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SUPPLEMENTAL MATERIAL 

Response time and signal detection time distributions 

 

SM Fig. 1. Correct response time (thick solid green curve) and error response time 
densities (dashed red curve), averaged across participants, along with average signal 
detection time density (thin solid blue curve). Correct and error response times are 
normalized by the total number of decisions, and signal detection times are normalized by 
the total number of signal detection responses. Data were gathered from sessions 10 and 
above. Note the diminishing mass of error response times with increasing signal quality 
reflecting improvement in accuracy. Signal detection distributions (SDT) are identical 
across all five panels 
 

Response times in the 0 and 4% coherence conditions exhibited a different pattern than in 

higher coherences. Visual inspection of the response time distributions averaged across 

participants revealed bimodality particularly for these coherences (SM Fig. 1). 

Bimodality was also present in around half of the participants’ individual data. The 

shorter mode of the response time distribution was well-aligned with the mode of the 

signal detection time (SDT) distribution. Furthermore, the density of the short response 

time distribution diminished with increasing signal quality. These observations suggest 
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the presence of a mixture of integrative and non-integrative decisions, in which motion 

direction evidence is or is not accumulated, respectively. Thus, the optimality analyses 

for DDM fits to the data collected from 0 and 4% conditions should be interpreted with 

caution. 

Orthogonal regression 

In order to assess the degree of match between the empirical and optimal 

decision-times, we fit an orthogonal regression model (minimizing the perpendicular 

distances from the data points to the fitted line) in order to account for variability in both 

the observed and optimal decision time estimates. Slopes of orthogonal regression lines 

between empirical and optimal decision times for the data collected from sessions 10–13 

and from 8, 16, and 32 % coherences were significantly different from 0 [t(16) = 4.45, p 

< .001, mean 1.7 ± SE 0.4] but were not significantly different from 1 [t(16) = 1.89]. This 

finding suggests that empirical decision times for the highest coherences tracked the 

optimal decision times for each error proportion, rather than simply taking a single, fixed 

value that was close to the optimal performance curve but independent of error 

proportion (see supplemental material Fig. 2a). In line with our previous analyses, visual 

inspection of supplemental material Fig. 2b shows that this was not the case for the 0 and 

4% coherences. 
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SM Fig. 2. Empirical decision time as a function of optimal decision time separately for 
8–32% and 0–4% coherences (sessions 10–13). Each symbol corresponds to data 
collected from a single participant. Each data point corresponds to a block. The identity 
line is shown dashed 
 

Individual participants’ performance 

SM Fig. 3a shows normalized decision times as a function of error proportion (ER) 

across all coherences and for the first 5, second 5, and last 3–5 sessions for individual 

participants:  
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The optimal performance curve for the pure drift-diffusion model (DDM) (q = 0) is 

superimposed. Decision time was computed by subtracting an estimate of non-decision 

time (T0) from the observed response time (RT). This estimate was obtained from the 

average response time in the signal detection blocks.  

Performance was defined as the mean squared deviation of the fitted decision 

threshold from the optimal decision threshold, which was calculated from each 

participant’s estimated drift rate (see main text). These values were calculated separately 

for different coherence levels and participants were sorted in ascending order of their 

average steady-state performances. Note that this metric is different from the vertical 

distance between the empirical decision times and the optimal performance curve, 

information that is implicit in SM Fig. 3. Visual inspection of these plots suggests that 

some participants were close to optimal from the beginning, some converged on the 

optimal performance curve over the course of training, and some were asymptotically 

suboptimal. SM Fig. 3b presents a clearer demonstration of these changes by showing the 

block by block deviations from the optimal performance curve. Visual inspection of 

individual plots suggests that more than half of the participants abruptly or gradually 

converged on the optimal value.  
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SM Fig. 3. Each column (with three rows) corresponds to a different participant. 
Participant IDs are presented for the first row of each column. The overall/averaged 
reward rate ranking of the participants is presented as the subscript to the participant ID. 
From left to right (starting from the first row of top panel) participants are ordered based 
on their average squared deviations from the optimal decision threshold (for sessions 10 
and up). a  Decision time as a function of error proportion presented along with the 
optimal performance curve of the pure DDM, which is the skewed inverted-U shaped 
curve. Data have been categorized in three groups: first 5 sessions (crosses), second 5 
sessions (diamonds) and final 3–5 sessions (circles). b Block-by-block deviations 
(vertical distance) from the optimal performance curve as a function of block number. 
The dashed flat line in this row represents zero deviation from the optimal performance 
curve of the pure DDM. Decision times and deviations that were higher than 1 have been 
replaced by 1 for demonstration purposes. c Session by session q values for the RRm fits 
(solid green lines with circles), superimposed on the corresponding monetary rewards 
(thin solid black lines). Participants 1, 3, and 22 had limited previous experience with the 
dot motion discrimination task 
 

Optimality analysis for the extended DDM 

In order to find the optimal threshold for the extended DDM, we simulated the extended 

DDM with best fitting model parameters (allowing T0 to vary) and computed the reward 

rate for different threshold values for the highest three coherences (SM Fig. 4).  



 7 

 

SM Fig. 4. Reward rate curves along with empirical and optimal thresholds (z) for 
different extended DDM fits. We fit four different models: a constrained and b full 
extended DDM with varied thresholds, and c constrained and d full extended DDM with 
a single threshold. Models were fit to the highest three coherences only, with pooled data 
from multiple participants. On each curve we show the reward maximizing thresholds 
(black dashed lines with filled circles) along with the best fitting threshold values (red 
dashed lines with open circles). On the same curves, we also show the optimal threshold 
under the pure DDM given the best fitting drift rate (blue dashed line with open 
triangles). Optimal single thresholds are indicated by a dotted vertical line in (c) and (d) 
whereas the best fitting single thresholds are indicated by the red dashed line with open 
squares. Dashed curves in (c) and (d) are the reward rate curves averaged across the 
highest three coherences. Cons Constrained. Var Varied.  
 

SM Fig. 4 shows that for multiple threshold models (a and b), the empirical 

thresholds track the changes in the optimal thresholds with a fairly constant positive 

discrepancy. The modulation of the optimal thresholds as a function of coherence in SM 

Fig. 4a followed a pattern similar to what we observed with pure DDM fits. Note that in 
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Fig. 4b, in comparison to the pure DDM and constrained extended DDM, the optimal 

thresholds followed a different pattern as a function of coherence under the fully 

extended DDM. The best fitting parameter values revealed that allowing a bias in the 

starting point inflated the starting point variability estimate, which makes the resultant 

core parameters suspect and not as reliable for optimality analysis (see Simen et al, 2009, 

for further evidence of parameter inflation in the unconstrained extended DDM). 

Moreover, there is no task-dependent rationale for assuming a bias in the starting point. 

Consequently, we take the constrained extended DDM as a more reliable reference for 

optimality analysis.  

SM Fig. 4c, d show that, for the constrained extended DDM, the empirical single 

threshold was very close to the optimal single threshold; it diverged from the optimal 

single threshold with the full extended DDM model. When performance was 

characterized as the proportion of the earned reward rate to the maximum expected 

reward rate, these proportions were all over 98% for the pure DDM, the extended DDM, 

and the constrained extended DDM.  

We also computed the proportion of maximum earnings in a conservative manner: 

namely we computed the proportion of the difference between the expected reward rate at 

the fitted threshold and the expected reward rate at a threshold of 0 to the difference 

between the maximum possible reward rate and the reward rate expected at a threshold of 

0, (RRemp–RRz=0)/(RRmax–RRz=0). When this value was computed in a conservative 

fashion, the proportion of the maximum expected reward rate ranged between 92 and 

99% depending on the fit type. Overall, participants appear to have also performed nearly 

optimally under the extended DDM irrespective of varied or fixed thresholds.  
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Issues regarding model fitting 

1. We note that the extended diffusion model of Ratcliff & Rouder (1998) includes 

additional parameters for trial-to-trial variability in starting point and drift rate. Optimal 

performance in tasks with coherence and mean response-to-stimulus interval held 

constant within blocks is described by the sequential probability ratio test (SPRT), which 

in turn requires setting these extra variability parameters to 0. With fewer parameters to 

fit, this restricted model (which we refer to as the ‘pure DDM’) leads to higher fit errors 

and predictions of equal error and correct response time on average. In practice, we find 

that it also leads to lower fitted values of parameters such as drift and T0 (cf. Simen et al., 

2009).  

2. It is important to note that, for the pure DDM, the optimal threshold is 0 in the 0% 

coherence condition. But without trial-to-trial variability in the non-decision latency, 0T , 

this implies that response times are totally deterministic, and equal to 0T . This highly 

implausible assumption must be relaxed to allow for variability in signal detection time—

a simpler response process which itself may be modeled as a drift diffusion process on a 

faster time scale than the typical decision making process. If this assumption is not 

relaxed, then model fits will be forced to find a way to account for variable response 

times. This can only be accommodated within the pure DDM by allowing boundaries to 

be strictly positive. In fact, drift is always 0 in fits of data from the 0% coherence 

condition, thereby accounting for chance performance. Zero drift implies that the ratio of 

the fitted threshold to the noise alone determines the spread of the response time 

distribution. Thus, we should be not be surprised that thresholds, as estimated for the pure 

DDM, are larger than expected for 0% motion coherence, but the fact that some 
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participants were on the optimal performance curve (see SM Fig. 3) at 0% motion 

coherence suggests that their thresholds were in fact optimal for low coherence 

conditions: when signal-to-noise ratios were particularly low, some participants were able 

to transition into a form of fast-guess/non-integrative responding (cf. Simen et al., 2009) 

in which no evidence was accumulated for leftward vs. rightward motion. 

Model comparison statistics for single versus multiple thresholds 
 

Table 1 summarizes the model comparison statistics for DDM fits with multiple 

thresholds vs. a single threshold. Overall, the model with multiple thresholds (two extra 

free parameters for three coherences) fit the data equally well or better than the model 

with a fixed threshold.  

Table 1. Model Comparison Statistics: Multiple vs. Single Decision Thresholds 
 AICc (∆ = Multiple z–Single z) BIC (∆ = Multiple z–Single z) 
 Training Period Median Median 

Session 1 −2.57 5.05 
Sessions 2–5 −13.91 −2.64 
Sessions 6–9 −12.36 −0.72 

Sessions 10–end −16.62 −4.23 
Note. Negative values lend support for the model with multiple thresholds. Models were 
fit to individual participants’ data. z: decision threshold 
 
Proportion of maximum possible expected reward rate 
 

Table 2 summarizes the proportion of maximum possible expected reward rate 

separately for different coherences and fit types. The proportion of maximum possible 

expected reward rate was computed both liberally and conservatively. For the liberal 

computation, we simply divided the expected reward rate given the fitted threshold by the 

maximum possible expected reward rate for that coherence and participant. Note that this 

approach assumes that the worst thing a participant could do in the task is to set the 

decision threshold to infinity and thus not respond (obtaining a reward rate of 0). On the 
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other hand, participants could simply choose not to integrate evidence and to respond as 

soon as they detect a stimulus (i.e., to respond non-integratively), which would result in 

reward rate that would be expected with a decision threshold of 0. In order to prevent 

these possibilities from skewing our assessment of how closely participants approached 

optimal performance, we also computed the proportion of maximum earnings in a 

conservative manner. This latter computation was described above. 

Table 2. Proportions of maximum possible expected reward rates during sessions 10 and 
above  

Liberal Definition 

  0% 4% 8% 16% 32% Average 
RR 

0–32% 
(Multiple z) 

Mean 
(SEM) .78 (.03) .90 (.02) .97 (.01) .98 (.01) .98 (.01) a 

8–32% 
(Single z) 

Mean 
(SEM) b b .96 (.02) .99 (.01) .99 (.00) .98 (.01) 

 

Conservative Definition 
0–32% 

(Multiple z) Median c c .97 .98 .99 a 

8–32% 
(Single z) Median b b .96 .99 .99 .98 

 

Average  .78 .90 .97 .99 .99 .98 
Note. Multiple z: values computed for independent decision thresholds. Single z: values 
computed for the best fitting single threshold. The measures denoted by a, b, and c were 
not computed for the following reasons: (a) multiple thresholds were evaluated, (b) data 
from corresponding coherences were not fit with single threshold, and (c) the meaning of 
conservative estimates is unclear when optimal thresholds are very small. Under the same 
rationale, we used medians rather than means in presenting the output of the conservative 
analysis. Note that in this particular table the proportions of the maximum expected 
reward rate when computed conservatively can be greater than those computed under the 
liberal definition, since medians rather than means were used for the earlier definition. 
When we used medians for both definitions, as expected, conservative proportions were 
always smaller than the liberal ones. For the description of different terms refer to main 
text. RR: Reward Rate 
 
Accounting for deviations from optimality: temporal uncertainty 

We also examined the relation between temporal uncertainty and normalized deviations 

from the single optimum threshold, rather than from the optimal performance curve as 
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performed in the main text. In the first analysis, we adopted a conservative approach and 

first entered the q estimates from model fits as the primary predictor of the normalized 

deviations of fitted thresholds from the single optimal threshold (excluding one outlier 

2SD above the mean), and then added the timing coefficient of variation (CV) and signal 

detection time in the model (stepwise) in the second block. The hierarchical regression 

revealed a good fit (R2 = .68). ANOVA revealed that the overall model (q and CV) was 

significant, F(2,13) = 13.59, p < .001. Adding the CV accounted for additional variance, 

ΔR2 = .13.  When we first entered the CV as the predictor (R2 = .62, F(1,14)=22.57, p < 

.001), adding q estimates improved the fit marginally, ΔR2 = .06, which was not a 

statistically significant improvement (p = .15).  
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