Ritwik K. Niyogi, PhD

ritwik.niyogi@gatsby.ucl.ac.uk / ritwik7@gmail.com • Cell: (+44) 7305726839 • www.gatsby.ucl.ac.uk/~ritwik7

SUMMARY: I am an AI researcher with extensive hands-on experience in single cell biology, neuroscience and human clinical data for patient stratification. PhD in Machine Learning and Theoretical Neuroscience from the Gatsby Unit, University College London; fellowship from the Wellcome Trust; trained at the intersection of AI, data science, neural circuit science, drug discovery and psychiatry. I visualize data in real-time, use intuition and AI to reverse-engineer the underlying processes generating the data, and develop novel Machine Learning and mathematical models that better predict new data. I enjoy working in cross-functional teams and helping people collaborate effectively. I am innovative, independently driven and hungry for impact. I am currently working on methods for stratifying neuropsychiatric clinical populations (depression, Parkinson's, Huntington's). I am passionate about applying AI and Data Science to cellular and human patient data to link the two ends of the animal-to-human translational spectrum.

EDUCATION

Gatsby Computational Neuroscience Unit, University College London (UCL), London, UK PhD in Machine Learning and Theoretical Neuroscience

Dickinson College, Carlisle, Pennsylvania, USA Bachelor of Science, Summa Cum Laude: Mathematics, Neuroscience, Physics. Graduated with Honors in all 3 majors

EXPERIENCE

MediaTek Research, Cambourne, UK Senior Research Scientist | Senior Deep Learning Researcher

- Research in meta learning and representation learning; Technology development: Deep Reinforcement Learning for chip placement.
- Co-first authored paper on how to distribute data in meta learning; Led technology project on RL for chip placement

University College London, London, UK

Jan 2019-Sep 2020 Wellcome Trust funded (GBP 250,000) Senior Research Fellow; Supervisors: Dr. Robb Rutledge, Prof. Nathaniel Daw

- Novel diagnostics for clinical depression & Parkinson's disease using AI, Bayesian Statistics and Econometrics.
- Longitudinally tracking and clustering >5000 individuals playing gamified Reinforcement Learning tasks on smartphone apps, Using Bayesian inference to identify early-on when at-risk individuals are likely to become clinically depressed.

University of Oxford, Oxford, UK

Wellcome Trust funded Postdoctoral Research Fellow: Supervisors: Dr. Mark Walton. Prof. Nathaniel Daw

Developed a novel, Reinforcement Learning model of vigor-anergia that links (i) behavioral data from human Parkinsonian and depressed patients, & (ii) cellular, pharmacological, electrochemical and behavioral data from animal neuroscience experiments. Trained in Bayesian & Deep Learning techniques, building a scalable version of the RL model.

University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

- Wellcome Trust funded Postdoctoral Research Fellow: Supervisors: Prof. Garret Stuber, Prof. Nathaniel Daw
- Neuro-inspired AI: Tested causal hypotheses from RL models by manipulating neural activity in closed-loop. Visualized, wrangled, munged & analyzed data from >1000 neurons: PCA & clustering of cells; multi-linear regression.
- Learned 2photon imaging and single-cell transcriptomics, visualized and analyzed data from >1000 neurons.

Johns Hopkins University School of Medicine, Baltimore, MD, USA

Wellcome Trust funded Postdoctoral Research Fellow: Supervisors: Dr. Jeremiah Cohen, Prof. Nathaniel Daw

- Al-inspired neuroscience: Statistically analyzed (time-series analyses, regressions) and modeled electrophysiological and behavioral data from animal experiments using RL, Hidden Markov Models and Bayesian State-Space Models.
- Developed, coded in C++ and tested novel, Reinforcement Learning-driven animal assay for Parkinson's/depression.
- Recruited and mentored 7 students—who won awards for this research: to execute Neuro-Al projects.

Gatsby Unit. University College London, London, UK

PhD Research Student, Supervisor: Prof. Peter Davan, FRS

- Committee: Dr. David Silver (UCL/Google Deepmind), Prof Matthew Botvinick (Princeton/ Google Deepmind)
- Developed the normative microscopic approach: a novel, Reinforcement Learning-based theoretical framework for real-time cost-benefit decision-making, which predicts what a human or animal should do, at each moment in time
- Analyzed and modeled the real-time behavior of animals using Bayesian and Reinforcement Learning approaches. Research project with David Silver: Off-policy Multi-Agent Reinforcement Learning with temporally extended actions.

Oct 2018-Dec 2018

Nov 2017-Oct 2018

Oct 2014-Oct 2017

Mar 2010-Oct 2014

Oct 2009-Oct 2014

Aug 2005-May 2009

Oct 2020-Present

Princeton University, Princeton, NJ, USA

Research Assistant, Supervisors: Prof. Jonathan D. Cohen, Prof. Philip J. Holmes

• Designed, collected, statistically analyzed (regression, auto-correlation, t-tests) and modeled data from decision-making experiments; Mathematically analyzed a spiking neural network of 2000 neurons using dynamical systems theory.

Stanford University, Stanford, CA, USA

Research Assistant, Supervisor: Prof. James L. (Jay) McClelland

• Extended a neural network model of sensory decision-making by incorporating time-varying reward biases.

University of Pittsburgh Medical Center, Pittsburgh, PA, USA

Research Assistant, Supervisor: Prof. Raymond Y. Cho

Built a neural network model of cognitive control for flexible switching between tasks.

SELECTED HONOURS and AWARDS

• Sir Henry Wellcome fellowship, GBP 250,000 • Best Talk Award, Society for Neuroeconomics • Faculty of Life Sciences Award, UCL • Young Researchers' Award, Bernstein Association • Phi Beta Kappa • Delaplaine McDaniel Prize

LEADERSHIP

• Recruited, led, managed and mentored a cross-functional team of 7 students to execute AI-neuroscience projects – students won awards for this research • Raised project funding and organized a council of advisers across AI, Data Science, Neuroscience, Drug Discovery, Healthcare and Business • Helped set up laboratory and led the development of computing infrastructure, Johns Hopkins University • Managed and led collaborative projects across UK, USA, Canada.

SELECTED PUBLICATIONS, CONFERENCE PROCEEDINGS, TALKS and TEACHING

• Niyogi, R.K., Bedder, R., & Rutledge R.B. The RNNEconomist: AI driven development of economic models, in preparation.

• Nair, A.*, **Niyogi, R.K.***, Shang, FTabrizi, S. Rees, G., & Rutledge, R.B. *Opportunity cost determines free-operant action initiation latency and predicts apathy (PsyArxiv, 2020)*

• Ahilan, S., Solomon, R., Breton Y-A, Conover, K., **Niyogi, R.K.**, Shizgal P., Dayan, P. *Learning to use past evidence in a sophisticated world model.* PLoS Computational Biology 15(6): e1007093 (2019); BioArxiv 2018)

• Niyogi, R.K, Shizgal, P. & Dayan, P. Some work and some play: microscopic and macroscopic approaches to labor and leisure, PLoS Computational Biology 10(12): e1003894 (2014)

• Niyogi, R.K., Breton Y-A, Solomon R.B, Conover, K., Shizgal, P. & Dayan, P. *Optimal indolence: how long to work and how long to play,* Journal of the Royal Society Interface, 11, 969 (2013)

• **Niyogi, R.K.** & Wong-Lin, K-F, *Dynamic excitatory and inhibitory gain modulation can produce flexible, robust and optimal decision-making*, PLoS Computational Biology, 9(6): e1003099, (2013)

• Balci, F., Simen, P., **Niyogi, R.**, Saxe, A., Hughes, J.A., Holmes, P., & Cohen, J.D. Acquisition of decision making criteria: accuracy ultimately loses the competition with reward rate, Attention Perception Psychophysics, 73(2), 640-657 (2011)

• **Niyogi, R.K.** & English, L.Q. Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators, Physics Review E, 80, 066213 (2009)

• Guez, A., **Niyogi, R.**, Bach, D., Dolan, R. & Dayan, P. *A normative theory of approach-avoidance conflicts during dynamic foraging in humans*. Reinforcement Learning and Decision Making 2013, Princeton, NJ

• Talks at: CogX, Harvard, Columbia, Princeton, NYU, UCSF, Oxford, UCL, Mt Sinai; Brain Conference, Neuroeconomics

TECHNICAL SKILLS

<u>MACHINE LEARNING & STATISTICS</u>: • Regression/classification • Dimensionality reduction, PCA, EM algorithm, Gibbs sampling, Bayesian non-parametrics • Reinforcement Learning • Bayesian inference, experiment design, hypothesis testing & model selection • Deep learning and recurrent neural networks

<u>PROGRAMMING:</u> • Python • TensorFlow • MATLAB • C++ • Closed-loop control technologies • UNIX Shell Scripting • High Performance Computing • Git • Igor Pro • Mathematica • Maple • XPPAUT • Arduino Microcontrollers • LabVIEW • Linux

Jun 2009-Aug 2009, Jun 2008-Aug 2008

Jun 2007-Aug 2007

Jun 2006-Aug 2006