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Abstract: 

Background: Apathy, a disabling and poorly understood neuropsychiatric symptom, is characterised 

by impaired self-initiated behaviour. Although the computational mechanisms that determine self-

initiation are poorly understood, it has been hypothesised that the opportunity cost of time (OCT) may 

be a key variable linking self-initiated behaviour with motivational status. Using a novel behavioural 

task and computational modelling, we investigated the relationship between OCT, self-initiation and 

apathy. OCT represents the amount of reward which is foregone per second if no action is taken. We 

predicted that higher OCT would engender shorter action latencies, and that individuals with greater 

sensitivity to OCT would have higher behavioural apathy. 

Methods: We modulated the OCT in a novel task called the ‘Fisherman Game’, Participants freely 

chose when to self-initiate actions to either collect rewards, or on occasion, to complete non-rewarding 

actions. We measured the relationship between action latencies, OCT and apathy for each participant 

across two independent non-clinical studies, one under laboratory conditions (n=21) and one online 

(n=90). ‘Average-reward’ reinforcement learning was used to model our data. We replicated our 

findings across both studies. 

Results: We show that the latency of self-initiation is driven by changes in the OCT. Furthermore, we 

demonstrate, for the first time, higher apathy was showed greater sensitivity to changes in OCT in 

younger adults. Our model shows that apathetic individuals experienced greatest change in subjective 

OCT during our task as a consequence of being more sensitive to rewards. 

Conclusions: Our results suggest that OCT is an important variable for determining free-operant action 

initiation and understanding apathy. 
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Introduction: 

 

Apathy is a common, disabling and hard-to-treat neuropsychiatric symptom found in a range of 

neuropsychiatric disorders such as schizophrenia, depression, Parkinson’s Disease (PD), Alzheimer’s 

disease (AD) and Huntington’s disease (HD) (Husain & Roiser, 2017; Krishnamoorthy & Craufurd, 

2011; Le Heron et al., 2017). In these populations, clinical apathy is commonly associated with reduced 

self-care, functional decline and the need for external support (Konstantakopoulos et al., 2011; 

Pagonabarraga et al., 2015; S. E. Starkstein et al., 2006; Van Duijn et al., 2010). In the non-clinical 

population, apathy is thought to affect academic performance, productivity and health-related outcomes 

like weight control and later-life frailty (Ang et al., 2017; Ayers et al., 2017; Desouza et al., 2012; 

Katzell & Thompson, 1990). Despite the prevalence and significance of apathy, it remains poorly 

understood. Apathy is characterised by reduced motivation and impaired self-initiated goal-directed 

behaviour (Le Heron et al., 2018; Levy & Dubois, 2006; Marin, 1991; Sergio E. Starkstein, 2000). In 

part, our limited understanding of apathy may reflect limited understanding of a key component of 

ecological behaviour at the heart of apathy – self-initiation. If we better understood the environmental 

and computational mechanisms which drive self-initiation, can we better understand apathy? 

 

Reinforcement learning (RL) is a prominent theoretical framework that has been used extensively to 

build computational models of animal and human decision making and motivation(Chowdhury et al., 

2013; Garrison et al., 2013; Huys et al., 2016; Niv et al., 2007; Noonan et al., 2012; Pessiglione et al., 

2006; R. B. Rutledge et al., 2010; Schultz et al., 1997; Voon et al., 2011). Despite the extensive use of 

RL to model trial-by-trial behaviour, there have been limited attempts to extend this framework to the 

study of self-initiated, or free-operant, behaviour. Niv et al (2007) began to address this theoretical gap 

by considering the choice of free-operant action initiation latency as an optimal decision-making 

problem. They framed the problem of action initiation as a semi-Markov decision process and used a 

branch of RL known as ‘average reward’ RL to model free-operant action initiation in animals 

(Mahadevan, 1996; Niv et al., 2007; Puterman, 2005; Sutton et al., 1999). In their influential 



Opportunity cost determines action initiation latency and predicts apathy.  

Nair & Niyogi et al (2020) 

 6 

computational model, the decision maker chooses not only which action to pick but when to take their 

next action. Niv et al (2007) argued that the decision maker must have computed the average ‘reward 

rate’. This variable encodes the amount of reward, on average, that can be extracted from the 

environment, per unit time. This allows the decision maker to calculate the amount of reward which 

could be lost if action initiation is delayed – put simply, the cost of sloth. By weighing this ‘opportunity 

cost of time’ (OCT) against the energetic or ‘vigour cost’ of acting too rapidly, the decision maker can 

derive an optimal latency that maximises their net rewards over a period. Prompts are not required to 

engender action as, immediately after the last action is completed, the decision maker begins to accrue 

opportunity cost, which drives them to act again. In this model, the OCT is also governed by an animal’s 

motivational status. For example, hungry animals have been shown to complete non-rewarding actions 

faster, such as grooming (Dickinson & Balleine, 2002; Hull, 1943; Niv et al., 2005).  Within the OCT 

framework this is predicted as hunger increases the utility of food: penalizing time spent away from 

seeking food. Thus, the OCT theory outlines a theoretical framework for understanding both self-

initiation and motivation. Despite such insight , although this model has been applied to trial-based 

cognitive tasks (Beierholm et al., 2013; Guitart-Masip et al., 2011), there is currently limited evidence 

to suggest that in a free operant setting, healthy participants choose action latencies based on the OCT. 

Furthermore, the relationship between apathetic symptoms and sensitivity to OCT has not been 

explored. In this study, we seek to address these lacunae. 

 

We developed a novel behavioural paradigm in which participants were free to choose when to self-

initiate actions while we experimentally manipulated the OCT. Firstly, we predicted that in this free-

operant setting, participants would rapidly adapt their choice of action latencies based on the OCT. 

Higher levels of opportunity cost would encourage more frequent action initiation. Secondly, as 

described above, we predicted that high opportunity cost would invigorate the completion of non-

rewarding actions. Finally, we asked whether sensitivity to the OCT within our task predicted 

behavioural apathy scores. We hypothesised that motivated individuals would perceive even small 

rewards as highly rewarding. They would perform tasks as if there was a higher degree of opportunity 

cost throughout the task. As such, when exposed to a task with fluctuating levels of opportunity cost, 
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motivated individuals would consistently act quickly, showing little variation in chosen action latencies. 

By comparison, we predicted that apathetic individuals would show a strong inverse relationship 

between OCT and chosen action latency, choosing to go faster only when the opportunity cost is high 

and slowing down when it is low. Based on previous work, we fit our data using a new, average-reward, 

RL model and predicted that differences in reward sensitivity parameters in our model could explain 

the relationship between apathy and the OCT.  

Methods: 

Samples: 

Both studies were performed before the COVID-19 pandemic. We recruited healthy participants with 

no known psychiatric or neurological history and who were not taking any psychotropic medication. 

Participants were told that they could earn up to £5 depending on their performance. Participants who 

felt that they struggled with motivation were encouraged to sign up to the study, but participants were 

not pre-screened on apathy scores. Twenty-one participants were recruited into Exp. (1). This study was 

approved by the UCL ethics committee (3450/002). Ninety adult participants from the Prolific online 

portal (https://prolific.ac/) were included in Exp. (2) (see Supplementary Methods for details of addition 

inclusion and exclusion criteria for Exp. (2)).  The study was run on the Gorilla testing platform with 

task code written in Javascript. Participants received additional payment to ensure that hourly earnings 

for participation were at least £5 per hour. This study was approved by the UCL ethics committee 

(12365/002). Study demographics for both studies are shown in Table (1). 

Questionnaire data: 

Participants completed two questionnaires after finishing the task – the Apathy and Motivation Index 

(AMI), a validated questionnaire designed to measure apathy in the general population; and the Hospital 

Depression and Anxiety Scale (HADS), a brief self-reported screening tool for assessing depressive 

and anxiety symptoms (Ang et al., 2017; Stern, 2014). AMI is scored such that higher scores correspond 

to higher apathy levels. Given the focus of our experiment was on behavioural apathy, our primary 

https://prolific.ac/
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outcome for these experiments was the behavioural apathy score from the AMI, as opposed to the 

emotional or social apathy scale. 

Task overview: 

 

Fig. 1: Overview of task design. (A) Following assessment of maximum tapping speed, instructions and training, 

participants completed two counterbalanced environments in which they earned ¥ for fish caught with key presses: 

high OCT and low OCT environment indicated by the monetary value of ¥3000 (£4 or £0.50) and the colour of 

the water (blue water representing high value and white water representing low value). When not pressing to catch 

fish, nothing on screen prompted action. To register that a fish was caught, the angle of the fish graphic changed 

by 45o. A bell sounded each time the price for fish changed. Information regarding environments and range of 

fish prices was present on screen at all times. The price of the fish changed every 12-13 seconds and prices were 

randomly drawn from a set of 6 prices ranging from ¥0.1 - ¥2.5 per fish. Each price was seen four times in an 

environment and the order of prices was the same in both environments but randomly generated for each 

participant. (B) Six times in each environment, the participant’s fishing rod broke. To fix it they were required to 

repeatedly tap an alternative button, for no immediate reward and for a fixed number of times. While the rod was 

broken, no price was displayed on screen; instead, participants saw a large red cross which decreased in size with 

every tap. Time within the task was not stopped while the rod was being fixed and participants were aware of this. 

 

Participants played our novel task, ‘The Fisherman Game’ shown in Fig. (1). Participants were told that 

they would be earning money, in fictional yen ¥, by catching fish. To catch fish, participants pressed 

the down arrow key on a keyboard. This action required minimal effort and the force of tapping was 

not relevant to outcome. Every time they pressed down, they ‘caught’ a fish. The number of yen earned 

for each fish was displayed on the screen next to a fish icon. This value changed every 12-13 seconds 

and was drawn at random from a set of 6 numbers ranging from ¥0.1 to ¥2.5. When the price changed 

participants also heard a bell to alert them to the change in price to minimise effects of poor attention. 

As this task was designed to test the timing of self-initiated behaviour, the screen was static and there 

were no prompts to initiate actions.  
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Participants were told that they would play the fisherman game in two ‘environments’ each containing 

two blocks. One block consisted of 12 changes in price following which block participants were given 

a self-paced rest. Participants were told that in one environment earning ¥3000 would result in payment 

of £4.00. In the other environment, they were told earning ¥3000 would only result in a payment of 

£0.50. The order of the environments was counterbalanced between subjects, and all subjects knew 

before starting the game that they would have to play both environments. The change in OCT across 

the prices and environments represent the two OCT manipulations participants experienced in this 

study.  

Finally, a non-rewarding action was included in both environments of the game. Participants were told 

that their fishing rod may break randomly during the game. To fix the rod, participants were told to tap 

the right arrow key on the keyboard five times successively. On the screen, rod breaking was indicated 

by a red cross which reduced in size with each successive tap. Rod fixing yielded no additional yen or 

fish and at the time the rod broke the current price of fish was not displayed, only the environment 

value. The only utility of fixing the rod quickly was to be able to return to collecting fish. The fishing 

rod broke six times per environment. When the rod broke, time in the task was not stopped and 

participants were aware of this task feature. The order of price changes and timings of the rod breaking 

were randomly determined in each participant and fixed across the two environments. The task user 

interface and design elements are further shown and described in Fig. (1). Before starting the 

experiment, participants read detailed instructions on all aspects of the task including a practice period 

catching fish for 20 seconds whilst the price changed and a period fixing the rod. They were told to go 

as fast or as slow as they wanted throughout the experiment. The task itself lasted approximately 15 

minutes. The task was designed and implemented in Cogent 2000, a Matlab toolbox for psychological 

experiments. 

The task online for Exp.2 was almost identical to the one described above; however, the minor 

differences are described in the Supplementary Methods. Additional inclusion and exclusion criteria 

for Exp. 2 are also found in the Supplementary Methods. The task was coded in JavaScript and hosted 

on Gorilla (https://gorilla.sc/). 

https://gorilla.sc/


Opportunity cost determines action initiation latency and predicts apathy.  

Nair & Niyogi et al (2020) 

 10 

Outcome measures: 

The key variable of interest in this study was the latency between two successive actions, calculated as 

the difference in the stored timestamps between two key presses. The price and the environment were 

manipulated as described above. Action latencies for fishing and fixing a broken fishing rod were 

recorded. 

Statistical analysis: 

Statistical analysis was identical in both studies. Basic task metrics were first computed to assess the 

effect of the environmental manipulation of the OCT. The number of action initiations were compared, 

within subject, between the high and low opportunity cost environments. The mean latency per price in 

each environment was also calculated and used to illustrate the effect of price and environment 

manipulation. To determine the effect of environment on rod fixing latencies, the mean log transformed 

rod fixing latency in each environment were compared.   

Outliers were removed from latency data using median absolute dispersion technique. This outlier 

removal technique is itself more robust to the presence of outliers and has been recommended for use 

with latency data (Leys et al., 2013). Using this approach, an outlier is defined as being greater than 3 

scaled absolute deviations from the median (median(|Yi-median(Y)|). Outliers were removed from the 

raw latency data for each subject in each environment. Latencies were then log transformed for use in 

linear regression models.  

We modelled our data using a linear mixed effects model. The log transformed latencies were specified 

as the dependent variable in our model. At the fixed effects level, we included three variables (1) price, 

(2) environment (low or high as a dummy variable) and (3) the number of cumulative taps the subject 

had performed in the environment up to that point. Each of these effects was also estimated at the 

subject level as random effects. Subject level slopes for price and environment were used as individual 

measures of sensitivity to our two manipulations of opportunity cost. Linear mixed models were fit in 

MATLAB 2017a using the fitlme function. Models were estimated by fitting an unstructured variance-

covariance matrix using a restricted maximum likelihood (REML) fit method.  



Opportunity cost determines action initiation latency and predicts apathy.  

Nair & Niyogi et al (2020) 

 11 

We also asked whether these individual sensitivities to opportunity cost (i.e., price beta, environment 

beta) were predictive of bAMI. In Exp. (1), we built a linear regression model to determine whether 

individual sensitivity to opportunity cost predicted bAMI scores whilst controlling for demographics 

(age and gender) and symptoms of depression and anxiety entered separated (D-HADS and A-HADS 

scores). Exp (2), the online study had a wider age range as compared to the lab study (see Results). 

Based on the results from Exp. (1), post-hoc, we asked whether the effect would be present in young 

adults (age 18-35) and we divided our cohort in Exp. (2) into young (age 18-35) and older adults (age 

36-65).  

Computational modelling:  

Following Niv et al. (2007) we formulated the task as a real-time cost-benefit decision-making problem, 

in which participants trade-off the OCT against the energetic cost of acting quickly. Formally, our 

approach constitutes an ‘average reward’ reinforcement learning problem. We assumed that each [price 

of fish, environment] condition is a separate “state”. A participant, in a state, chooses a latency, then 

returns to the same state, and the process repeats. Central to our model, participants choose action 

latencies (𝜏) by balancing the cost of vigour cost (Cv/) and the OCT (𝑅ത). The vigour cost is inversely 

proportional to the latency, with an individually fitted cost parameter (Cv), rising rapidly as the 

participant responds closer toward their fastest motor latency. The OCT denotes the average reward 

foregone by responding at a particular latency: slower responses in a high reward environment lead to 

greater reward foregone. OCT is calculated by multiplying the reward rate, average reward available 

per second (𝑅ത), by the latency. Aside from the Cv parameter, we also fit a reward sensitivity (SR) 

parameter to each subjects data. In our model, a subject with low SR would perceive little difference in 

subjective rewards between prices or environments. For such a subject, the subjective reward remains 

high even when the price or environment value is low. By comparison, with high SR, subjective reward 

would relate more closely with the value of the price or environment. For more modelling details 

including model specification, fitting procedure and model comparison see Supplemental Methods and 

Fig. S1. 
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Results: 

Cohort description: 

 EXPERIMENT 1 (N = 21) EXPERIMENT 2 (N = 90) 

AGE  22.5 ± 2.9  

(min: 19, max: 32) 

38.6 ± 10.6 

(min: 21, max: 63) 

GENDER (F%) 76.2% 51.7%  

AMI TOTAL  1.4 ± 0.4 1.6 ± 0.5 

BEHAVIOURAL AMI  1.6 ± 0.9 1.6 ± 0.8 

HADS TOTAL  13.7 ±7.2 12.7 ± 6.8 

Table 1: Demographics for participants included in the in-lab, Exp. (1), and the online studies, Exp. (2). 

Mean total Apathy and Motivation Index (AMI), behavioural AMI sub-score and total Hospital Anxiety and 

Depression Scores (HADS) shown (values shown as mean ± SD). 

 

Table (1) shows the demographic details for participants in Exp. (1) and Exp. (2). In both experiments 

we sought to recruit healthy adult participants. Exp. (1) took place under laboratory conditions whereas 

Exp. (2) was completed online using the Gorilla and Prolific testing platforms. 
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Opportunity cost invigorates both rewarding and non-rewarding actions in healthy participants 

 

Fig. 2: Opportunity cost invigorates rewarding actions - (A-B) In both lab-based (A) and online (B) 

experiments, increased opportunity cost (manipulated by environments with a higher price for fish) produced the 

predicted reduction in chosen free-operant action initiation latencies. Mean choice latency is plotted by price 

(¥/tap) and environment (+/- SEM) for (A) Exp. (1) in-lab sample and (B) Exp. (2) online sample. (C-D) Higher 

opportunity cost was associated with more frequent self-initiated action initiation (i.e., more taps) during the fixed 

environment duration in subjects in both (C) Exp. (1) in-lab and (D) Exp. (2) online studies. Blue dots represent 

the number of taps performed by each subject in each environment (low vs. high opportunity cost). Line of no 

effect is shown as a dashed red line. We predicted more frequent free-operant action initiation in the environment 

associated with higher opportunity cost (i.e., more points below the line). The t statistics included show difference 

between mean log latencies, ** p < 0.01 *** p < 0.001 

 

The effect of OCT on mean latencies and free-operant action initiation is shown in Fig. (2) for both in-

lab (Fig. 2A) and online samples (Fig. 2B). Mean latencies decreased as price of fish increased both 

experiments. Further, mean latencies were lower in the high OCT environment, in which ¥3000 was 
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worth £4.00 as compared to £0.50 in the low OCT environment. Using mixed linear models to 

summarise the group level effect of both OCT manipulations on action latency, we found that 

participants in both Exp. (1) and Exp. (2) adapted their action latencies with respect to OCT for both 

price and environment. For both price (Exp. (1): β = -0.056, CI: -0.07 to -0.03, p < 0.001, Exp. (2): β = 

-0.039, CI: -0.05 to -0.03, p < 0.001) and environment (Exp. (1): β = -0.049, CI: -0.08 to -0.01 p = 

0.001, Exp. (2): β = -0.041, CI: -0.06 to -0.02, p < 0.001), as OCT increased, action initiation latency 

decreased. There was also a gradual drift towards slower latencies over the course of the experiment 

(Exp. (1): β = 6.9*10-5, CI: 4.8*10-5 to 8.8*10-5, p < 0.001, Exp. (2): β = 4.0*10-5, CI: 3.1*10-5 to 4.9*10-

5, p < 0.001) in both experiments. In keeping with our predictions, participants in both studies also took 

longer to fix the broken fishing rod in the low OCT environment as compared to the high OCT 

environment (Exp. (1) – Fig. (3A), t(20) = -3.0, p = 0.0076, Exp. (2) – Fig. (3B), t(89) = -4.0, p < 0.001, 

Fig. S2). Fixing the fishing rod was associated with no reward itself, other than a faster return to fishing. 
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Individual sensitivity to opportunity cost predicted behavioural apathy scores in young adults  

 

Fig. 3: Sensitivity to opportunity cost depends on apathy - Example timeseries from the task as performed by 

a participant with low behavioural apathy (A – bAMI: 0.83) and a participant with high behavioural apathy (B – 

bAMI: 3.5) in Exp. (1). Blue timeseries shows chosen action latencies and orange lines indicate the current fish 

price. Changes in fish price signal change in OCT, here in the low OCT environment in both examples. Highly 

motivated individuals like the participant in (A) showed little sensitivity to change in opportunity cost. By 

comparison, the example apathetic individual in (B) showed a negative relationship between action latency and 

OCT. (C-D) Relationship between behavioural apathy scores measured by bAMI and OCT sensitivity (subject-

level price beta from linear mixed model) in C. Exp. (1), in-lab (n = 21) and D. Exp. (2), online young adults (18-

35 years, n = 45). Behavioural apathy scores were significantly associated with OCT sensitivity in both lab ( = 

-0.60, p = 0.004) and online samples ( = -0.50, p = 0.0005) in young adults. ** p < 0.01 *** p < 0.001 
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As this task was designed to assess the effect of OCT on free operant action initiation, we hypothesized 

that sensitivity to OCT would predict behavioural apathy scores (bAMI). Fig. 4(A) and Fig. 4(B) show 

example timeseries from two participants from Exp. (1) with low and high behavioural apathy scores, 

respectively. The high apathy individual showed a strong inverse relationship between latency and 

price. This effect was also seen at a group level. A linear regression model was used to assess whether 

participants’ sensitivity to opportunity cost: either price or environment, could predict behavioural 

apathy scores after controlling for age, gender, and anxiety and depression scores. In Exp. (1), both 

price and environment sensitivity predicted behavioural apathy (Price GLM:  β = -11.5, t = -3.1, p = 

0.002, Fig. 4C, Environment GLM: β = -5.2, t = -2.2, p = 0.04). 

We next tested whether apathy was correlated with both price and environment sensitivity in Exp. (2). 

Including the entire cohort (n = 90), we did not initially find the same relationship between behavioural 

apathy scores and price or environment sensitivity scores (Price GLM: β = -3.4, t = -1.7, p = 0.08, 

Environment GLM: β = 1.2 t = -1.6, p = 0.1). As compared to Exp. (2), all participants in the first in-

lab study fell within the young adult age bracket, namely between 18-35 years. We therefore completed 

a post-hoc analysis dividing the cohort into young (age: 18-35, n = 45) and older adult cohorts (age: 36-

65, n = 45) predicting that we would replicate the relationship between bAMI and price sensitivity in 

the young cohort. Replicating the results from Exp. (1), we found that price sensitivity predicted bAMI 

scores in young adults after correcting for age, gender, anxiety and depression scores scores (Young 

Adult Price GLM: β = -9.9, t = -3.2, p = 0.003, Fig. 4D). This result was not seen in the older adults 

(Older Adult Price GLM: β = 3.0, t = -1.2, p = 0.25). This result was not explained by a lack of effect 

of a price manipulation in older adults (Older adults: βprice = -0.041, t = -3.4, p < 0.001; βenv = -0.029, t 

= -1.5, p = 0.13; Young adults: βprice = -0.036, t = -7.4, p < 0.001, βenv = -0.053, t = -2.3, p = 0.018). 

Environment sensitivity was not predictive of behavioural apathy scores in either the young or old adults 

(Young Adults: β = 0.69 t = -1.4, p = 0.62, Older Adults: β = 1.6 t = 1.9, p = 0.06). In summary, the 

sensitivity of young adults, tested either in the lab or online, to adapt their action latencies to changes 

in OCT predicts behavioural apathy.  
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Reward sensitivity and opportunity cost of time correlate with apathy scores in young adults 

 

Fig. 4: Apathy modulates reward rate: (A-B) We found a strong positive relationship between reward 

sensitivity and apathy using our average reward RL model. (C-D) As a result of this variation in reward sensitivity, 

apathetic individuals showed larger changes in subjective opportunity cost of time derived from the model 

between different environments (plot shows the difference in modelled opportunity cost between states with the 

highest and lowest opportunity cost) *p < 0.05 ** p < 0.01 *** p < 0.001 

Using our average reward RL model, we found that reward sensitivity in young adults was correlated 

with independently assessed apathy scores in both Exp. (1) (ρ = 0.62, p = 0.008) and Exp. (2) (ρ = 0.52, 

p = 0.0009), Fig. 4(A-B). In our model, a subject with high reward sensitivity would perceive large 

differences in subjective reward between prices and environments. By comparison, with low reward 

sensitivity, as found in motivated individuals the subjective reward remains high even when the price 
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or environment reward value is low. As a result, our model also suggests that apathetic individuals in 

our studies showed the largest change in the subjective OCT throughout our task. This is demonstrated 

in Fig. 4(C-D) which show the correlations, in both Exp. (1) and Exp. (2), between individual 

behavioural apathy scores and the change in model-derived subjective OCT between states with the 

highest and lowest opportunity cost in our task.  

Further, our modelling revealed that more apathetic individuals experienced higher OCT in the highest 

environment (Fig. S3(A-B)). This modelling result makes an intriguing prediction: more apathetic 

individuals will respond faster in the highest reward state (highest price and environment). We found 

that, in keeping with the modelling, higher apathy was surprisingly associated with a lower median 

action initiation latency in the highest reward state, with a negative correlation in Exp. (2) (ρ = -0.48, p 

= 0.0008) and a similar trend in Exp. (1) (ρ = -0.35, p = 0.1). These data are shown in Fig. S3(A-D). 
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Discussion: 

One of the hallmarks of apathy is reduced self-initiated goal-directed behaviour (Levy & Dubois, 2006; 

Marin, 1991). In this study, we show that healthy participants adapt the timing of self-initiation 

according to the opportunity cost of time (OCT), the amount of reward lost per unit time by not acting. 

By manipulating the OCT within our novel behavioural task, we show in two independent studies that 

healthy participants rapidly adapt action initiation latencies for rewarding actions to changes in OCT. 

We also show that high OCT invigorates non-rewarding actions. Furthermore, we find that individual 

sensitivity to OCT predicted behavioural apathy scores in young adults in both studies. Building on 

these results we fit a novel computational model to behaviour in our task. Using our average-reward 

reinforcement learning model we find that differences in reward sensitivity correlated with motivational 

status as assessed by a standard apathy questionnaire. This meant that apathetic young adults in our 

studies showed the largest change in the subjective OCT. 

We believe that our study has several strengths. Firstly, the task we developed encourages free operant 

action initiation without adopting a discrete trial-by-trial design, making it highly ecological. Secondly, 

by making explicit the current reward rate, we minimised behavioural differences between participants 

driven by differences in learning. Furthermore, changes in OCT were signalled with salient visual and 

auditory stimuli to minimise the impact of inattention. As a result of these design elements, we contend 

that variance in the behaviour we observed is driven primarily by variance in the sensitivity of 

individuals to opportunity cost. Through these design elements, we also hope our task will be of value 

in a range of clinical populations. Following on from the first experiment, we also sought to 

independently replicate our results by running our second experiment online. By adopting this approach, 

and replicating our main results, we sought to avoid effects driven by any recruitment bias associated 

with laboratory cognitive testing or any demand effect due to the presence of the experimenter. 

 

Although we predicted a relationship between opportunity cost sensitivity and apathy, we did not a 

priori predict that this relationship would be influenced by aging. In our online study, older apathetic 

adults were not more sensitive to opportunity cost and this finding requires further investigation. This 
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may reflect that fact that in the older adult cohort, the effects of the opportunity cost manipulations were 

weaker than in the young cohort. It is also known that aging influences a range of factors related to 

reward-based decision making and these changes may have contributed to our results(Chowdhury et 

al., 2013; Green et al., 1999; R. B. B. Rutledge et al., 2016).  

 

To our knowledge, our study represents the first demonstration that opportunity cost drives free-operant 

action initiation. In two important earlier studies it has been shown that in a trial-by-trial cognitive 

paradigm participants modulate reaction times based on experimentally controlled average reward rates 

(Beierholm et al., 2013; Guitart-Masip et al., 2011). However, those studies used cognitive paradigms 

and were unable to test whether opportunity cost drives free-operant action initiation because 

participants in both studies were prompted to act and additionally had to account for a speed-accuracy 

trade-off in their decisions. Perhaps most relevant to our findings of a link to apathy was a null result 

recently reported by Kos et al (2017), who identified in a sample of 39 young adults aged 18-40, a lack 

of relationship between self-initiation latencies and apathy (Kos et al., 2017). Participants initially were 

cued to respond, then asked to choose between two actions and were free to decide on the timing of 

their chosen action. Three key differences between our studies may explain the lack of association 

reported by Kos et al (2017): responses were cued, the decision-making component also may affect 

latencies, and finally the OCT was not easy for participants to compute. Our task is similar to many 

problems faced in the natural world, and perhaps the key to our identification of a novel link to 

behavioural apathy. 

 

We also present an average reward RL model for human free-operant behaviour. Using this 

computational approach, we find that low apathy young adults act as though they were experiencing a 

similar OCT across all conditions in our task. In comparison, high apathy young adults experienced the 

greatest change in subjective OCT. In both experiments, our computational model showed that reward 

sensitivity can explain the relationship between apathy and task performance. The reward sensitivity 

parameter governs the change in subjective reward as participants move between states with different 

levels of reward. As predicted, highly motivated (low apathy) individuals acted as if all rewards were 
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subjectively highly rewarding and consequently, they were invigorated in all states. By comparison, 

apathetic individuals acted as if they found small rewards subjectively less rewarding, choosing only to 

act rapidly for larger rewards. Our computational modelling also revealed that participants with greater 

apathy had higher OCT in the highest reward state. This result led us to uncover an unexpected and 

intriguing aspect of our data: in the highest reward state, apathetic individuals on the whole acted more 

quickly than non-apathetic individuals. These findings suggest that in both laboratory and online young 

adult cohorts, the effects of apathy on attaining rewards may be overcome by reserving effort for high 

value environments, and this surprising result is worthy of further investigation. Finally, although 

average-reward RL models are not common in computational modelling, they make the argument that 

in large, ergodic, environments the long-run average of rewards can be used to optimise behaviour 

(Mahadevan, 1996). Although cognitive tasks are often short lived, psychological phenomena, such as 

motivational status and mood, are often conceptualised as extending over longer time periods (days or 

weeks). It may be that average reward signals, computed over various timescales, may be a useful 

framework for assessing and modelling these longer lasting phenomena.  

 

Finally, although we did not test the biological basis of opportunity cost coding, as predicted by Niv et 

al (2007), empirical work supports the idea that tonic mesolimbic dopamine signalling covaries with 

reward rate and motivational vigour (Hamid et al., 2015; Mohebi et al., 2019). Given the consistent 

links we find between behavioural apathy and sensitivity to the OCT in young adults, we would predict 

that young apathetic participants will show the greatest change in behaviour with the pharmacological 

manipulation of dopamine. 

 

Conclusion:  

 

Using a novel task and computational model, we find that OCT is an important determinant in the choice 

of free-operant action initiation latencies in healthy participants. We also establish, for the first time, a 

link between sensitivity to OCT and severity of behavioural apathy in two independent studies. Apathy 

is poorly understood and disabling, and clinical apathy is difficult to treat. Our results suggest that better 



Opportunity cost determines action initiation latency and predicts apathy.  

Nair & Niyogi et al (2020) 

 22 

understanding how the opportunity cost of time is represented in the brain and how it influences action 

initiation may allow us to better understand apathy.  
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Supplementary Methods: 

 

 
Changes for online version:  

The task online was almost identical to the one described in the Methods however a few differences 

were implemented online. The task was coded in JavaScript and hosted on Gorilla (https://gorilla.sc/). 

The only differences in the design matrix from the in-lab version were that the prices changed every 13 

seconds with no jitter, and the number of taps required to fix the rod was increased to 8. At the beginning 

of the experiment, online participants read through the same detailed instructions as the in-lab version. 

They completed a brief training in which they were instructed to tap for 26 seconds during which the 

price changed after 13 seconds. All participants were then asked binary (True/False) questions about 

the task to test understanding (for example, “When the water is blue, ¥3000 is worth £4 – True or False). 

Finally, all participants underwent a sound check to ensure that they could hear the bell when the price 

changed. The sound check involved correctly identifying three animal sounds. Participants who failed 

the sounds check (n = 4) were immediately excluded. Aside from the 4 participants who were excluded 

for failing the sound check, 4 participants were excluded due to errors with data at rod breaking (missing 

data or more than 40 taps recorded rather than the 8 specified suggesting a data storage error for those 

participants). A further two participants tapped very slowly (less than 1 tap per second on average) and 

were excluded. In total, 90 participants were included in the online sample.  

 
Computational modelling details: 

 
Following Niv et al. (2007) we used an average reward reinforcement learning modelling framework 

to link vigour and motivation. The modelling is described in detail here are in Fig. S1. We consider the 

task to be a real-time cost-benefit decision-making problem, which repeats over and over again. A 

participant must choose how fast to initiate actions, in order to maximize her rate of rewards:  

𝑅ത =
𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑤𝑎𝑟𝑑

𝑡𝑖𝑚𝑒
  

https://gorilla.sc/
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For simplicity, we assume that each [price of fish, environment] condition is a separate state. A 

participant starts off in a state, chooses a latency and returns to the same state, and the process repeats. 

The problem is thus recurrent, with 12 distinct states in our task (6 prices and 2 environments). A subject 

cannot respond faster than their fastest motor latencies ሺ𝜏𝑚𝑖𝑛ሻ taken to be the fastest latencies above 

100ms. This excludes spurious responses like slips of the finger. We assume that per response, the 

participant gains a reward of subjective value (rsubj) but incurs two costs (Fig. 5A, B) (i) a 

calorific/energetic vigour cost (−Cv/(𝜏 − 𝜏min )) of responding quickly and (ii) an automatic OCT 

(−𝑅തሺ𝜏ሻ). Following Niv et al. (2007), we assume the vigour cost is inversely proportional to the latency 

of responses, with its slope determined by the parameter Cv. The vigour cost for a participant is defined 

relative to their motor latency, becoming much steeper when the participant responds near their motor 

latency. The OCT denotes the average reward foregone by responding at a particular latency: slower 

responses in a high reward environment are costlier as several highly rewarding actions could have been 

taken in that time. Finally, we assume that for each participant, objective reward (robj: reward per action 

converted to £) is transformed to the subjective reward (rsubj) via a concave utility function (Fig.5C): 

rsubj = 𝑅𝑛𝑜𝑟𝑚 [1 −
1

𝑓൫𝑟𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒൯ +
1

𝑆𝑅

 ] 

where SR denotes how sensitive a subject is to changes in objective reward. Low SR implies low 

sensitivity to objective reward and vice versa (Fig. 5C). Graphically, the parameter SR shifts the utility 

curve laterally, so that the curve saturates more or less quickly. Rnorm is a normalizing constant 

calculated as follows: 

Rnorm = 1 – 1/[f( robj_max) + 1/SR] 

This ensures that the subjective reward function saturates at 1 for all subjects, and thereby constrains 

the maximum subjective utility. We used the function ƒ(robjective) = 0.5*robjective - 0.5, to obtain the best 

fits to the data across subjects, although our results are independent of the choice of this function. 

Under these assumptions, we can compute the maximum of the net sum of rewards and costs for any 

given latency (τ). This maximal expected return Q*(s,τ) depends on three quantities: (i) the subjective 
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value of the currently available reward (rsubj), (ii) the cost of vigour (−Cv/(𝜏 − 𝜏min) ), and (iii) the OCT, 

in addition to the maximal value of the state to which the process returns. Further, we assume that 

latencies are generated according to a softmax choice rule over the optimal Q-values: 

𝑄∗ሺ𝑠, 𝜏ሻ = 𝑚𝑎𝑥𝜏 ൤𝑟𝑠𝑢𝑏𝑗 −
𝐶𝑣

𝜏 − 𝜏min
+ 𝑅

−
ሺ𝜏ሻ + 𝑚𝑎𝑥𝜏′𝑄ሺ𝑠, 𝜏′ሻ൨ 

 

𝜋ሺ𝑠, 𝜏ሻ ∝ 𝑒𝑥𝑝ሺ
1

𝑍
𝑄∗ሺ𝑠, 𝜏ሻሻ 

The optimal latency (𝜏∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜏𝑄∗ሺ𝑠, 𝜏ሻሻ is longer when the cost of vigour is higher, and shorter 

when the reward rate is high as given by: 

𝜏∗ = ට
𝐶𝑣

𝑅
¯

∗
 + 𝜏min  

Note that the optimal latency decreases hyperbolically with the reward rate. We fix Z = 1/100 to ensure 

identifiability of Cv and SR parameters, and Gaussian-like distributions. All Q-values reported are thus, 

in effect, percentage Q-values.  

 

We fit the latency distributions for each subject in two stages. We first fit the vigour cost parameter 

(Cv) to the latency distribution for the highest price and environment condition. This comprises the 

condition when the objective reward and the subjective reward are both maximal. Since we assume that 

all participants have the same maximal subjective reward, fitting the model to this condition only allows 

Cv  to explain variance in this condition across subjects. This ensures that the vigour cost was constrained 

per participant. We then assumed the reward sensitivity (SR) parameter to be free and fit the latency 

data across price and environment conditions using maximum likelihood, using the fmincon function 

in Matlab, initializing our optimization at different parameter values. We restricted reward sensitivity 

(SR) to lie between 0 and 1, and vigour cost (Cv) between 0.01 and 100.  

 

We also considered a model in which vigour cost was fixed to its median value across participants and 

only reward sensitivity was free. We compared models’ performance using Bayesian Information 

Criteria (BIC) scores between these two models. The model with parameters fit in 2 stages was preferred 
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by BIC compared to the other model (Fig. S4). Parameters obtained from the model with the two-stage 

fit per subject were then correlated with apathy scores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Opportunity cost determines action initiation latency and predicts apathy.  

Nair & Niyogi et al (2020) 

 33 

 
Supplementary Figures: 

 

Fig. S1: Average-reward reinforcement learning model captures action latencies - (A,B) Model Mechanics. 

Each state s is defined as a [price of fish (in ¥), environment] condition. Upper panels: the net (Q) value of 

responding with latency (orange curve) involves trading off two quantities: the vigour cost (assumed to be 

inversely proportional to latency; green curve) and the automatic opportunity cost of time (OCT; linearly 

increasing with latency; red dashed line). Responding quickly reduces the OCT but incurs greater 

energetic/calorific vigour costs. The net (Q)-value curve, which is a summation of these two costs, is highest at 

the optimal latency. Lower panels: to generate a distribution of latencies, this Q-value is transformed with a 

softmax choice rule. (A) and (B) show the model’s mechanics for a low and high (subjective) reward, respectively. 

The OCT is greater when the subjective reward value per action for an individual is higher, shifting the Q-value 

curve leftwards and making the Q-value curve less shallow. Consequently, both the mean and variance of the 

latency distribution are smaller. (C) We transform each objective price of fish [(in ¥), for each environment] via 

a saturating concave subjective reward function. A subject with low sensitivity to reward (SR) should perceive 

little difference in subjective rewards between prices or environments. For such a subject, the subjective reward 

remains high even when the price or environment is low (solid lines). For a subject with high sensitivity to 

rewards, the subjective utility function will gradually increase with the price and environment. We assumed that 

the subjective rewards at the highest prices and environments would be the same for all subjects. (D-E) Latency 

distributions (left panels: data, right panels: model predictions) for the (D) lowest and (E) highest apathy in-lab 

participants, respectively. Top and bottom panels illustrate the response latencies for the lowest price of fish (in 

¥) in the low-value environments and the highest price of fish in the high-value environments, respectively. For 

participants with low apathy scores, the latency distribution has a low mean and variance for both low and high 

rewards. For high apathy participants, the latency distribution shifts from having a large mean and variance to a 

small mean and variance. Our model predicts a similar relationship for subjects with low and high reward 

sensitivities respectively. 
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Fig. S2: Opportunity cost invigorates non-rewarding actions: (A-B) Higher opportunity cost environments are 

associated with faster rod-fixing latencies, despite rod fixing being an action with no immediate reward value in 

both environments, in both (A) Exp. (1) in-lab (n = 21) and (B)  Exp. (2) online experiments (n = 90). Mean 

latencies of rod fixing in both environments are shown. Line of no effect is shown as a dashed red line. We 

predicted that most dots would lie above this line indicating slower action initiation for non-rewarding actions in 

the low value environment due to the lower opportunity cost. t statistic shows difference between mean log 

latencies, ** p < 0.01 *** p < 0.001 
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Fig. S3: A-B: association between the subjective opportunity cost in the highest reward state from our 

computational model and bAMI in Exp. (1) and Exp. (2) respectively. C-D: association between median action 

initiation latency and behavioural apathy scores in the highest rewarding state in Exp. (1) and Exp. (2) 

respectively. *p < 0.05 ** p < 0.01 *** p < 0.001 
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Fig. S4: model comparison showing the BIC for the 2-stage model (on the x-axis, in which Cv is fit in the highest 

reward state before SR is then fit on the entire data) and a model in which Cv was constrained to the median value 

across all participants and then only SR was fit (on the y-axis). Lower BICs indicate better model performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


