviour
with motivational status. OCT represents the amount of reward which is foregone per second
if no action is taken. Using a novel behavioural task and computational modelling, we inves-
tigated the relationship between OCT, self-initiation and apathy. We predicted that higher
OCT would engender shorter action latencies, and that individuals with greater sensitivity
to OCT would have higher behavioural apathy.
Methods. We modulated the OCT in a novel task called the ‘Fisherman Game’, Participants
freely chose when to self-initiate actions to either collect rewards, or on occasion, to complete
non-rewarding actions. We measured the relationship between action latencies, OCT and
apathy for each participant across two independent non-clinical studies, one under laboratory
conditions (n = 21) and one online (n = 90). ‘Average-reward’ reinforcement learning was used
to model our data. We replicated our findings across both studies.
Results. We show that the latency of self-initiation is driven by changes in the OCT.
Furthermore, we demonstrate, for the first time, that participants with higher apathy showed
greater sensitivity to changes in OCT in younger adults. Our model shows that apathetic indi-
viduals experienced greatest change in subjective OCT during our task as a consequence of
being more sensitive to rewards.
Conclusions. Our results suggest that OCT is an important variable for determining free-
operant action initiation and understanding apathy.

Introduction

Apathy is a common, disabling and hard-to-treat neuropsychiatric symptom found in a range
of neuropsychiatric disorders such as schizophrenia, depression, Parkinson’ disease (PD),
Alzheimer’ disease (AD) and Huntington’ disease (HD) (Husain & Roiser, 2018;
Krishnamoorthy & Craufurd, 2011; Le Heron, Apps, & Husain, 2018). In these populations,
clinical apathy is commonly associated with reduced self-care, functional decline and the
need for external support (Konstantakopoulos et al., 2011; Pagonabarraga, Kulisevsky,
Strafella, & Krack, 2015; Starkstein, Jorge, Mizrahi, & Robinson, 2006; Van Duijn, Reedeker,
Giltay, Roos, & Van Der Mast, 2010). In the non-clinical population, apathy is thought to
affect academic performance, productivity and health-related outcomes like weight control
and later-life frailty (Ang, Lockwood, Apps, Muhammed, & Husain, 2017; Ayers et al.,
2017; Desouza et al., 2012; Katzell & Thompson, 1990). Despite the prevalence and signifi-
cance of apathy, it remains poorly understood. Apathy is characterised by reduced motivation
and impaired self-initiated goal-directed behaviour (Le Heron, Apps, & Husain, 2018; Levy &
Dubois, 2006; Marin, 1991; Starkstein, 2000). In part, our limited understanding of apathy
may reflect limited understanding of a key component of ecological behaviour at the heart
of apathy – self-initiation. If we better understood the environmental and computational
mechanisms which drive self-initiation, can we better understand apathy?

Reinforcement learning (RL) is a prominent theoretical framework that has been used
extensively to build computational models of animal and human decision making and motiv-
ation (Chowdhury et al., 2013; Garrison, Erdeniz, & Done, 2013; Huys, Maia, & Frank, 2016;
Niv, Daw, Joel, & Dayan, 2007; Noonan, Kolling, Walton, & Rushworth, 2012; Pessiglione,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0033291721003469
Downloaded from https://www.cambridge.org/core. IP address: 188.30.130.224, on 22 Oct 2021 at 17:23:22, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/psm
https://doi.org/10.1017/S0033291721003469
https://doi.org/10.1017/S0033291721003469
mailto:akshay.nair@ucl.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog?doi=10.1017/S0033291721003469&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0033291721003469
https://www.cambridge.org/core


Seymour, Flandin, Dolan, & Frith, 2006; Rutledge, Dean, Caplin,
& Glimcher, 2010; Schultz et al., 1997; Voon et al., 2010). Despite
the extensive use of RL to model trial-by-trial behaviour, there
have been limited attempts to extend this framework to the
study of self-initiated, or free-operant, behaviour. Niv et al.
(2007) began to address this theoretical gap by considering the
choice of free-operant action initiation latency as an optimal
decision-making problem. They framed the problem of action ini-
tiation as a semi-Markov decision process and used a branch of
RL known as ‘average reward’ RL to model free-operant action
initiation in animals (Mahadevan, 1996; Niv et al., 2007;
Puterman, 2005; Sutton, Precup, & Singh, 1999). In their influen-
tial computational model, the decision maker chooses not only
which action to pick but when to take their next action. Niv
et al. (2007) argued that the decision maker must have computed
the average ‘reward rate’. This variable encodes the amount of
reward, on average, that can be extracted from the environment,
per unit time. This allows the decision maker to calculate the
amount of reward which could be lost if action initiation is
delayed – put simply, the cost of sloth. By weighing this ‘oppor-
tunity cost of time’ (OCT) against the energetic or ‘vigour cost’
of acting too rapidly, the decision maker can derive an optimal
latency that maximises their net rewards over a period. Prompts
are not required to engender action as, immediately after the
last action is completed, the decision maker begins to accrue
opportunity cost, which drives them to act again. In this model,
the OCT is also governed by an animal’ motivational status. For
example, hungry animals have been shown to complete non-
rewarding actions faster, such as grooming (Dickinson &
Balleine, 2002; Hull, 1943; Niv, Daw, & Dayan, 2005). Within
the OCT framework this is predicted as hunger increases the util-
ity of food: penalising time spent away from seeking food. Thus,
the OCT theory outlines a theoretical framework for understand-
ing both self-initiation and motivation. Despite such insight,
although this model has been applied to trial-based cognitive
tasks (Beierholm et al., 2013; Guitart-Masip, Beierholm, Dolan,
Duzel, & Dayan, 2011), there is currently limited evidence to sug-
gest that in a free operant setting, healthy participants choose
action latencies based on the OCT. Furthermore, the relationship
between apathetic symptoms and sensitivity to OCT has not been
explored. In this study, we seek to address these lacunae. It should
be noted that although we approach this problem from a RL
perspective, the OCT theory considerably overlap with the
‘neuroethological’ approach derived from the foraging literature
which makes similar predictions (Pearson, Watson, & Platt,
2014; Stephens & Krebs, 1987).

We developed a novel behavioural paradigm in which partici-
pants were free to choose when to self-initiate actions while we
experimentally manipulated the OCT. First, we predicted that in

this free-operant setting, participants would rapidly adapt their
choice of action latencies based on the OCT. Higher levels of
opportunity cost would encourage more frequent action initi-
ation. Second, as described above, we predicted that high oppor-
tunity cost would invigorate the completion of non-rewarding
actions. Finally, we asked whether sensitivity to the OCT within
our task predicted behavioural apathy scores. We hypothesised
that motivated individuals would perceive even small rewards as
highly rewarding. They would perform tasks as if there was a
higher degree of opportunity cost throughout the task. As such,
when exposed to a task with fluctuating levels of opportunity
cost, motivated individuals would consistently act quickly, show-
ing little variation in chosen action latencies. By comparison, we
predicted that apathetic individuals would show a strong inverse
relationship between OCT and chosen action latency, choosing
to go faster only when the opportunity cost is high and slowing
down when it is low. Based on previous work, we fit our data
using a new, average-reward, RL model and predicted that differ-
ences in reward sensitivity parameters in our model could explain
the relationship between apathy and the OCT.

Methods

Samples

Both studies were performed before the coronavirus disease-2019
(COVID-19) pandemic. We recruited healthy participants with
no known psychiatric or neurological history and who were not
taking any psychotropic medication. Participants were told that
they could earn up to £5 depending on their performance.
Participants who felt that they struggled with motivation were
encouraged to sign up to the study, but participants were not pre-
screened on apathy scores. Twenty-one participants were
recruited into Exp. (1). This study was approved by the UCL eth-
ics committee (3450/002). Ninety adult participants from the
Prolific online portal (https://prolific.ac/) were included in Exp.
(2) [see online Supplementary Methods for details of addition
inclusion and exclusion criteria for Exp. (2)]. The study was
run on the Gorilla testing platform with task code written in
Javascript. Participants received additional payment to ensure
that hourly earnings for participation were at least £5 per hour.
This study was approved by the UCL ethics committee (12 365/
002). Study demographics for both studies are shown in Table 1.

Questionnaire data

Participants completed two questionnaires after finishing the task
– the Apathy and Motivation Index (AMI), a validated question-
naire designed to measure apathy in the general population; and

Table 1. Demographics for participants included in the in-lab, Exp. (1), and the online studies, Exp. (2)

Experiment 1 (N = 21) Experiment 2 (N = 90)

Age 22.5 ± 2.9 (min: 19, max: 32) 38.6 ± 10.6 (min: 21, max: 63)

Gender (F%) 76.2% 51.7%

AMI total 1.4 ± 0.4 1.6 ± 0.5

Behavioural AMI 1.6 ± 0.9 1.6 ± 0.8

HADS total 13.7 ± 7.2 12.7 ± 6.8

Mean total Apathy and Motivation Index (AMI), behavioural AMI sub-score and total Hospital Anxiety and Depression Scores (HADS) shown (values shown as mean ± S.D.).
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the Hospital Depression and Anxiety Scale (HADS), a brief self-
reported screening tool for assessing depressive and anxiety symp-
toms (Ang et al., 2017; Stern, 2014). AMI is scored such that
higher scores correspond to higher apathy levels. Given the
focus of our experiment was on behavioural apathy, our primary
outcome for these experiments was the behavioural apathy score
from the AMI (bAMI), as opposed to the emotional or social
apathy scale.

Task overview

Participants played our novel task, ‘The Fisherman Game’ shown
in Fig. 1. Participants were told that they would be earning
money, in fictional yen ¥, by catching fish. To catch fish, partici-
pants pressed the down arrow key on a keyboard. This action, ‘a
tap’, required minimal effort and the force of tapping was not
relevant to outcome. Every time they pressed down, they ‘caught’
a fish. The number of yen earned for each fish was displayed on
the screen next to a fish icon. This value changed every 12–13 s
and was drawn at random from a set of 6 numbers ranging
from ¥0.1 to ¥2.5. When the price changed participants also
heard a bell to alert them to the change in price to minimise
effects of poor attention. As this task was designed to test the tim-
ing of self-initiated behaviour, the screen was static and there were
no prompts to initiate actions.

Participants were told that they would play the fisherman game
in two ‘environments’ each containing two blocks. One block con-
sisted of 12 changes in price following which block participants
were given a self-paced rest. Participants were told that in one
environment earning ¥3000 would result in payment of £4.00. In
the other environment, they were told earning ¥3000 would only
result in a payment of £0.50. The order of the environments was
counterbalanced between subjects, and all subjects knew before
starting the game that they would have to play both environments.
The change in OCT across the prices and environments represent
the two OCT manipulations participants experienced in this study.

Finally, a non-rewarding action was included in both environ-
ments of the game. Participants were told that their fishing rod
may break randomly during the game. To fix the rod, participants

were told to tap the right arrow key on the keyboard five times
successively. On the screen, rod breaking was indicated by a red
cross which reduced in size with each successive tap. Rod fixing
yielded no additional yen or fish and at the time the rod broke
the current price of fish was not displayed, only the environment
value. The only utility of fixing the rod quickly was to be able to
return to collecting fish. The fishing rod broke six times per envir-
onment. When the rod broke, time in the task was not stopped
and participants were aware of this task feature. The order of
price changes and timings of the rod breaking were randomly
determined in each participant and fixed across the two environ-
ments. The task user interface and design elements are further
shown and described in Fig. 1. Before starting the experiment,
participants read detailed instructions on all aspects of the task
including a practice period catching fish for 20 s whilst the
price changed and a period fixing the rod. They were told to go
as fast or as slow as they wanted throughout the experiment.
The task itself lasted approximately 15 min. The task was
designed and implemented in Cogent 2000, a Matlab toolbox
for psychological experiments.

The task online for Exp. 2 was almost identical to the one
described above; however, the minor differences are described
in the online Supplementary Methods. Additional inclusion and
exclusion criteria for Exp. 2 are also found in the online
Supplementary Methods. The task was coded in JavaScript and
hosted on Gorilla (https://gorilla.sc/).

Outcome measures

The key variable of interest in this study was the latency between
two successive taps, calculated as the difference in the stored time-
stamps between two key presses. The price and the environment
were manipulated as described above. Action latencies for fishing
and fixing a broken fishing rod were recorded.

Statistical analysis

Statistical analysis was identical in both studies. Basic task metrics
were first computed to assess the effect of the environmental

Fig. 1. Overview of task design. (a) Following assessment of maximum tapping speed, instructions and training, participants completed two counterbalanced envir-
onments in which they earned ¥ for fish caught with key presses: high OCT and low OCT environment indicated by the monetary value of ¥3000 (£4 or £0.50) and
the colour of the water (blue water representing high value and white water representing low value). When not pressing to catch fish, nothing on screen prompted
action. To register that a fish was caught, the angle of the fish graphic changed by 45o. A bell sounded each time the price for fish changed. Information regarding
environments and range of fish prices was present on screen at all times. The price of the fish changed every 12–13 s and prices were randomly drawn from a set of
six prices ranging from ¥0.1–¥2.5 per fish. Each price was seen four times in an environment and the order of prices was the same in both environments but ran-
domly generated for each participant. (b) Six times in each environment, the participant’ fishing rod broke. To fix it they were required to repeatedly tap an alter-
native button, for no immediate reward and for a fixed number of times. While the rod was broken, no price was displayed on screen; instead, participants saw a
large red cross which decreased in size with every tap. Time within the task was not stopped while the rod was being fixed and participants were aware of this.
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manipulation of the OCT. The number of taps were compared,
within subject, between the high and low opportunity cost envir-
onments. The mean latency per price in each environment was
also calculated and used to illustrate the effect of price and envir-
onment manipulation. To determine the effect of environment on
rod fixing latencies, the mean log transformed rod fixing latency
in each environment were compared.

Outliers were removed from latency data using median absolute
dispersion technique. This outlier removal technique is itself more
robust to the presence of outliers and has been recommended for
use with latency data (Leys, Ley, Klein, Bernard, & Licata, 2013).
Using this approach, an outlier is defined as being greater than
three scaled absolute deviations from the median [median(|
Yi-median(Y )|)]. Outliers were removed from the raw latency
data for each subject in each environment. Latencies were then
log transformed for use in linear regression models.

We modelled our data using a linear mixed effects model. The log
transformed latencies were specified as the dependent variable in our
model. At the fixed effects level, we included three variables (1) price,
(2) environment (low or high as a dummy variable) and (3) the
number of cumulative taps the subject had performed in the envir-
onment up to that point. Each of these effects was also estimated at
the subject level as random effects. Subject level slopes for price and
environment were used as individual measures of sensitivity to our
two manipulations of opportunity cost. Linear mixed models were
fit in MATLAB 2017a using the fitlme function. Models were esti-
mated by fitting an unstructured variance-covariance matrix using
a restricted maximum likelihood (REML) fit method.

We also asked whether these individual sensitivities to oppor-
tunity cost (i.e. price beta, environment beta) were predictive of
bAMI. In Exp. (1), we built a linear regression model to determine
whether individual sensitivity to opportunity cost predicted bAMI
scores whilst controlling for demographics (age and gender) and
symptoms of depression and anxiety from the HADS entered
separated (D-HADS and A-HADS respectively). Exp (2), the
online study had a wider age range as compared to the lab
study (see Results). Based on the results from Exp. (1), post-hoc,
we asked whether the effect would be present in young adults (age
18–35) and we divided our cohort in Exp. (2) into young (age 18–
35) and older adults (age 36–65).

Computational modelling

Following Niv et al. (2007) we formulated the task as a real-time
cost-benefit decision-making problem, in which participants trade-
off the OCT against the energetic cost of acting quickly. Formally,
our approach constitutes an ‘average reward’ RL problem. We
assumed that each [ price of fish, environment] condition is a sep-
arate ‘state’. A participant when in a state, chooses a latency then
returns to the same state, and the process repeats. Central to our
model, participants choose action latencies (τ) by balancing the
cost of vigour (Cv/τ) and the OCT (�R τ). The vigour cost is inversely
proportional to the latency, with an individually fitted cost param-
eter (Cv), accelerating rapidly as the participant responds closer
toward their fastest motor latency. The OCT denotes the average
reward foregone by responding at a particular latency: slower
responses in a high reward environment lead to greater reward
foregone. OCT is calculated by multiplying the reward rate: average
reward available per second (�R), by the latency (τ). Aside from the
Cv parameter, we also fit a reward sensitivity (SR) parameter to each
subjects data. In our model, a subject with low SR would perceive
little difference in subjective rewards between prices or

environments. For such a subject, the subjective reward remains
high even when the price or environment value is low. By compari-
son, with high SR, subjective reward would relate more closely with
the value of the price or environment. For more modelling details
including model specification, fitting procedure and model com-
parison see Supplementary Methods and Fig. S1.

Results

Cohort description

Table 1 shows the demographic details for participants in Exp. (1)
and Exp. (2). In both experiments we sought to recruit healthy
adult participants. Exp. (1) took place under laboratory condi-
tions whereas Exp. (2) was completed online using the Gorilla
and Prolific testing platforms.

Opportunity cost invigorates both rewarding and
non-rewarding actions in healthy participants

The effect of OCT on mean latencies and free-operant action ini-
tiation is shown in Fig. 2 for both in-lab (Fig. 2a) and online sam-
ples (Fig. 2b). Mean latencies decreased as price of fish increased
both experiments. Further, mean latencies were lower in the high
OCT environment, in which ¥3000 was worth £4.00 as compared
to £0.50 in the low OCT environment. Using mixed linear models
to summarise the group level effect of both OCT manipulations
on action latency, we found that participants in both Exp. (1)
and Exp. (2) adapted their action latencies with respect to OCT
for both price and environment. For both price [Exp. (1):
β = −0.056, confidence interval (CI) −0.07 to −0.03, p < 0.001,
Exp. (2): β =−0.039, CI −0.05 to −0.03, p < 0.001] and environ-
ment (Exp. (1): β =−0.049, CI −0.08 to −0.01 p = 0.001, Exp.
(2): β =−0.041, CI −0.06 to −0.02, p < 0.001), as OCT increased,
action initiation latency decreased. There was also a gradual drift
towards slower latencies over the course of the experiment (Exp.
(1): β = 6.9 × 10−5, CI 4.8 × 10−5 to 8.8 × 10−5, p < 0.001, Exp. (2):
β = 4.0 × 10−5, CI 3.1 × 10−5 to 4.9 × 10−5, p < 0.001) in both
experiments. Differences in total actions initiated between two
environments is shown in online Supplementary Fig. S2.

In keeping with our predictions, participants in both studies
also took longer to fix the broken fishing rod in the low OCT
environment as compared to the high OCT environment (Exp.
(1): t(20) = −3.0, p = 0.0076, Exp. (2): t(89) = −4.0, p < 0.001,
Fig. 2c, d). Fixing the fishing rod was associated with no reward
itself, other than a faster return to fishing.

Individual sensitivity to opportunity cost predicted behavioural
apathy scores in young adults

As this task was designed to assess the effect of OCT on free oper-
ant action initiation, we hypothesised that sensitivity to OCT
would predict behavioural apathy scores (bAMI). Figure 3a, b
show example timeseries from two participants from Exp. (1)
with low and high behavioural apathy scores, respectively. The
high apathy individual showed a strong inverse relationship
between latency and price. This effect was also seen at a group
level. A linear regression model was used to assess whether parti-
cipants’ sensitivity to opportunity cost: either price or environ-
ment, could predict behavioural apathy scores after controlling
for age, gender, and anxiety and depression scores. In Exp. (1),
both price and environment sensitivity predicted behavioural
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apathy (Price GLM: β =−11.5, t =−3.1, p = 0.002, Fig. 3c,
Environment GLM: β =−5.2, t =−2.2, p = 0.04).

We next tested whether apathy was correlated with both price
and environment sensitivity in Exp. (2). Including the entire
cohort (n = 90), we did not initially find the same relationship
between behavioural apathy scores and price or environment sen-
sitivity scores (Price GLM: β =−3.4, t =−1.7, p = 0.08,
Environment GLM: β = 1.2 t =−1.6, p = 0.1). As compared to
Exp. (2), all participants in the first in-lab study fell within the
young adult age bracket, namely between 18 and 35 years. We
therefore completed a post-hoc analysis dividing the cohort into
young (age: 18–35, n = 45) and older adult cohorts (age: 36–65,
n = 45) predicting that we would replicate the relationship
between bAMI and price sensitivity in the young cohort.
Replicating the results from Exp. (1), we found that price sensitiv-
ity predicted bAMI scores in young adults after correcting for age,
gender, anxiety and depression scores scores (Young Adult Price
GLM: β = −9.9, t =−3.2, p = 0.003, Fig. 3d). This result was not
seen in the older adults (Older Adult Price GLM: β = 3.0,
t =−1.2, p = 0.25). This result was not explained by a lack of effect
of a price manipulation in older adults (Older adults: βprice =
−0.041, t =−3.4, p < 0.001; βenv = −0.029, t =−1.5, p = 0.13;
Young adults: βprice =−0.036, t =−7.4, p < 0.001, βenv =−0.053,

t =−2.3, p = 0.018). Environment sensitivity was not predictive
of behavioural apathy scores in either the young or old adults
(Young Adults: β = 0.69 t =−1.4, p = 0.62, Older Adults: β = 1.6
t = 1.9, p = 0.06). In keeping with this, difference in rod fixing
latencies and apathy did not correlate either (Exp 1:
rho = −0.24, p = 0.3, Exp. 2: rho =−0.2, p = 0.18). In Exp. (1)
price sensitivity predicted neither social apathy (β =−2.8,
t =−0.7, p = 0.49) nor emotional apathy (β =−5.7, t = 1.3, p =
0.21) as measured by the sAMI and eAMI respectively.
Replicating results from Exp (1), price sensitivity in Exp. (2)
did not predict sAMI (β =−6.2, t = −1.8, p = 0.074) or eAMI
(β =−1.2, t = −0.48, p = 0.64) scores in the younger adult cohort
online. In summary, the sensitivity of young adults, tested either
in the lab or online, to adapt their action latencies to changes in
OCT (using the price manipulation in this task) predicts behav-
ioural apathy.

Reward sensitivity and OCT correlate with apathy scores in
young adults

Using our average reward RL model, we found that reward sensi-
tivity in young adults was correlated with independently assessed
apathy scores in both Exp. (1) (ρ = 0.62, p = 0.008) and Exp. (2)

Fig. 2. Opportunity cost invigorates rewarding actions – (a–c) show data from Exp. 1, lab-based and (d–f) show data from Exp.2, online based. (a, d) In both lab-
based (a) and online (d) experiments, increased opportunity cost (manipulated by environments with a higher price for fish) produced the predicted reduction in
chosen free-operant action initiation latencies. Mean choice latency is plotted by price (¥/tap) and environment (±S.E.M.) for (a) Exp. (1) in-lab sample and (b) Exp.
(2) online sample. (b, e) Higher opportunity cost was associated with more frequent self-initiated action initiation (i.e. more taps) during the fixed environment
duration in subjects in both (b) Exp. (1) in-lab and (E) Exp. (2) online studies. Grey dots represent the number of taps performed by each subject in each envir-
onment (low v. high opportunity cost). t statistic shows paired difference between number of taps. (c, f) Higher opportunity cost environments are associated with
faster rod-fixing latencies, despite rod fixing being an action with no immediate reward value in both environments, in both (c) Exp. (1) in-lab (n = 21) and (f) Exp.
(2) online experiments (n = 90). Mean latencies of rod fixing in both environments are shown as grey dots. Line of no effect is shown as a dashed line. We predicted
that most dots would lie above this line indicating slower action initiation for non-rewarding actions in the low value environment due to the lower opportunity
cost. t statistic shows difference between mean log latencies, ** p < 0.01 *** p < 0.001.
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(ρ = 0.52, p = 0.0009), Fig. 4a, b. In our model, a subject with high
reward sensitivity would perceive large differences in subjective
reward between prices and environments. By comparison, with
low reward sensitivity, as found in motivated individuals the sub-
jective reward remains high even when the price or environment
reward value is low. As a result, our model also suggests that
apathetic individuals in our studies showed the largest change
in the subjective OCT throughout our task. This is demonstrated
in Fig. 4c, d which show the correlations, in both Exp. (1) and
Exp. (2), between individual behavioural apathy scores and the
change in model-derived subjective OCT between states with
the highest and lowest opportunity cost in our task.

Further, our modelling revealed that more apathetic individuals
experienced higher OCT in the highest environment (online

Supplementary Fig. S3a, b). This modelling result makes an intri-
guing prediction: more apathetic individuals will respond faster
in the highest reward state (highest price and environment). We
found that, in keeping with the modelling, higher apathy was sur-
prisingly associated with a lower median action initiation latency in
the highest reward state, with a negative correlation in Exp. (2) (ρ =
−0.48, p = 0.0008) and a similar trend in Exp. (1) (ρ =−0.35, p =
0.1). These data are shown in online Supplementary Fig. S3a–d.

Discussion

One of the hallmarks of apathy is reduced self-initiated
goal-directed behaviour (Levy & Dubois, 2006; Marin, 1991). In
this study, we show that healthy participants adapt the timing

Fig. 3. Sensitivity to opportunity cost depends on apathy – Example timeseries from the task as performed by a participant with low behavioural apathy (a – bAMI:
0.83) and a participant with high behavioural apathy (b – bAMI: 3.5) in Exp. (1). Grey unbroken timeseries shows chosen action latencies and broken lines indicate
the current fish price. Changes in fish price signal change in OCT, here in the low OCT environment in both examples. Highly motivated individuals like the par-
ticipant in (a) showed little sensitivity to change in opportunity cost. By comparison, the example apathetic individual in (b) showed a negative relationship
between action latency and OCT. (c, d) Relationship between behavioural apathy scores measured by bAMI and OCT sensitivity (subject-level price beta from linear
mixed model) in C. Exp. (1), in-lab (n = 21) and D. Exp. (2), online young adults (18–35 years, n = 45). Behavioural apathy scores were significantly associated with
OCT sensitivity in both lab (ρ =−0.60, p = 0.004) and online samples (ρ =−0.50, p = 0.0005) in young adults. ** p < 0.01 *** p < 0.001.
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of self-initiation according to the OCT, the amount of reward lost
per unit time by not acting. By manipulating the OCT within our
novel behavioural task, we show in two independent studies that
healthy participants rapidly adapt action initiation latencies for
rewarding actions to changes in OCT. We also show that high
OCT invigorates non-rewarding actions. Furthermore, we find
that individual sensitivity to OCT predicted behavioural apathy
scores in young adults in both studies. Building on these results
we fit a novel computational model to behaviour in our task.
Using our average-reward RL model we find that differences in
reward sensitivity correlated with motivational status as assessed
by a standard apathy questionnaire. This meant that apathetic
young adults in our studies showed the largest change in the sub-
jective OCT.

We believe that our study has several strengths. Firstly, the task
we developed encourages free operant action initiation without
adopting a discrete trial-by-trial design, making it highly
ecological. Secondly, by making explicit the current reward rate,
we minimised behavioural differences between participants driven
by differences in learning. Furthermore, changes in OCT were

signalled with salient visual and auditory stimuli to minimise
the impact of inattention. As a result of these design elements,
we contend that variance in the behaviour we observed is driven
primarily by variance in the sensitivity of individuals to oppor-
tunity cost. Through these design elements, we also hope our
task will be of value in a range of clinical populations.
Following on from the first experiment, we also sought to inde-
pendently replicate our results by running our second experiment
online. By adopting this approach, and replicating our main
results, we sought to avoid effects driven by any recruitment
bias associated with laboratory cognitive testing or any demand
effect due to the presence of the experimenter.

We would also like to highlight a few potential limitations of
this study. Although we predicted a relationship between oppor-
tunity cost sensitivity and apathy, we did not a priori predict
that this relationship would be influenced by aging. In our online
study, older apathetic adults were not more sensitive to opportun-
ity cost and this finding requires further investigation. This may
reflect that fact that in the older adult cohort, the effects of the
opportunity cost manipulations were weaker than in the young

Fig. 4. Apathy modulates reward rate: (a, b) We found a strong positive relationship between apathy and the reward sensitivity parameter in our average reward RL
model. (c, d) As a result of this variation in reward sensitivity, apathetic individuals showed larger changes in subjective OCT derived from the model between
different environments (plot shows the difference in modelled opportunity cost between states with the highest and lowest opportunity cost) *p < 0.05 ** p <
0.01 *** p < 0.001.
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cohort. It is also known that aging influences a range of factors
related to reward-based decision making and these changes may
have contributed to our results (Chowdhury et al., 2013; Green,
Myerson, & Ostaszewski, 1999; Rutledge et al., 2016). We also
note that in this task, only price sensitivity predicted apathy
and not environmental sensitivity (or rod fixing). We would not
have predicted this dissociation as both price and environment
represent manipulations of opportunity cost.

It may be argued that in our experiment reward cannot be
dissociated from opportunity cost. As such, our experiment
resembles previous work demonstrating harder work for more
rewards – a well-known and well-characterised phenomena
(Croxson, Walton, Reilly, Behrens, & Rushworth, 2009; Hamid
et al., 2015; Manohar et al., 2015; Walton, Bannerman, &
Rushworth, 2002). In response to this we draw the reader’
attention to the inclusion of the rod fixing manipulation which dis-
sociates immediate reward from opportunity cost. Participants fix
the rod faster, not for immediate reward but to minimise the
time spent away from accumulating reward, the opportunity cost.
We should however point out that in the computational formula-
tion opportunity cost does not represent a distinct psychological
variable (such as ‘effort’) but rather is a projection of subjective
net reward in the time domain. In this sense, the opportunity
cost theory argues that we work faster for higher rewards because
subjective reward translates directly into the time domain in the
form of opportunity cost. We believe the opportunity cost drives
both the fishing and rod fixing effects however, rod fixing most
clearly dissociates immediate reward from opportunity cost in
this experiment. It should also be noted that although participants
showed an invigoration for rod fixing, this effect is not the same as
the ‘general invigoration’ described by Niv et al. (2007). Firstly, the
rod fixing is not truly goal-independent and secondly, participants
did not choose when to fix the rod. As such rod-fixing differs from,
for example, grooming more quickly when hungry. An alternative
design would have been to introduce an optional additional action
into the task for which participants were rewarded with some non-
monetary reward however, standardising the choice of this option
across participants would be challenging to achieve. We would
also argue, that despite the difference between rod-fixing and invig-
oration as described by Niv et al. (2007), participants in this study
lose time to collect rewards much like hungry animals who choose
to drink as opposed to look for food. As such, rod-fixing in this
study is invigorated for the same reasons, namely due to the
increased opportunity cost between the two environments.

To our knowledge, our study represents the first demonstra-
tion that opportunity cost drives free-operant action initiation.
In two important earlier studies it has been shown that in a
trial-by-trial cognitive paradigm participants modulate reaction
times based on experimentally controlled average reward rates
(Beierholm et al., 2013; Guitart-Masip et al., 2011). However,
those studies used cognitive paradigms and were unable to test
whether opportunity cost drives free-operant action initiation
because participants in both studies were prompted to act and
additionally had to account for a speed-accuracy trade-off in
their decisions. Similarly, Constantino (2015) and Le Heron
et al. (2020) found that OCT drove the timing of foraging deci-
sions however these were also not free-operant tasks
(Constantino & Daw, 2015; Le Heron et al., 2020). Perhaps
most relevant to our findings of a link to apathy was a null result
recently reported by Kos et al. (2017), who identified in a sample
of 39 young adults aged 18–40, a lack of relationship between self-
initiation latencies and apathy (Kos et al., 2017). Participants

initially were cued to respond, then asked to choose between
two actions and were free to decide on the timing of their chosen
action. Three key differences between our studies may explain the
lack of association reported by Kos et al. (2017): responses were
cued, the decision-making component also may affect latencies,
and finally the OCT was not easy for participants to compute.
Our task is similar to many problems faced in the natural
world, and perhaps the key to our identification of a novel link
to behavioural apathy.

We also present an average reward RL model for human free-
operant behaviour. Using this computational approach, we find
that low apathy young adults act as though they were experiencing
a similar OCT across all conditions in our task. In comparison,
high apathy young adults experienced the greatest change in sub-
jective OCT. In both experiments, our computational model
showed that reward sensitivity can explain the relationship
between apathy and task performance. The reward sensitivity par-
ameter governs the change in subjective reward as participants
move between states with different levels of reward. As predicted,
highly motivated (low apathy) individuals acted as if all rewards
were subjectively highly rewarding and consequently, they were
invigorated in all states. By comparison, apathetic individuals
acted as if they found small rewards subjectively less rewarding,
choosing only to act rapidly for larger rewards. Our computa-
tional modelling also revealed that participants with greater
apathy had higher OCT in the highest reward state. This result
led us to uncover an unexpected and intriguing aspect of our
data: in the highest reward state, apathetic individuals on the
whole acted more quickly than non-apathetic individuals. These
findings suggest that in both laboratory and online young adult
cohorts, the effects of apathy on attaining rewards may be over-
come by reserving effort for high value environments, and this
surprising result is worthy of further investigation. Finally,
although average-reward RL models are not common in compu-
tational modelling, they make the argument that in large, ergodic,
environments the long-run average of rewards can be used to
optimise behaviour (Mahadevan, 1996). Although cognitive
tasks are often short lived, psychological phenomena, such as
motivational status and mood, are often conceptualised as extend-
ing over longer time periods (days or weeks). It may be that aver-
age reward signals, computed over various timescales, may be a
useful framework for assessing and modelling these longer lasting
phenomena.

Finally, although we did not test the biological basis of oppor-
tunity cost coding, as predicted by Niv et al. (2007), empirical
work supports the idea that tonic mesolimbic dopamine signalling
covaries with reward rate and motivational vigour (Hamid et al.,
2015; Mohebi et al., 2019). Given the consistent links we find
between behavioural apathy and sensitivity to the OCT in
young adults, we would predict that young apathetic participants
will show the greatest change in behaviour with the pharmaco-
logical manipulation of dopamine. On this basis we would also
predict that this task would be sensitive to dopaminergic deple-
tion seen in PD – with patients off dopaminergic medications
showing a similar pattern of response to the younger apathetic
participants in this study. Beyond dopaminergic changes, we
also believe that these results have implications for patients with
depression. Depression is associated with aberrant reward pro-
cessing and global changes in psychomotor speed – typically
resulting in slowing. Based on our results, we predict that, second-
ary to aberrant reward processing in depression, impaired or
reduced opportunity cost may drive psychomotor changes seen
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in depression. It should be noted that although we describe some
of our cohort as being apathetic – the apathy measured in our
samples represents a normal degree of variation in motivation
seen in the wider population. Although we would expect these
relationships to be borne out in clinical samples, our participants
did not have clinical apathy. There are also other variables which
may have contributed, such as trait impulsivity. Overall, we
believe that our task would be highly translatable to clinical popu-
lations with high levels of apathy

Conclusion

Using a novel task and computational model, we find that OCT is
an important determinant in the choice of free-operant action ini-
tiation latencies in healthy participants. We also establish, for the
first time, a link between sensitivity to OCT and severity of
behavioural apathy in two independent studies. Apathy is poorly
understood and disabling, and clinical apathy is difficult to treat.
Our results suggest that better understanding how the OCT is
represented in the brain and how it influences action initiation
may allow us to better understand apathy.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291721003469

Acknowledgments and Funding

• A.N. is supported by the Leonard Wolfson Experimental Neurology Centre
(Award: 525369)

• R.K.N. was funded by Wellcome Trust Sir Henry Wellcome fellowship
(107388/A/15/Z)

• G.R. receives grant funding from the Wellcome Trust.
• S.J.T. receives grant funding for her research from the Medical Research
Council UK, the Wellcome Trust, the Rosetrees Trust, Takeda
Pharmaceuticals, NIHR North Thames Local Clinical Research Network, UK
Dementia Research Institute, Wolfson Foundation for Neurodegeneration
and the CHDI Foundation.

• R.B.R. is supported by a Medical Research Council Career Development
Award (MR/N 02401X/1) and a NARSAD Young Investigator Grant from
the Brain & Behavior Research Foundation, P&S Fund. The Max Planck
UCL Centre is a joint initiative supported by UCL and the Max Planck
Society. The Wellcome Centre for Human Neuroimaging is supported by
core funding from the Wellcome Trust (203147/Z/16/Z).

Author contributions

• A.N. designed and coded the ‘Fisherman Game’ for Exp. (1), consented par-
ticipants and collected data for Exp. (1), supervised F.S. in the implementa-
tion and data collection of Exp. (2), contributed to discussion regarding
computational model, performed data analysis for model-free analyses,
wrote manuscript. Corresponding author.

• R.K.N designed, coded and fit the average-reward RL model to the data from
Exp. (1) and Exp. (2), supervised F.S. in the analyses of model-free results,
performed data analysis for model-based analyses, reviewed and amended
manuscript.

• F.S. coded Fisherman Game for Exp. (2), collected data for Exp. (2), analysed
model-free results for Exp. (2), contributed to discussion regarding compu-
tational model, reviewed and amended manuscript.

• G.R. contributed to the design of the study, provided analysis guidance,
reviewed and amended manuscript.

• S.J.T. contributed to the design of the study, provided analysis guidance,
reviewed and amended manuscript.

• R.B.R, Principal Investigator for study, contributed to the design of the
study, contributed to discussion regarding computational model, provided
analysis guidance, reviewed and amended manuscript

Conflict of interests. Authors declare no conflicts of interest

Ethical standards. The authors assert that all procedures contributing to
this work comply with the ethical standards of the relevant national and insti-
tutional committees on human experimentation and with the Helsinki
Declaration of 1975, as revised in 2008.

Data availability. Data and code will be made available on reasonable
request.

References

Ang, Y.-S., Lockwood, P., Apps, M. A. J., Muhammed, K., & Husain, M.
(2017). Distinct subtypes of apathy revealed by the apathy motivation
index. Plos One, 12(1), e0169938. https://doi.org/10.1371/journal.pone.
0169938.

Ayers, E., Shapiro, M., Holtzer, R., Barzilai, N., Milman, S., & Verghese, J.
(2017). Symptoms of apathy independently predict incident frailty and dis-
ability in community-dwelling older adults. Journal of Clinical Psychiatry,
78(5), e529–e536. https://doi.org/10.4088/JCP.15m10113.

Beierholm, U., Guitart-Masip, M., Economides, M., Chowdhury, R., Düzel, E.,
Dolan, R., & Dayan, P. (2013). Dopamine modulates reward-related vigor.
Neuropsychopharmacology, 38(8), 1495–1503. https://doi.org/10.1038/npp.
2013.48.

Chowdhury, R., Guitart-Masip, M., Lambert, C., Dayan, P., Huys, Q., Düzel, E.,
& Dolan, R. J. (2013). Dopamine restores reward prediction errors in old
age. Nature Neuroscience, 16(5), 648–653. https://doi.org/10.1038/nn.3364.

Constantino, S. M., & Daw, N. D. (2015). Learning the opportunity cost of
time in a patch-foraging task. Cognitive, Affective, & Behavioral
Neuroscience, 15(4), 837–853. https://doi.org/10.3758/s13415-015-0350-y.

Croxson, P. L., Walton, M. E., Reilly, J. X. O., Behrens, T. E. J., & Rushworth, M.
F. S. (2009). Effort-based cost – benefit valuation and the human brain.
Journal of Neuroscience, 29(14), 4531–4541. https://doi.org/10.1523/
JNEUROSCI.4515-08.2009.

Desouza, C. V., Padala, P. R., Haynatzki, G., Anzures, P., Demasi, C., &
Shivaswamy, V. (2012). Role of apathy in the effectiveness of weight man-
agement programmes. Diabetes, Obesity and Metabolism, 14(5), 419–423.
https://doi.org/10.1111/j.1463-1326.2011.01544.x.

Dickinson, A., & Balleine, B. (2002). The role of learning in the operation of
motivational systems. In H. Pashler & R. Gallistel (Eds.), Steven’s handbook
of experimental psychology: Learning, motivation, and emotion (pp. 497–
533). John Wiley & Sons, Inc. https://doi.org/10.1002/0471214426.pas0312.

Garrison, J., Erdeniz, B., & Done, J. (2013). Prediction error in reinforcement
learning: A meta-analysis of neuroimaging studies. Neuroscience and
Biobehavioral Reviews, 37(7), 1297–1310. https://doi.org/10.1016/j.neu-
biorev.2013.03.023.

Green, L., Myerson, J., & Ostaszewski, P. (1999). Discounting of delayed
rewards across the life span: Age differences in individual discounting func-
tions. Behavioural Processes, 46(1), 89–96. https://doi.org/10.1016/S0376-
6357(99)00021-2.

Guitart-Masip, M., Beierholm, U. R., Dolan, R., Duzel, E., & Dayan, P. (2011).
Vigor in the face of fluctuating rates of reward: An experimental examin-
ation. Journal of Cognitive Neuroscience, 23(12), 3933–3938. https://doi.
org/10.1162/jocn_a_00090.

Hamid, A. A., Pettibone, J. R., Mabrouk, O. S., Hetrick, V. L., Schmidt, R.,
Vander Weele, C. M., … Berke, J. D. (2015). Mesolimbic dopamine signals
the value of work. Nature Neuroscience, 19(1), 117–126. https://doi.org/10.
1038/nn.4173.

Hull, C. L. (1943). Principles of behavior: An introduction to behavior theory.
New York: Appleton-Century.

Husain, M., & Roiser, J. P. (2018). Neuroscience of apathy and anhedonia: A
transdiagnostic approach. Nature Reviews Neuroscience, 19(8), 470–484.
https://doi.org/10.1038/s41583-018-0029-9.

Huys, Q. J. M., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as
a bridge from neuroscience to clinical applications. Nature Neuroscience, 19
(3), 404–413. https://doi.org/10.1038/nn.4238.

Psychological Medicine 9

. https://doi.org/10.1017/S0033291721003469
Downloaded from https://www.cambridge.org/core. IP address: 188.30.130.224, on 22 Oct 2021 at 17:23:22, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms

https://doi.org/10.1017/S0033291721003469
https://doi.org/10.1017/S0033291721003469
https://doi.org/10.1371/journal.pone.0169938
https://doi.org/10.1371/journal.pone.0169938
https://doi.org/10.1371/journal.pone.0169938
https://doi.org/10.4088/JCP.15m10113
https://doi.org/10.4088/JCP.15m10113
https://doi.org/10.1038/npp.2013.48
https://doi.org/10.1038/npp.2013.48
https://doi.org/10.1038/npp.2013.48
https://doi.org/10.1038/nn.3364
https://doi.org/10.1038/nn.3364
https://doi.org/10.3758/s13415-015-0350-y
https://doi.org/10.3758/s13415-015-0350-y
https://doi.org/10.1523/JNEUROSCI.4515-08.2009
https://doi.org/10.1523/JNEUROSCI.4515-08.2009
https://doi.org/10.1523/JNEUROSCI.4515-08.2009
https://doi.org/10.1111/j.1463-1326.2011.01544.x
https://doi.org/10.1111/j.1463-1326.2011.01544.x
https://doi.org/10.1002/0471214426.pas0312
https://doi.org/10.1002/0471214426.pas0312
https://doi.org/10.1016/j.neubiorev.2013.03.023
https://doi.org/10.1016/j.neubiorev.2013.03.023
https://doi.org/10.1016/j.neubiorev.2013.03.023
https://doi.org/10.1016/S0376-6357(99)00021-2
https://doi.org/10.1016/S0376-6357(99)00021-2
https://doi.org/10.1016/S0376-6357(99)00021-2
https://doi.org/10.1162/jocn_a_00090
https://doi.org/10.1162/jocn_a_00090
https://doi.org/10.1162/jocn_a_00090
https://doi.org/10.1038/nn.4173
https://doi.org/10.1038/nn.4173
https://doi.org/10.1038/nn.4173
https://doi.org/10.1038/s41583-018-0029-9
https://doi.org/10.1038/s41583-018-0029-9
https://doi.org/10.1038/nn.4238
https://doi.org/10.1038/nn.4238
https://doi.org/10.1017/S0033291721003469
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Katzell, R. A., & Thompson, D. E. (1990). Work motivation: Theory and prac-
tice. American Psychologist, 45(2), 144–153. https://doi.org/10.1037/0003-
066X.45.2.144.

Konstantakopoulos, G., Ploumpidis, D., Oulis, P., Patrikelis, P., Soumani, A.,
Papadimitriou, G. N., & Politis, A. M. (2011). Apathy, cognitive deficits
and functional impairment in schizophrenia. Schizophrenia Research, 133
(1–3), 193–198. https://doi.org/10.1016/j.schres.2011.07.003.

Kos, C., Klaasen, N. G., Marsman, J. B. C., Opmeer, E. M., Knegtering, H.,
Aleman, A., … Van Tol, M. J. (2017). Neural basis of self-initiative in rela-
tion to apathy in a student sample. Scientific Reports, 7(1), 3264. https://doi.
org/10.1038/s41598-017-03564-5.

Krishnamoorthy, A., & Craufurd, D. (2011). Treatment of apathy in hunting-
ton’s disease and other movement disorders. Current Treatment Options in
Neurology, 13(5), 508–519. https://doi.org/10.1007/s11940-011-0140-y.

Le Heron, C., Apps, M. A. J., & Husain, M. (2018). The anatomy of apathy: A
neurocognitive framework for amotivated behaviour. Neuropsychologia, 118,
54–67. https://doi.org/10.1016/j.neuropsychologia.2017.07.003.

Le Heron, C., Kolling, N., Plant, O., Kienast, A., Janska, R., Ang, Y. S.,… Apps,
M. A. J. (2020). Dopamine modulates dynamic decision-making during for-
aging. Journal of Neuroscience, 40(27), 5273–5282. https://doi.org/10.1523/
JNEUROSCI.2586-19.2020.

Levy, R., & Dubois, B. (2006). Apathy and the functional anatomy of the pre-
frontal cortex-basal ganglia circuits. Cerebral Cortex, 16(7), 916–928. https://
doi.org/10.1093/cercor/bhj043.

Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers:
Do not use standard deviation around the mean, use absolute deviation
around the median. Journal of Experimental Social Psychology, 49, 764–766.

Mahadevan, S. (1996). Average reward reinforcement learning: Foundations,
algorithms, and empirical results. Machine Learning, 22(1–3), 159–195.
https://doi.org/10.1007/BF00114727.

Manohar, S., Chong, T., Apps, M. A., Jarman, P. R., Bhatia, K. P., & Husain, M.
(2015). Reward pays the cost of noise reduction in motor and cognitive con-
trol. Current Biology, 25, 1707–1716. https://doi.org/10.1016/j.cub.2015.05.038.

Marin, R. S. (1991). Apathy: A neuropsychiatric syndrome. Journal of
Neuropsychiatry, 3(3), 243–254. https://doi.org/10.1176/jnp.3.3.243.

Mohebi, A., Pettibone, J. R., Hamid, A. A., Wong, J. M. T., Vinson, L. T.,
Patriarchi, T., … Berke, J. D. (2019). Dissociable dopamine dynamics for
learning and motivation. Nature, 570(7759), 65–70. https://doi.org/10.
1038/s41586-019-1235-y.

Niv, Y., Daw, N. D., & Dayan, P. (2005). How fast to work: Response vigor, motiv-
ation and tonic dopamine. Advances in Neural Information Processing Systems,
18(NIPS 2005), 1019–1026. https://doi.org/10.1007/s00213-006-0502-4.

Niv, Y., Daw, N. D., Joel, D., & Dayan, P. (2007). Tonic dopamine:
Opportunity costs and the control of response vigor. Psychopharmacology,
191(3), 507–520. https://doi.org/10.1007/s00213-006-0502-4.

Noonan, M. P., Kolling, N., Walton, M. E., & Rushworth, M. F. S. (2012).
Re-evaluating the role of the orbitofrontal cortex in reward and reinforce-
ment. European Journal of Neuroscience, 35(7), 997–1010. https://doi.org/
10.1111/j.1460-9568.2012.08023.x.

Pagonabarraga, J., Kulisevsky, J., Strafella, A. P., & Krack, P. (2015). Apathy in
Parkinson’s disease: Clinical features, neural substrates, diagnosis, and treat-
ment. The Lancet Neurology, 14(5), 518–531. https://doi.org/10.1016/S1474-
4422(15)00019-8.

Pearson, J. M., Watson, K. K., & Platt, M. L. (2014). Decision making: The
neuroethological turn. Neuron, 82(5), 950–965. https://doi.org/10.1016/j.
neuron.2014.04.037.

Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J., & Frith, C. D. (2006).
Dopamine-dependent prediction errors underpin reward-seeking behaviour in
humans. Nature, 442(7106), 1042–1045. https://doi.org/10.1038/nature05051.

Puterman, M. L. (2005).Markov decision processes: Discrete stochastic dynamic
programming. Hoboken, NJ: Wiley-Interscience.

Rutledge, R. B., Dean, M., Caplin, A., & Glimcher, P. W. (2010). Testing the
reward prediction error hypothesis with an axiomatic model. Journal of
Neuroscience, 30(40), 13525–13536. https://doi.org/10.1523/JNEUROSCI.
1747-10.2010.

Rutledge, R. B. B., Smittenaar, P., Zeidman, P., Brown, H. R. R., Adams, R. A.
A., Lindenberger, U., … Dolan, R. J. J. (2016). Risk taking for potential
reward decreases across the lifespan. Current Biology, 26(12), 1634–1639.
https://doi.org/10.1016/j.cub.2016.05.017.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of predic-
tion and reward. Science, 275(5306), 1593–1599. https://doi.org/10.1126/sci-
ence.275.5306.1593.

Starkstein, S. E. (2000). Apathy and withdrawal. International Psychogeriatrics,
12(S1), 135–137. https://doi.org/10.1017/S1041610200006918.

Starkstein, S. E., Jorge, R., Mizrahi, R., & Robinson, R. G. (2006). A prospective
longitudinal study of apathy in Alzheimer’s disease. Journal of Neurology,
Neurosurgery and Psychiatry, 77(1), 8–11. https://doi.org/10.1136/jnnp.
2005.069575.

Stephens, D. W., & Krebs, J. R. (1987). Foraging theory, John R. Krebs & Tim
Clutton-Brock (Eds.). Princeton, NJ: Princeton University Press. https://doi.
org/10.1515/9780691206790.

Stern, A. F. (2014). The hospital anxiety and depression scale. Occupational
Medicine, 64(5), 393–394. https://doi.org/10.1093/occmed/kqu024.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning. Artificial
intelligence, 112, 181–211.

Van Duijn, E., Reedeker, N., Giltay, E. J., Roos, R. A. C., & Van Der Mast, R. C.
(2010). Correlates of apathy in Huntington’s disease. Journal of
Neuropsychiatry and Clinical Neurosciences, 22(3), 287–294. https://doi.
org/10.1176/jnp.2010.22.3.287.

Voon, V., Pessiglione, M., Brezing, C., Gallea, C., Hubert, H., Dolan, R. J., …
Hallett, M. (2010). Mechanisms underlying dopamine-mediated reward
bias in compulsive behaviors. Neuron, 65(1), 135–142. https://doi.org/10.
1016/j.neuron.2009.12.027.

Walton, M. E., Bannerman, D. M., & Rushworth, M. F. S. (2002). The role of
rat medial frontal cortex in effort-based decision making. Journal of
Neuroscience, 22(24), 10996–11003. https://doi.org/10.1523/jneurosci.22-
24-10996.2002.

10 Akshay Nair et al.

. https://doi.org/10.1017/S0033291721003469
Downloaded from https://www.cambridge.org/core. IP address: 188.30.130.224, on 22 Oct 2021 at 17:23:22, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms

https://doi.org/10.1037/0003-066X.45.2.144
https://doi.org/10.1037/0003-066X.45.2.144
https://doi.org/10.1037/0003-066X.45.2.144
https://doi.org/10.1016/j.schres.2011.07.003
https://doi.org/10.1016/j.schres.2011.07.003
https://doi.org/10.1038/s41598-017-03564-5
https://doi.org/10.1038/s41598-017-03564-5
https://doi.org/10.1038/s41598-017-03564-5
https://doi.org/10.1007/s11940-011-0140-y
https://doi.org/10.1007/s11940-011-0140-y
https://doi.org/10.1016/j.neuropsychologia.2017.07.003
https://doi.org/10.1016/j.neuropsychologia.2017.07.003
https://doi.org/10.1523/JNEUROSCI.2586-19.2020
https://doi.org/10.1523/JNEUROSCI.2586-19.2020
https://doi.org/10.1523/JNEUROSCI.2586-19.2020
https://doi.org/10.1093/cercor/bhj043
https://doi.org/10.1093/cercor/bhj043
https://doi.org/10.1093/cercor/bhj043
https://doi.org/10.1007/BF00114727
https://doi.org/10.1007/BF00114727
https://doi.org/10.1016/j.cub.2015.05.038
https://doi.org/10.1016/j.cub.2015.05.038
https://doi.org/10.1176/jnp.3.3.243
https://doi.org/10.1176/jnp.3.3.243
https://doi.org/10.1038/s41586-019-1235-y
https://doi.org/10.1038/s41586-019-1235-y
https://doi.org/10.1038/s41586-019-1235-y
https://doi.org/10.1007/s00213-006-0502-4
https://doi.org/10.1007/s00213-006-0502-4
https://doi.org/10.1007/s00213-006-0502-4
https://doi.org/10.1007/s00213-006-0502-4
https://doi.org/10.1111/j.1460-9568.2012.08023.x
https://doi.org/10.1111/j.1460-9568.2012.08023.x
https://doi.org/10.1111/j.1460-9568.2012.08023.x
https://doi.org/10.1016/S1474-4422(15)00019-8
https://doi.org/10.1016/S1474-4422(15)00019-8
https://doi.org/10.1016/S1474-4422(15)00019-8
https://doi.org/10.1016/j.neuron.2014.04.037
https://doi.org/10.1016/j.neuron.2014.04.037
https://doi.org/10.1016/j.neuron.2014.04.037
https://doi.org/10.1038/nature05051
https://doi.org/10.1038/nature05051
https://doi.org/10.1523/JNEUROSCI.1747-10.2010
https://doi.org/10.1523/JNEUROSCI.1747-10.2010
https://doi.org/10.1523/JNEUROSCI.1747-10.2010
https://doi.org/10.1016/j.cub.2016.05.017
https://doi.org/10.1016/j.cub.2016.05.017
https://doi.org/10.1126/science.275.5306.1593
https://doi.org/10.1126/science.275.5306.1593
https://doi.org/10.1126/science.275.5306.1593
https://doi.org/10.1017/S1041610200006918
https://doi.org/10.1017/S1041610200006918
https://doi.org/10.1136/jnnp.2005.069575
https://doi.org/10.1136/jnnp.2005.069575
https://doi.org/10.1136/jnnp.2005.069575
https://doi.org/10.1515/9780691206790
https://doi.org/10.1515/9780691206790
https://doi.org/10.1515/9780691206790
https://doi.org/10.1093/occmed/kqu024
https://doi.org/10.1093/occmed/kqu024
https://doi.org/10.1176/jnp.2010.22.3.287
https://doi.org/10.1176/jnp.2010.22.3.287
https://doi.org/10.1176/jnp.2010.22.3.287
https://doi.org/10.1016/j.neuron.2009.12.027
https://doi.org/10.1016/j.neuron.2009.12.027
https://doi.org/10.1016/j.neuron.2009.12.027
https://doi.org/10.1523/jneurosci.22-24-10996.2002
https://doi.org/10.1523/jneurosci.22-24-10996.2002
https://doi.org/10.1523/jneurosci.22-24-10996.2002
https://doi.org/10.1017/S0033291721003469
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

	Opportunity cost determines free-operant action initiation latency and predicts apathy
	Introduction
	Methods
	Samples
	Questionnaire data
	Task overview
	Outcome measures
	Statistical analysis
	Computational modelling

	Results
	Cohort description
	Opportunity cost invigorates both rewarding and non-rewarding actions in healthy participants
	Individual sensitivity to opportunity cost predicted behavioural apathy scores in young adults
	Reward sensitivity and OCT correlate with apathy scores in young adults

	Discussion
	Conclusion
	Acknowledgments and Funding
	References


