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Abstract

Given the option, humans and other animals elect to distribute their time between work and leisure, rather than choosing
all of one and none of the other. Traditional accounts of partial allocation have characterised behavior on a macroscopic
timescale, reporting and studying the mean times spent in work or leisure. However, averaging over the more microscopic
processes that govern choices is known to pose tricky theoretical problems, and also eschews any possibility of direct
contact with the neural computations involved. We develop a microscopic framework, formalized as a semi-Markov decision
process with possibly stochastic choices, in which subjects approximately maximise their expected returns by making
momentary commitments to one or other activity. We show macroscopic utilities that arise from microscopic ones, and
demonstrate how facets such as imperfect substitutability can arise in a more straightforward microscopic manner.
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the Groupes de recherche program of the Fonds de recherche du Québec - Santé (Shimon Amir, PI). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: ritwik.niyogi@gatsby.ucl.ac.uk

Introduction

When suitably free, humans and other animals divide their

limited time between work, i.e., performing employer-defined tasks

remunerated by rewards such as money or food, and leisure, i.e.,

activities pursued for themselves that appear to confer intrinsic

benefit. The division of time provides insights into these quantities

and their interaction, and has been addressed by both microeco-

nomics and behavioral psychology.

Microeconomic labor supply theorists [1] have adopted a

normative perspective, formulating what a rational agent should
do. Accounts from behavioral psychology have been descriptive,

detailing how subjects allocate their time, for example, propor-

tionally to the relative payoffs from work and leisure [2–8].

Common to these approaches is the coarse, macroscopic timescale

at which behavior is characterised, focusing on average times spent

in work and leisure. By contrast, microscopic analyses characterise

the fine temporal topography of work and leisure choices, and so

offer a foundation for examining, rather than averaging away, rich

psychological and neural processes. Tying microscopic and

macroscopic choices together is known to be difficult in general

[9], because the former involves a much more elaborate state

space than the latter.

Here, we build an approximately optimal stochastic control

theoretic model of decision-making at a microscopic level. We

show how averaging over the microscopic choices yields a

characterizable superset of traditional macroscopic theories, and

casts the assumptions necessary for the latter to capture partial

allocation in a different light. We make the novel prediction that

partial allocation requires neither stochastic choices (as generally

assumed by accounts from behavioral psychology) nor the

marginal utility of leisure to depend on the amount of work

performed. We use a simplification of a particularly stark labor

task as a paradigm example to show how macroscopic and

microscopic theories of the partial allocation of time between work

and leisure can be tied. We therefore do not attempt to model

actual data from this task; a qualitative account is available in [10].

Results

Task and experiment
We consider a Cumulative Handling Time task [11,12] in

which subjects must accumulate work up to a total time-period

called the price P (see Table 1 for a list of symbols and their

meanings) to gain a reward. The price and the objective strength

of the reward are defined by the experimenter. Note that the price

is an experimenter determined time-period, hence we shall use

‘‘long’’ and ‘‘short’’ to denote its duration. Subjects are free to

distribute leisure bouts in between work bouts (Fig.S1A). The

CHT controls both the (average) minimum inter-reward interval

and the amount of work required to earn a reward. This makes the

CHT a generalisation of common schedules of reinforcement such

as Fixed Ratio, or Variable Interval, which control one but not the

other.

Reward and leisure are both assumed to enjoy a subjective

worth. We call these microscopic utilities to distinguish them from

the macroscopic utilities used by traditional theories. The

microscopic utility of the former is called the (subjective) reward
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intensity (RI , in arbitrary units); the ratio of this to the price is

called the payoff (or in economic nomenclature, wage rate)

RW ~
RI

P
. For simplicity, we consider the objective price,

recognising that its subjective value may differ. We explore

different functional forms for the presumed microscopic utility of

leisure.

This paradigm was originally developed in the context of rats

pressing down an unweighted lever to gain non-satiating, brain

stimulation reward (BSR), or alternatively choosing leisure in the

form of resting, grooming, exploring, etc. However, as noted

above, we do not model data, but rather consider an abstracted

version of the task in order to concentrate on the relationship

between microscopic and macroscopic descriptions.

Macroscopic and microscopic analyses
The key macroscopic statistic is the Time Allocation (TA): the

proportion of trial time that the subject spends working [2].

Fig.S1B shows example TAs for a typical subject. As expected, the

TA increases with reward intensity and decreases with price. A

microscopic analysis, as shown by ethograms in (Fig.S1C),

considers the detailed temporal topography of choice, recording

when and for how long each act of work or leisure occurred. Note

that at intermediate payoffs, when partial allocation is most

noticeable, subjects consume almost all leisure immediately after

Table 1. List of symbols.

Symbol Meaning

b[½0,?) inverse temperature or degree of stochasticity-determinism parameter

CL(:) microscopic utility of leisure

Ep expected value with respect to policy p

H(p) entropy

KL marginal utility of linear microscopic utility of leisure

L leisure

l cumulative amount of time spent in leisure

N total number of rewards accrued

P Price

PL price at which TA~0:5, for a maximum subjective reward intensity RImax

p(½a,ta�DS) policy or choice rule: probability of choosing action a, for duration ta from state S

post post-reward

pre pre-reward

Q(S,½a,ta�) expected return or (differential) Q-value of taking action a, for duration ta from state
S

r reward rate

rta average foregone reward for taking action a for duration ta

RI (subjective) Reward Intensity

RImax maximum (subjective) Reward Intensity

RW ~
RI

P

payoff

s degree of substitutability between rewards (or work) and leisure

S state

T trial duration

TA Time Allocation

tL duration of leisure

tW duration of work

v cumulative amount of time spent in work

W work

V (S) expected return or value of state S

U macroscopic utility

Author Summary

Dividing limited time between work and leisure when both
are attractive is a common everyday decision. Rather than
doing one exclusively, humans and other animals distrib-
ute their time between both. Traditional explanations of
this phenomenon have studied the macroscopic average
times spent in both. By contrast, we develop a microscopic
framework in which we can model the real-time decisions
that underpin these averages. In the framework, subjects’
choices are approximately optimal, according to a natural,
microscopic, utility function. We show that the assump-
tions of previous theories are not necessary for partial
allocation to be optimal, and show possibilities and limits
to the integration of macroscopic and microscopic views.
Our approach opens new vistas onto the real-time
processes underlying cost-benefit decision-making.

Some Work and Some Play
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getting a reward, and then work continuously for each entire price

[13].

Traditional macroscopic accounts: I
Microeconomics: Labor supply theory. In labor supply

theory [1], subjects are assumed to maximize their macroscopic
utility by trading (i) income from working (worth RI per reward),

against (ii) leisure (worth, in the simplest case, a marginal utility of

KL per unit time). Let N be the total number of rewards that a

subject accumulates, and l be the cumulative amount of time spent

in leisure. A commonly assumed form of macroscopic utility
function is [14,15].

U(l, N)~(KLlszRI Ns)1=s ð1Þ

where s[({?,1� is a dimensionless number representing the

degree of substitutability, the willingness to replace rewards (or work)

with leisure. Fig.1 shows the indifference curves (IC)–contours of

equal utility. A subject is indifferent between combinations of these

goods along an IC, but combinations on an IC with greater utility

are preferred. The slope of an IC, the negative of which is called the

marginal rate of substitution, shows how willing a subject is to

substitute one good with the other, depending on how much of each

it has already accumulated. Given a fixed total trial time (a budget

constraint; BC Eq. (A-1) in Text S1), subjects must maximise their

macroscopic utilities; this occurs for the combination of goods at

which the BC is tangent to an IC or is at a boundary.

Work and leisure are perfect substitutes (s~1 in Eq. (1)) for

subjects who are willing to substitute work for leisure at the same

rate, irrespective of the amount of either already consumed. The

ICs become (negatively sloped) straight lines. The optimum

allocation is then at the boundary with all work (if returns from

work exceed those from leisure, i.e. RIwKL P) or all leisure

(otherwise). This would make TA a step-function of the relative

returns from work and leisure (black curves in Fig.1A), an outcome

that is not observed empirically.

However, if work and leisure are imperfect substitutes

({?vsv1 in Eq. (1)), then leisure is preferred more if the

subject has worked more, and vice versa even for deterministic

subjects. The slope of the IC decreases as additional amounts of

leisure are consumed. The optimal combination includes both

rewards (work) and leisure, making TA a smooth function of the

relative returns from work and leisure (blue curves in Fig.2, Eq. (A-

2) in Text S1), as is observed empirically.

Of critical psychological importance is the relationship between

the macroscopic marginal utility of leisure (
LU

Ll
) and the amount of

work so far done. For imperfect substitutability associated with the

utility function of Eq.(1), the former depends on the latter. By

contrast, we show in both deterministic and stochastic settings that

this is not necessary to achieve partial allocation. The possibilities

of non-determinism, which is experimentally ubiquitous, can be

treated in various ways, including traditional random utility

models [16,17].

Normative microscopic approach: Micro SMDP model
Labor supply theory and generalized matching average over the

temporal topography shown in Fig.S1C). By contrast, we follow

[10,18,19] in formulating a so-called micro Semi-Markov Decision

Process (SMDP) [20,21] (Fig. 3A) with actions, states, and utilities,

for which policies (i.e., the stochastic choices of actions at states)

are quantified by the average reward per unit time accrued over

the long run. We formulated the general normative, microscopic

theoretical framework in [10]. Here we delineate a simplified

model pertinent to the partial allocation problem.
Actions and states. Subjects choose what action (a) to do,

and for how long (ta). The longer the duration, the more the

forgone opportunity to collect rewards for other actions they

Figure 1. Indifference curves (ICs) of the labor supply theory
model in Eq.(1). Left: Returns from work exceed those from leisure
(RIwKL P) and right: vice versa (RIvKL P). Solid black lines show the
budget constraint (BC): trial duration T is constant. Open circles show
optimal combination of rewards and leisure for which macroscopic
utility is maximised subject to BC. Dashed black lines denote the path
through theoretically predicted optimal leisure and reward combina-
tions as T is increased. A) perfect substitutability between rewards
(work) and leisure (s~1). Optimal combination is when the subject
works all the time and claims all rewards if RIwKL P, and engage in
leisure all the time otherwise. B) imperfect substitutability (e.g. s~0:25).
Optimal combination comprises non-zero amounts of work and leisure.
doi:10.1371/journal.pcbi.1003894.g001

Figure 2. Time allocation from labor supply theory. TA as a
function of the relative returns from work and leisure predicted by labor
supply theory model in Eq. (1). Black and blue curves show the cases of
perfect (s~1) and imperfect substitutability (sv1), respectively.
doi:10.1371/journal.pcbi.1003894.g002

Some Work and Some Play

PLOS Computational Biology | www.ploscompbiol.org 3 December 2014 | Volume 10 | Issue 12 | e1003894



could instead have been doing during that time. In [10], we

developed a fully detailed model of the example CHT task. This

model was faithful to the task in allowing the subject to choose

the length of each work bout, including distributing leisure

inbetween work bouts prior to attaining the price. Here, however,

in the interests of an analytical treatment of the partial allocation

problem, we model a simplified version of the task in which

subjects are assumed to work for the entire price. In fact, this is

evident in the data (Fig.S1C)), and has been shown to arise from

optimization in the face of stochasticity as we showed in [10]. In

this simplification, there are just two states: s~post- and s~pre-

reward. In the former, the subject consumes leisure (a~L) for a

freely chosen duration tL; then the state becomes pre-reward. If

s~pre, the subject works (a~W ) for the entire price tW ~P,

collects a reward and transitions to the post-reward state. The

cycle then repeats.

Utilities. The microscopic utility of the external reward is the

subjective reward intensity RI . The microscopic utility of leisure

CL(:) is innate and assumed to depend on its duration, but not any

other reward or cost, or the amount of work performed. Based on

findings in the case of discrete choices [22–24], we expect aspects

of these utilities to be discernable through neuroscience experi-

ments; one of our main intents is to construct a framework in

which such inferences are precise.

Critically, the assumptions of our microscopic utility function

are different from that of the macroscopic utility function, from

labor supply theory, in Eq.(1), which assumes that when work and

leisure are imperfect substitutes, the macroscopic marginal utility

of leisure (
LU

Ll
) depends on the amount of work performed or the

number of rewards received. In particular, we leave to later work

considerations of fatigue or satiation, both of which can couple the

microscopic utilities for working and engaging in leisure. Note,

however, that this dependence is for the macroscopic utility

function in Eq.(1); other macroscopic utility functions exist in labor

supply that do not necessitate this interaction. In general, labor

supply theory is concerned with the dependence in the marginal

rate of substitution when work and leisure are imperfect

Figure 3. Micro SMDP model, microscopic utilities of leisure and policies. A) The infinite horizon Micro semi-Markov decision process
(Micro-SMDP). States are characterised by whether they are pre- or post-reward. Subjects choose not only whether to work or to engage in leisure,
but also for how long to do so. For simplicity, we assume that a subject pre-commits to working for the entire price duration when it works. Then it
receives a reward of reward intensity RI and transitions to the post-reward state. In the post-reward state, by choosing to engage in leisure for a
duration tL , it gains a microscopic benefit of leisure CL(tL) and then returns to pre-reward state; this cycle repeats. B) Left: canonical microscopic
utility of leisure functions CL(:), right: the marginal microscopic utility of leisure. For simplicity we considered linear CL(:) (blue); whose marginal
utility is constant and concave (here logarithmic) CL(:) (red) whose marginal utility is always decreasing. C) Q-values and policies for engaging in
leisure for low, medium and high payoffs. In upper panels, dashed, dotted and solid curves show: CL(:), AFR and Q-values, respectively.
doi:10.1371/journal.pcbi.1003894.g003
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substitutes, rather than the macroscopic marginal utilities them-

selves.

The simplest form for CL(t)~KLt is linear (Fig. 3B, left panel

blue line), for which marginal microscopic utility (
LCL(t)

Lt
) is

constant (KL, Fig.3B, right panel, blue line). This makes the total

microscopic utility of several short leisure bouts the same as that of

a single bout of equal total length, and so, just by itself, implies

indifference to the division of the duration of a leisure bout.

Alternatively, CL(t) could be concave (e.g., logarithmic, as in

Fig. 3B, left panel, red curve). The marginal microscopic utility of

leisure would then always decrease as more leisure is consumed

(Fig. 3B, right panel, red curve). Subjects should then prefer

several short leisure bouts to one long leisure bout. Other non-

linear forms are also possible (sigmoidal, quasi concave, see [10]).

A subject’s (possibly stochastic) policy (choice-rule) p is

evaluated according to the average reward rate (rp), which can

be shown to be the ratio of the expected total microscopic utility

accumulated during a cycle to the expected total time a cycle

takes,

rp~
RIzEp CL(tL)½ �

PzEp½tL�
, ð2Þ

Ep denotes the expected value under the distribution of leisure

durations p(tL) in the post reward-state. The expectation with

respect to the policy p is over a smooth distribution when the

policy is stochastic, or is just a point when the policy is

deterministic (i.e., the policy is a delta function at a particular

leisure duration). The reward-rate increases mostly linearly with

reward intensity and decreases mostly hyperbolically with price.

The terminology in reinforcement learning (RL) [18,21,25] and

optimal foraging [26,27] concerning the average reward rate

differs from that in economics. In RL, rp is considered as the

opportunity cost per unit time under policy p. It provides a point

of comparison in terms of how lucrative the policy is on average.

Committing to performing an action for duration t implies

forgoing a mean total reward of rpt. This would be weighed

against the benefits of the action. By contrast, in economics, the

opportunity cost is defined instead in terms of just the next best

action, a quantity that is not very meaningful in our microscopic

context. To avoid confusion, we refer to rpt as the average

foregone reward (AFR) over period t.

The (differential) Q-value (see Eq. (A-4) in Text S1) is defined as

the expected return of taking action a for time ta from state s,

including the immediate microscopic utility, the AFR and the

differential value of the next state to which the subject transitions.

For engaging in leisure for duration tL in the post-reward state

(using simplified notation), this is

Qp(tL)~CL(tL){rptLzVp(pre) ð3Þ

where Vp(pre) is the differential value of the pre-reward state. Eq.

(3) makes clear the distinction between the immediate, innate

microscopic utility of leisure CL(tL) and the net excess return from

leisure Q(tL). The Q-value of working in the pre-reward state can

be similarly computed (see Eq. (A-5) in Text S1).

Finally, the Q-values are used to determine a policy, i.e., a rule

for choosing leisure duration tL. Instead of adopting a descriptive

explanation for stochasticity in choice, as for instance in random

utility theory, we consider the normative equivalent that starts

from the proposition that subjects have a taste for non-

deterministic policies p(tL). Such a taste is most naturally

quantified in terms of the entropy H(p)~{Ep½log (p(tL))�. At

present, this is merely an assumption; its underpinnings demand

careful experimental study. Adopting it makes the problem one of

finding

p�(tL)~argmaxp Ep½Q(tL)�z 1

b
H(p)

� �

~argmaxp

ð
tL

dtLp(tL) Q(tL){
1

b
log (p(tL))

� � ð4Þ

where 1=b is a temperature parameter that trades off value for

entropy. The optimum can be found by computing functional

derivatives with respect to p and solving

d

dp

ð
tL

dtLp(tL) Q(tL){
1

b
log (p(tL))

� �
~0

[p�(tL)! exp bQ(tL)½ �
ð5Þ

Appropriately normalizing Eq. (5), we implement

p(tL)~
exp bQp(tL)½ �Ð

tL’[C exp bQp(tL’)½ �dtL’
ð6Þ

where Cv? is the range of possible leisure durations. Durations

with greater Q-values will be more likely to be chosen. The

parameter b[½0,?) controls the degree of stochasticity in choices:

b?? signifies deterministic, optimal choices, while b~0 leads to

complete uniformity (over the range C of possible leisure

durations). Eq.(6) is called a softmax policy; the derivation from

a taste for entropy is well-known [28].

Model policies. As discussed in [10], we can distinguish

various policy regimes. If the payoff is high, then so is the reward

rate; thus the AFR rptL tends to dominate the benefit of leisure

CL(tL) in Eq.(3), no matter what form the latter takes (Fig. 3C,

right panels). The probability of duration tL implied by the soft-

max policy (Eq.(6)) is then the exponential of a nearly linear

function with a steep slope – therefore, an exponential distribution

with a short mean (see Sec. A-3 in Text S1). Thus, the subject

would work almost continuously, with very short, yet stochastic,

exponentially distributed leisure bouts in between work bouts.

At the other extreme, when the payoff is low, the reward rate is

small. Consequently, the AFR has a very shallow slope (Fig. 3C,

left panels). The Q-value of leisure then becomes dominated by the

microscopic utility of leisure CL(:). For a linear CL(:), the Q-value

is still linear, but with a very shallow slope, and the resulting

exponential distribution has a long mean (Fig. 3C, left panel, blue

curves). For an eventually sub-linear CL(:), i.e. the marginal utility

of which is eventually decreasing, the Q-value becomes a

unimodal bump. The exponential of this bump yields a unimodal

gamma(-like) distribution. If CL(:) is concave and its marginal

microscopic utility does not decrease slowly, the exponential of this

bump yields a unimodal gamma(-like) leisure duration distribution

with a long tail (Fig. 3C, left panels, red curves). The leisure

durations are actually gamma distributed for logarithmic CL(:)
(see Sec A-4 in Text S1).

For intermediate payoffs, the AFR has a slope that is neither too

steep nor too shallow (Fig. 3C, middle panels). The Q-value of

leisure depends delicately on the balance between the microscopic

utility of leisure and this intermediate AFR.

Some Work and Some Play
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Partial allocation with independent marginal utilities
Macroscopic utility derived from microscopic

utility. To compare our account with that of labor supply

theory, we construct a macroscopic utility function that is consistent

with the microscopic choices on average. Consider the case that

the subject works for a cumulative amount of time v, thus

completing v=P reward and leisure cycles (we allow these to be

fractional for simplicity), and is at leisure for a cumulative amount

of time l. We seek to derive a macroscopic utility function U(l,v)
from a microscopic utility function U(l,v)~ maxpDl,v U(l,v,p)½ �,
such that the ultimately microscopic choices of durations, and the

ultimately macroscopic time allocations are all consistent with the

micro-SMDP that we have derived. Here, the notation pDl,v
indicates that microscopic choices of leisure duration per cycle

have to be consistent with the macroscopic time devoted to leisure

on average, i.e., that

v

P
Ep tL½ �~l ð7Þ

Consider the microscopic utility

U(l,v,p)~
v

P
RIzEp½CL(tL)�z 1

b
H(p)

� �
z

1

b
g(l,v): ð8Þ

which includes the utilities of the v=P rewards, the expected

microscopic utilities of leisure and the entropy, and a function
1

b
g(l,v), which we will choose to enforce the average foregone

reward. We assume b w 0 so that the derived utilities are finite.

Enforcing Eq. (7) via a Lagrange multiplier
v

P
j, we get

U(l,v,p,j)~

v

P
RIzEp½CL(tL)�z 1

b
H(p)zj l

P

v
{Ep½tL�

� �� �
z

1

b
g(l,v)

ð9Þ

If we optimise this utility with respect to the policy p, we get

0~
d

dp

ð
tL

dtLp(tL) CL(tL){jtL{
1

b
log (p(tL))

� �

[p�(tL)! exp b(CL(tL){jtL)½ �
ð10Þ

where the Lagrange multiplier j is chosen to satisfy Eq. (7). At this

optimum, j~r�~
RIzEp� CL(tL)½ �

PzEp� ½tL�
. That is, the Lagrange

multiplier or, in economic terms, the ‘‘shadow price’’ (marginal

utility of relaxing the constraint in Eq. (7)) is the average reward

rate r�. The constructed utility function in Eq. (9) is evaluated at

this optimum, and can now be written in terms of macroscopic

quantities l and v only as

U(l,v)~
v

P
RIzEp� ½CL(tL)�z 1

b
H(p�)

� �
z

1

b
g(l,v) ð11Þ

Stochastic microscopic choices. In principle, averaging

over stochastic microscopic choices can lead to partial macro-

scopic time allocation, since the latter concerns the average times

spent. We now derive this graphically and mathematically, from

normative principles. Linear CL(tL)~KLtL is equivalent to the

perfect substitutability case of Eq. (1) with s~1, for which

deterministic choices exclude partial allocation. However, the

derived macroscopic utility in Eq. (11) becomes

U(l,v)~
v

P
RIzKLlz

v

bP
½log (lP=v)z1�z 1

b
g(l,v) ð12Þ

Its ICs have negative slopes, which, for stochastic choices

(b 6??), are not constant. These changes in slope generate partial

time allocations (Fig.4A,B), when a budget constraint (BC; solid

black lines) is tangent to an IC. Including an appropriate g(:,:) (Eq.

(A-14) in Text S1) enables the optimal macroscopic combination

of cumulative work and leisure times to be consistent with the

microscopic mean leisure duration. At the optimum,

Ep½tL�~l�P=v�~
P

b(RI{KLP){1
as long as RI{KLP§

1

b
,

and ? otherwise (Eqs. (A-9), (A-10) in Text S1). Thus stochasticity

replaces substitutability in generating partial allocation.

For b??, optimal microscopic choices are purely determin-

istic. The derived utility function in Eq.(12) becomes

Figure 4. Microscopic choices yield macroscopic partial
allocation even with independent marginal utilities. To compare
directly with labor supply theory, we derive macroscopic utility
functions consistent with our assumed microscopic utiities. Curves
show indifference curves of the derived macroscopic utility function.
Cool colours show order of increasing macroscopic utility. Solid black
lines show different budget constraints T~vzl as T is changed.
Dashed black line denotes the path through theoretically predicted
optimal leisure and work combinations as T is increased. A), B)
Stochastic, approximately optimal microscopic choices with linear CL(:)
yields partial allocation (A) high and B) medium payoffs are shown).
Inverse temperature b~1. C) Deterministic, optimal microscopic
choices with linear CL(:) yield all-or-none allocation–work all the time
if RIwKLP. Inverse temperature b??. CL(tL)~0:7tL, Reward
intensity, RI~9 in A), RI~4:3 in B) and C), price P~4s in A-C. D)
Deterministic, optimal choices with non-linear CL(:) also yields partial
allocation. CL(tL)~0:7 log (tL), b??, RI~2:46 and price P~4s.
doi:10.1371/journal.pcbi.1003894.g004
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U(l,v)~
v

P
RIzKLl ð13Þ

which directly corresponds to the utility function of labor supply

theory in Eq.(1) with s~1 and would lead to total allocation to

work or leisure depending on whether work or leisure is more

beneficial, i.e. the sign of RI{KLP (Fig. 4C; compare with Fig. 1,

upper- panels).

Deterministic, optimal microscopic choices. As for

standard labor supply theory, the assumption of stochasticity

is not necessary to achieve partial allocation if the microscopic

utility of leisure is a suitably non-linear function of its duration,

e.g., the concave CL(tL)~(k{1) log (tL), for kw1 (Fig. 3B,

red). Choosing concave CL(:) is for convenience; it would

further be straightforward to take CL(tL)~(k{1) log (tLz1)
so that the microscopic utility is defined over all tL§0.

Importantly, though, the microscopic marginal utility of leisure

need not depend on the amount of work done. For a

deterministic policy (b??), the derived macroscopic utility

function (see Eq. (A-16) in Text S1)is

U(l,v)~
v

P
RIz(k{1) log lP=vð Þ½ � ð14Þ

for which the slopes of the (macroscopic) ICs depend on the

amount of work and leisure accumulated (Fig. 4D) and

generate partial allocation as optimal solutions. Thus, neither

stochasticity nor an interaction between work and the marginal

utility of leisure is necessary for partial allocation.

Traditional macroscopic accounts: II
Generalized matching law: Mountain model. An alter-

nate macroscopic characterisation of behavior that yields smooth

time allocation curves, hypothesises that subjects match (according

to the generalised matching law, [4,29]) their time allocation

between work and leisure to the ratio of their payoffs [29], RW and

RL~
RImax

PL

, respectively [2,30]

v

l
~

RW

RL

� �a

[
v

vzl
~TA~

RW
a

RW
azRL

a ~
RIa

RIaz(
P

PL

)a
:

ð15Þ

Here, PL is defined as the price at which, for a maximum

subjective reward intensity RImax, the subject allocates half the

time to work, and half to leisure (see red lines in Figs.5 and

S2A).

This establishes a 3-dimensional relationship between TA,

subjective reward intensity and price (Fig.5, left panel) that is

analogous to the mountain model [12,31]), which plots this

relationship in terms of the objective reward strength. TA is

smooth, and increases and decreases monotonically with reward

intensity and price, respectively, as evident in the contours in

Fig. 5 (right panel). Stochastic macroscopic allocation, by virtue of

generalised matching, therefore accounts for partial time alloca-

tion. The matching coefficient a determines how TA increases as a

function of the payoff from work – rapidly for over-matching

(aw1), and slowly for under-matching ((av1), Fig. S2B, respec-

tively).

The microscopic mountain
By integrating the microscopic choices from our model, we can

compare it with macroscopic descriptions such as the mountain

model. We saw that linear CL(:) generates partial allocation with

stochasticity. It therefore generates smooth (non-step function)

macroscopic time allocation curves as a function of both reward

intensity and price. Consequently, 3-dimensional relationships can

be derived that are qualitatively similar to those specified by the

mountain model (when expressed in terms of subjective reward

intensity, compare Fig. 6A with Fig. 5).

However, when CL(:) is non-linear, more complicated struc-

tures arise. If the price is increased while holding the reward

intensity fixed, the reward rate rp (Eq. (2)) decreases hyperbolically

and eventually asymptotes (Fig.7A). Consequently, unlike the

mean, the mode of the gamma-like distribution does not

substantially increase with the price (see Figs.3C and 7B). Since

the mode determines the duration of the majority of leisure bouts,

these do not increase substantially. If the subject continues to work

for the entire price duration (Fig.7C), then, surprisingly from the

macroscopic perspective of the generalized matching model, the

total work time and thus the TA will increase, rather than decrease

with the price (Figs.6B and 7A, lower panel). This prediction is

readily amenable to experimental test.

Since for linear CL(:), leisure durations are governed by

substantially changing means and not modes, TAs are in general

smaller than for strictly concave CL(:), implying that higher

payoffs are necessary to capture the entire TA range.

Discussion

We studied the problem of partial time allocation – when

reward intensities and prices are not extreme, both animals and

humans divide their time between work and leisure. Traditional

theories such as the microeconomic theory of labor supply, or

accounts from behavioral psychology based on the generalised

matching law, have characterised behavior at a macroscopic level,

studying average times spent in work or leisure. While labor supply

approaches have studied choices within periods of time, these have

been limited to maximising utility within these time windows [32]–

and thus, still average times within these windows. We proposed a

normative, microscopic approach using the reinforcement learning

framework of Semi-Markov Decision Processes. Although we

Figure 5. Mountain model. Left panel: 3-dimensional relationship;
right panel: contours of equal time allocation, as a function of reward
intensity and price predicted by the mountain model using the
generalised matching law. Red lines in right panel show PL: the price at
which TA~0:5 for a maximal reward intensity (red dot in left panel).
a~2:65,PL~11:4s. The TA contours smoothly increase with reward
intensity and smoothly decrease with price.
doi:10.1371/journal.pcbi.1003894.g005
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applied it to the labor-leisure tradeoff, this is actually a more

general theoretical framework for temporally relevant decision-

making. By integrating the microscopic choices of our model over

time, we were able to account for the nature of macroscopic partial

allocation.

We showed how assumptions about microscopic and macro-

scopic quantities relate. In labor supply theory, the marginal

utility of leisure may (although not necessarily) depend on the

amount of work (or rewards) consumed, and (unlike in the

behavioral data) choices are classically deterministic. We consid-

ered a stochastic policy of the same form as emerges for standard

random utility models, but directed at microscopic, rather than

macroscopic, choices. Macroscopic random utility theory consid-

ers stochasticity to be due to unobservable noise, which is added

to the representation of utility. The subject chooses the

combination of cumulative work and leisure times that maximizes

this net utility (including the noise term). If the noise is assumed to

be Gumbel distributed (i.e. drawn from an extreme value

distribution of type I), then the probability of choosing the

optimal combination is a softmax. The softmax function that we

employ is over microscopic durations, and arises from an

(equivalently arbitrary) assumption that subjects have a taste for

entropic policies. Randomness is thus directly built into the fabric

of our model, rather than being an afterthought. It generates

partial allocation even when the marginal microscopic utility of

leisure is independent of work.

Previous exercises attempting to link macroscopic static and

dynamic frameworks have not been generally successful [9].

Optimal choice in a dynamic context generally depends on the

microscopic state, whose evolution is invisible at a macroscopic

level. This allows the macroscopic average choice obtained after

integrating out such states (i.e., the average choice under the

stationary distribution) to appear counterintuitive, possibly even

violating rationality constraints. In our case, the key feature of the

microscopic state is implicit in the non-memorylessness of the

policies allowed in an SMDP – e.g., that the hazard function

governing the probability a leisure bout will end a certain time

after it begun is not independent of time.

An example of the problems comes from observing that time

allocation to working under conventional macroscopic labor

supply accounts generally increases with reward and decreases

with price. Something similar is true of the macroscopic,

mountain-like, consequence of generalized matching. We showed

in our framework that, although this can be true, it is nevertheless

the case that for certain non-linearities, the time allocated to

working can increase rather than decrease as the price increases,

yielding complicated 3-dimensional relationships and non-mono-

tonic contours that elude the mountain model. We thus derived a

transparent link between microscopic and macroscopic frame-

works. Whereas animals have been previously shown consistently

to work more when work-requirements are greater (one idea is that

this arises from sunk costs [33,34]), the apparent anomaly

discussed here only occurs at longer prices and is due to the form

of the microscopic utility of leisure. This is an obvious candidate

for empirical investigation [35].

Non-linear benefit of leisure functions can also lead to partial

allocation for deterministic choices. This applies even for functions

that differ from those common in labor supply theory in virtue of

satisfying independence between the microscopic utilities of

working and engaging in leisure. Of course, the marginal

microscopic utility of leisure might depend on work or rewards –

for instance due to fatigue or satiation. However, carefully

eliminating such dependencies (by, e.g., allowing subjects sufficient

rest inbetween trials, and using non-satiating rewards like BSR)

may provide an avenue to quantify aspects of the microscopic

utility of leisure empirically. This should help reveal why and how

subjects partially allocate their time. It would then be natural to

extend the study to considerations of effort, fatigue and cognitive

computational costs [36–40] (e.g. from holding down weighted

levers or performing cognitively demanding tasks) and the effects

of manipulating motivational state [12,41,42]. It is by taking

advantage of the greater precision available from the detailed

topography of work and leisure that we may hope to gain insight

into these most important details. Although previous work has

described aspects of this topography [37,43], our precise control

theoretic formalization could offer enrichment.

The utilities considered in macroscopic labor supply theory are

ordinal, whereas the microscopic utilities used in our framework

are cardinal and, by analogy with quantities investigated in

discrete choice paradigms [22–24], open for direct neural

investigation. One of the key goals of our work is to provide a

formal framework within which this can happen.

Finally, our work provides a foundation for studying critical

psychological processes and neural computations at an appropri-

ate timescale. Real-time or quasi-real-time recording methods in

routine use in neuroscience such as electrophysiology, large-scale

imaging, or fast-scan cyclic voltammetry allow us to correlate the

activity of neural populations or concentrations of neuromodula-

tors with the execution of behaviors. Likewise, fast causal

manipulations via such methods as optogenetics allow the circuits

Figure 6. Macroscopic time allocation derived from normative,
microscopic choices yields a superset of the mountain model.
Left panels: 3-dimensional relationships between TA, reward intensity
and price, right panel: contours of equal TA, predicted by the micro
SMDP model for A) linear, B) concave CL(:). The 3-dimensional
relationship and smooth contours for a linear CL(:) derive the mountain
model in Fig.3. Note that an extra, higher set of reward intensities was
necessary to achieve the full range of time allocation for linear CL(:).
The fact that contours change direction at longer prices for a non-linear
CL(:) rather than decrease monotonically reflects that TA may no longer
decrease and even increase as the price is increased further.
doi:10.1371/journal.pcbi.1003894.g006
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governing these behaviors to be probed in a highly selective

manner. There is an evident mismatch between the microscopic

timescale over which these methods operate and the macroscopic

timescales over which (a) behavior has often been characterised;

and (b) the quantities such as costs and benefits which underpin

the pertinence of the behavior have been defined. Our normative

microscopic account may therefore provide an illuminating

framework within which to build explanations that span multiple

levels.

Methods

See Micro-SMDP methods in Text S1.

Supporting Information

Figure S1 Partial time allocation: example task and
data. A) Cumulative handling time (CHT) task. Grey bars

denote work (e.g. holding down a lever), white gaps show leisure

(eg. grooming, resting, sleeping etc.). The subject must accumu-

late work up to a total period of time called the price (P) in order

to obtain a single reward (black dot) of subjective reward intensity

RI . The trial duration is 25|price. The reward intensity and

price are held fixed within a trial. B) Macroscopic time allocation

(TA) functions of a typical subject as a function of reward

intensity and price. Red curves: effect of reward intensity, for a

fixed short price; blue curves: effect of price, for a fixed high

reward intensity; green curves: joint effect of reward intensity and

price. C) Microscopic ethogram showing the detailed temporal

topography of working and engaging in leisure for the subject in

B) for a medium payoff respectively, for a fixed, short price. The

part of a trial before the reward and price are certainly known is

coloured pink and not considered further. Data initially reported

in [13,44].

(TIF)

Figure S2 Mountain model parameters. Left 3-dimension-

al relationship; right panel: contours of equal time allocation, as a

function of reward intensity and price predicted by the mountain

model using the generalised matching law. Red lines in right

panels show PL: the price at which TA~0:5 for a maximal reward

intensity (red dot in left panels). A) For a small PL~2:85s, while

Figure 7. Time allocation may not decrease with price for a non-linear microscopic utility of leisure. A) Upper panel: Reward rate (rp)
and lower panel: time allocation (TA) for a concave microscopic utility of leisure as a function of price. A small and a high reward intensity are shown.
Reward rate decreases hyperbolically with price, eventually asymptoting. B) Leisure duration distribution as a function of price for a fixed high reward
intensity (RI~6). At very long prices, as the price is increased further (eg. from 30 s to 50 s), the mode of the leisure duration distribution does not
change by much although the mean does. C) Ethograms for two long prices. As price is increased, the work bouts (proportional to the price) do
increase. Leisure bouts, drawn from the mode, do not change by much. Consequently, TA no longer decreases but may even increase with price (A,
lower panel). This is despite the trial duration being normalised to a multiple (here 25) of the price. It is the lack of significant change in the majority
of leisure durations that is critical. We normalised by the trial duration of 25 | price, instead of simply normalizing by the price, to emphasise that TA
is a macroscopic quantitity and to be consistent with the procedure in the example data Figure S1.
doi:10.1371/journal.pcbi.1003894.g007
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overmatching a~2:65w1 as in the main text and B) under-

matching a~0:66v1 while PL~11:4s as in the main text.

(TIF)

Text S1 Supporting information.
(PDF)
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