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Abstract Speed–accuracy trade-offs strongly influence the
rate of reward that can be earned in many decision-making
tasks. Previous reports suggest that human participants
often adopt suboptimal speed–accuracy trade-offs in single
session, two-alternative forced-choice tasks. We investigat-
ed whether humans acquired optimal speed–accuracy trade-
offs when extensively trained with multiple signal qualities.
When performance was characterized in terms of decision
time and accuracy, our participants eventually performed
nearly optimally in the case of higher signal qualities.
Rather than adopting decision criteria that were individually
optimal for each signal quality, participants adopted a single
threshold that was nearly optimal for most signal qualities.
However, setting a single threshold for different coherence
conditions resulted in only negligible decrements in the
maximum possible reward rate. Finally, we tested two

hypotheses regarding the possible sources of suboptimal
performance: (1) favoring accuracy over reward rate and (2)
misestimating the reward rate due to timing uncertainty.
Our findings provide support for both hypotheses, but also
for the hypothesis that participants can learn to approach
optimality. We find specifically that an accuracy bias
dominates early performance, but diminishes greatly with
practice. The residual discrepancy between optimal and
observed performance can be explained by an adaptive
response to uncertainty in time estimation.
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Introduction

Humans and animals routinely face simple perceptual and
behavioral decisions. However, no matter how simple the
decision, decision-makers usually have limited access to
information. Thus, accurate decisions require time for
evidence accumulation which leads to a speed–accuracy
trade-off: spending less time accumulating evidence pro-
duces more errors and faster response times (RTs), whereas
spending more time leads to greater accuracy and slower
response times (Pachella, 1974; Wickelgren, 1977). We
take the optimal balance between speed and accuracy to be
the one that maximizes the rate of rewards (equivalently,
correct responses) earned in a task (Bogacz, Shea-Brown,
Moehlis, Holmes, & Cohen, 2006; Gold & Shadlen, 2002).
A previous report showed that in a single session, two-
alternative forced-choice (2AFC) task in which correct
responses were rewarded with money, the majority of the
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human participants accumulated more evidence than was
necessary to maximize their reward rate (Bogacz, Hu,
Holmes, & Cohen, 2010). Here, we investigated whether
human participants can acquire an optimal speed–accuracy
trade-off after extensive training in a two-alternative forced-
choice task with different levels of signal quality (specif-
ically, a random dot motion discrimination task).

Reward-maximizing decision strategies in fixed session-
time, 2AFC tasks need to take account of multiple task
parameters that include the signal-to-noise ratio (SNR), any
penalty for making errors, and the response to stimulus
interval (RSI). Thus, we also examined a possible relation-
ship between decision-making performance and endogenous
uncertainty about temporal intervals (i.e. RSI). The optimal
speed–accuracy trade-off that maximizes the expected
reward rate depends critically on the RSI. Poor estimation
of this task parameter may therefore be expected to degrade
performance (Bogacz et al., 2006; Zacksenhouse, Holmes, &
Bogacz, 2010).

Finally, we extended previous investigations (e.g.,
Bogacz et al., 2010; Simen et al., 2009) by training
participants over many sessions with a wide range of
signal-to-noise ratios. This allowed us to characterize the
acquisition of reward maximizing decision strategies over
time and across a large range of SNRs, including the
absence of signal (SNR = 0).

The drift diffusion model (DDM): an optimal model
for 2AFC

The sequential probability ratio test (SPRT; Barnard, 1946;
Wald, 1947) is an optimal statistical procedure for simple,
two-alternative hypothesis testing when the number of
sequential data samples is unlimited: it minimizes the
number of samples for any given level of accuracy (or
error proportion, ER); conversely, it maximizes accuracy
for any given number of samples (Wald & Wolfowitz,
1948). Stone (1960) first derived an SPRT-based model of
choice reaction time in 2AFC tasks, proposing that decision
makers computed the likelihood ratio of the two hypotheses
under consideration when sampling a signal, and equating
the total sample count with decision time. In the drift-
diffusion model (DDM), these discrete samples are replaced
with a continuous random variable (Ratcliff, 1978), and
some SPRT parameters are made variable to allow greater
flexibility in fitting data, especially data with unequal
average response times for correct responses and errors
(Ratcliff & Rouder, 1998). The DDM assumes that the
sensory information is noisy, that the difference between
the evidence supporting the two alternatives is the decision
variable, that this variable is integrated over time, and
that when it crosses one of two decision thresholds—one
above and one below the starting point or prior belief

state—the corresponding decision is made. The DDM in
its most simplified form, which we refer to as the “pure
DDM”, is given by the first order stochastic differential
equation:

dx ¼ Adt þ sdW ; xð0Þ ¼ 0; ð1Þ
where x denotes the difference between the evidence
supporting two different alternatives at any given time t
and can be interpreted as the current value of the log-
likelihood ratio, Adt represents the average increase in x
during dt, and dW is white noise, Gaussian distributed with
mean 0 and variance s2dt (see Bogacz et al., 2006; Ratcliff
& McKoon, 2008, for detailed reviews of the DDM).

A decision is made when the decision variable crosses
either the upper or lower threshold (±z) and the first passage
time is identified with the decision time, DT. The response
time (RT) is the sum of the decision time and a non-
decision related latency, T0 (e.g., reflecting sensory encod-
ing and motor execution times). The clarity of the signal is
represented by the drift A. Higher values of A therefore lead
to greater accuracy and faster response times for a given
threshold value z. Speed–accuracy trade-offs arise in the
model because of the threshold parameter z: due to noise,
lower thresholds lead to faster but less accurate decisions
whereas higher thresholds lead to slower but more accurate
decisions. Human accuracy and response times in two-
alternative forced-choice tasks have been closely fit by an
extended version of the DDM that includes trial-to-trial
variability in drift rate A, starting point x(0), and non-
decision time T0 (e.g., Ratcliff & Rouder, 1998; Ratcliff,
Van Zandt, & McKoon, 1999). These additional parameters
make it possible to fit data with unequal correct and error
response times. As we show, however, that the pure DDM
provides reasonably good fits, and benefits from extremely
simple, analytically tractable predictions regarding reward
rate maximization (these can only be estimated for the
extended DDM by numerical simulation). Testing these
simple predictions is the main objective of this paper.

The expected reward rate (RR) in free-response two-
alternative forced-choice tasks is the proportion of correct,
rewarded responses divided by the average time between
them (Gold & Shadlen, 2002):

RR ¼ 1� ER

DT þ T0 þ RSI
; ð2Þ

where ER denotes the fraction of errors (ER). Note that in
free-response paradigms with a fixed session time, partic-
ipants have a limited amount of time to make as many
decisions as possible. In such cases, the speed of decisions
is as important as their accuracy since the response times
determine the number of decisions a participant could make
during the fixed session time.
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When task parameters are fixed within a block, the pure
DDM prescribes a parameter-free optimal performance
curve (OPC) that defines the reward rate maximizing
decision time as a function of ER (Bogacz et al., 2006):

DT

Dtot
¼ 1

ER log 1�ER
ER

þ 1

1� 2ER

 !�1

; ð3Þ

where Dtot ¼ T0 þ RSI . The optimal performance curve has a
skewed inverse U-shape (see Fig. 1, dashed curve) that
defines the reward maximizing, mean-normalized decision-
times for different error proportions. At the extremes of error
proportion (ER = 0 and ER = 0.5) the derived relation makes
intuitive sense: for both very high signal-to-noise ratio (ER ≈
0) and for conditions in which no signal is present (ER ≈ 0.5),
the decision threshold should approach 0 in order to maximize
reward rate. However, for 0 < ER < 0.5 participants should
integrate the sensory information, and there is an optimum
threshold that balances between a greater number of decision
opportunities (by responding faster) and a greater proportion
of accurate decisions (by integrating longer).

We reiterate this important relationship as we will rely
on it throughout the paper: When participants are free to
respond at any time, the speed–accuracy trade-off they
select is crucial for reward rate maximization. Faster
response times decrease the accuracy of decisions but at
the same time allow more decision opportunities (i.e. the
number of trials in a given period), whereas slower
response times increase accuracy of decisions but at the
same time reduce the number of decision opportunities.
This balance between speed and accuracy is important for
reward rate maximization since reward rate in the free-

response paradigms is 1�ER
TrialDuration, where TrialDuration =

RT + RSI. This clearly makes the reward rate not only
depend on accuracy of decisions but also their speed. For
further discussion of this relationship, we refer readers to
Bogacz et al. (2006) and Zacksenhouse et al. (2010).

Suboptimal performance in 2AFC: favoring accuracy
over reward rate

In contrast to predictions of optimal speed–accuracy trade-
off selection, a recent report showed that in single-session
2AFC tasks, the majority of the human participants set their
decision thresholds higher than the reward maximizing
threshold prescribed by the DDM (Bogacz et al., 2010).
This performance pattern is expected under the theory that
participants emphasize accuracy over reward (Maddox &
Bohil, 1998). To formalize this alternative, Bogacz et al.
(2006) defined a modified reward rate function with a
penalty for errors,

RRmðqÞ ¼ 1� ERð Þ � qER

DTh i þ Dtot
; ð4Þ

where q is a parameter representing the weight assigned to
accuracy relative to reward. Equation 5 defines a family of
optimal performance curves for different reward functions
RRm parameterized by q (Fig. 1, solid curves), whose peaks
are shifted upward and rightward for increasing values of q
(for 0 < q ≤ 1):

DT

Dtotal
¼ 1þ qð Þ

1
ER � q

1�ER

log 1�ER
ER

þ 1� q

1� 2ER

 !�1

: ð5Þ

Note that, for q = 0, Eqs. (4) and (5) reduce to Eqs. (2)
and (3). With q as a free parameter, this model fits
behavioral data better than the parameter-free DDM,
lending support for a model that assumes competition
between accuracy and reward (e.g., Holmes et al., 2005;
Zacksenhouse et al., 2010)1. For q > 1 (penalty for an error
exceeds reward for correct response), the optimal strategy is
to spend enough time integrating evidence so that error
proportion (ER) falls below a critical value, ERc. The OPC
for q > 1 blows up to infinity at ERc, meaning that values of
ER above ERc should never be accepted, regardless of the
decision time achievable and regardless of the SNR. The
value of ERc decreases as a function of q, indicated by the
leftward shift of the maximum OPC value plotted as q

Fig. 1 Optimal performance curves (OPCs) of RRm parameterized by
q in increments of 0.1 (denoted inc). Dashed curve is the optimal
performance curve for q = 0, which is equivalent to the optimal
performance curve of the pure DDM

1 Motivated by the COBRA (competition between reward and accuracy)
theory of Maddox and Bohil (1998), Bogacz et al. (2006) also
introduced another reward rate (Reward-Accuracy) function
RAðqÞ ¼ RR� q ER

Dtot
. This does not fit the present data as well as

RRm, and we do not consider it further; however, it does fit the single-
session data of Bogacz et al. (2010) better than RRm (see Zacksenhouse
et al., 2010).
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increases in Fig. 1. For any SNR > 0, however, the pure
DDM can achieve arbitrarily low error proportion at the
expense of arbitrarily long decision times. Thus, it is only
for SNR = 0 and q > 1 that the optimal strategy is to cease
responding altogether.

Suboptimal performance in 2AFC: accounting for timing
uncertainty

It is important to note that assuming participants can
maximize RRm entails the further assumption that they can
estimate task parameters accurately and precisely. Naturally,
however, they might instead be uncertain about task
parameters. For instance, the temporal intervals that consti-
tute a defining feature of many decision-making scenarios
(e.g., response-to-stimulus intervals, response deadlines) are
known to be represented with a level of endogenous
uncertainty (Gibbon, 1977; Rakitin et al., 1998). Temporal
information in itself is used adaptively in many temporal
decision-making scenarios (e.g., Balci, Freestone, &
Gallistel, 2009), but it may also be crucial for estimating
other task-relevant information such as the reward rate
(number of rewards per unit time). Thus, uncertainty in the
representation of critical temporal intervals might also lead to
“suboptimal” performance (and conservative decisions) by
producing noisy estimates of reward rates.

In favor of this alternative, Bogacz et al. (2006) showed
that the expected reward rate in our task is an asymmetrical
function of threshold, which descends more steeply for
thresholds below the optimum than for ones above it.
Consequently, for a given level of uncertainty, it is better to
overestimate the threshold than to underestimate it. This
can explain suboptimal performance with slower responses
(higher thresholds) without appeal to an inherent preference
for accuracy. Although the asymmetry in reward rate as a
function of threshold is most accentuated at higher signal-
to-noise ratios, there may be other reasons to prefer higher
than optimal thresholds, such as preventing the tendency to
make anticipatory responses (cf. Simen et al., 2009).
Zacksenhouse et al. (2010), furthermore, recently showed
that an information gap decision strategy that maximizes
the minimal reward rate achievable for a given level of
uncertainty in time estimation fits the data presented in
Bogacz et al. (2010) better than the optimal performance
curve, RRm. These observations motivated us to investigate
the relation between timing uncertainty and the degree of
deviation from optimal performance in the current study.

Suboptimal performance in 2AFC: failure to set
independent thresholds

When the same participant is tested with multiple levels of
SNR blocked into groups of trials with the same SNR,

setting optimal decision thresholds independently for each
different SNR condition requires participants to decide
which SNR is presented in a given block. Although the
possible mechanisms by which humans estimate SNR is
outside the scope of this paper, we note that it likely
requires some sampling time to reach an accurate, if still
noisy, estimate. One cognitively affordable strategy in the
face of such cost and uncertainty is to use a single decision
threshold and attempt to maximize the average reward rate
across multiple SNRs. This can be a good strategy
especially in contexts in which setting a single threshold
results in only negligible reductions in the maximum
possible expected reward rate. When the cognitive cost of
encoding/retrieving/setting independent thresholds and/or
sampling cost is considered, setting a single threshold
might even turn out to be preferable to setting independent
thresholds. In this paper, we therefore examined whether
participants adopted single or multiple decision thresholds
and evaluated them within the framework of optimality.

Methods

Participants 17 adults (6 males and 11 females), aged 18–
30 years, were recruited via announcements posted online
and around the Princeton University campus. Participants
were paid 2 cents for each correct choice. The experiment
comprised 13–15 daily, hour long sessions. Twelve partic-
ipants completed 15 sessions, one participant completed 14
sessions, and four participants completed 13 sessions. The
experiment was approved by the Institutional Review Panel
for Human Subjects of Princeton University and all
participants provided written consent for their participation.

Stimuli and apparatus The visual stimulus consisted of a
field of randomly moving dots, each of which appeared
within an aperture of 3 inch diameter in the center of the
screen. Dots were white 2 × 2 pixel squares displayed
against a black background. Stimuli were viewed from
approximately 2 feet (c.61 cm) (approximately 8° visual
angle). On each trial, a fraction of the dots moved in a
single direction over time, corresponding to that trial's
correct direction, while the remaining dots were randomly
repositioned over time. The motion direction (rightward or
leftward) was assigned randomly with equal probability.
The display was generated in MATLAB on a Macintosh
computer with a CRT monitor, using the Psychophysics
Toolbox extension (Brainard, 1997; Pelli, 1997) and DotsX
software coded by Josh Gold and his laboratory. Responses
were collected with a standard computer keyboard.

Procedure Each session consisted of blocks of decision-
making trials, plus blocks of either a signal detection task or
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an interval timing task, details of which are provided below.
The first four sessions consisted of a 2-min block of
practice of a free-response dot motion discrimination task
with 50% motion coherence. This was followed by practice
on a peak-interval timing task (10 training and 10 test trials,
using the procedure of Rakitin et al., 1998). Participants did
not receive monetary reward during practice. Participants
then performed five 5-min blocks of the free-response dot
motion discrimination task, each with a different level of
motion coherence, followed by 10 training trials and 40 test
trials of the peak-interval timing task. Participants could
take a break of up to 5 min at the end of the peak-interval
timing trials. Finally, participants underwent two 2-min
blocks of a signal detection task. From the 9th or 13th
session onwards (randomly assigned per participant), peak-
interval and signal detection trials were replaced with two
blocks of a response-deadlined dot motion discrimination
task (data not described here), in which the participants
earned scores only for accurate decisions that were made
prior to the deadline.

1. Free response dot motion discrimination task: Partic-
ipants were instructed to decide as quickly and accu-
rately as possible on each trial whether the motion was
leftward or rightward. Participants pressed the 'M' key on
the computer keyboard when they decided the motion
was rightward and the 'Z' key when the motion was
leftward. Each correct response was signaled by a short
audio tone whereas there was no feedback for errors.
Participants were awarded a point (corresponding to 2
cents) for every correct response. There was no
monetary or time penalty for errors. Trials were
separated by a response-to-stimulus interval (RSI)
sampled from an exponential distribution (with lower
and upper bounds) with a mean of 1 s. Premature
responses (RT < 100 ms, including anticipatory
responses prior to stimulus onset) were followed by a
buzzing sound and penalized by a 4-s timeout period.
The cumulative score was displayed in the center of the
screen after every five trials. Trials were blocked by
coherence conditions. Five coherences of 0, 4, 8, 16 and
32% were used, with block order randomized across
participants. Each block was 5 min long (median 187
trials, interquartile interval 31).

2. Signal detection task: In order to calibrate our estimates
of the time taken by non-decision processes, we
included a signal detection task. Participants were
presented with a dot motion stimulus but were
instructed to ignore the coherence and respond as soon
as they saw the stimulus. For one of the blocks, they
were instructed always to press the 'M' key whenever
they saw any stimulus, and in the other, they were
instructed always to press the 'Z' key. Participants were

rewarded with 2 cents for each correct key press that
was not premature. Premature responses were penalized
as described above.

3. Peak-interval timing task: In order to characterize
participants’ inherent timing precision, we included task
blocks on a timing task previously used with humans
(Rakitin et al., 1998). An interval of either 1, 2, 4 or 8 s
was used in each session. The presentation order of the
interval times was counterbalanced across participants.

Training phase The training phase comprised 10
trials. Participants were provided written and verbal
instructions stating that a blue square would appear in
the middle of the screen and change color to magenta
after a certain period of time. They were asked to pay
attention and learn this target interval. Participants were
instructed not to count, or to use any process of
subdivision such as foot-tapping. In order to signal the
target interval on each training trial, a blue rectangle
changed color to magenta after a target duration had
elapsed since the onset of stimulus presentation. Target
durations were held constant in each session. In order
to discourage explicit counting, small digits appeared at
random intervals on the center of the rectangle, and
participants were instructed to read these digits out
aloud. At the end of the trial, the screen went blank,
signaling that a new trial could be started by a key
press.

Testing phase The testing phase, which followed the
training phase, comprised 40 trials. Test trials were
similar in all respects to the training trials except that
the blue rectangle presentation was longer than the
target time interval and the rectangle did not change
color during these trials. Participants were provided
written and verbal instructions to produce responses
centered around the target time interval that started with
the onset of stimulus presentation (Rakitin et al., 1998).
As in the training phase, they were instructed not to
count, or to use any process of subdivision and to read
the digits presented on the screen out aloud (see
training phase). After each trial, a histogram was
presented to the participant displaying the distribution
of responses on the previous trial along with the target
interval on a relative scale. Trials were automatically
terminated if three times the interval period had
elapsed.

Data analysis

DDM fits Individual participants’ 2AFC data were first
pooled across sessions 10 and greater and then were fit by
the DDM using the diffusion model analysis toolbox
(DMAT) in Matlab (Vandekerckhove & Tuerlinckx,
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2008). Initially, we fit three different drift-diffusion models
to the data. In fitting the pure DDM to the data, the decision
threshold (z), drift (A), and non-decision times (T0) were
allowed to vary across conditions, while bias in the starting
point and inter-trial variability in the core parameters were
not permitted. In fitting two extended versions of the DDM,
we allowed for inter-trial variability in the core parameters.
In one of these model fits, no bias was allowed in the
starting point (we refer to this model as the constrained
extended DDM) whereas it was allowed in the other (we
refer to this model as the full extended DDM). Pure DDM
fits were also conducted for each individual participant’s
data and are presented wherever relevant.

Given its extra parameters, the extended DDM natural-
ly fits data better than the pure DDM, but the superior fit
quality of the more complex model holds even when its
extra parameters are taken into account using the Akaike
Information Criterion test for small samples (AICc) or the
Bayesian Information Criterion test (BIC). Indeed, for the
highest three coherences, the constrained extended DDM
(AICc: 215,597.75, BIC: 215,758.20) outperformed the
pure DDM (AICc: 216,789.31, BIC: 216,869.54) and the
full extended DDM (AICc: 214,799.77, BIC: 214,986.97)
outperformed the constrained extended DDM. Similar
results held for the 0% and 4% coherence conditions
(AICcs: 165,461.44, 165,346.06, and 165,081.40 and
BICs: 165,512.35, 165,447.89, and 165,200.20 for the
pure, constrained extended, and the full extended DDM,
respectively).

In a second set of analyses by which we examined the
plausibility and optimality of a single decision threshold
setting across coherences, we fit the same models without
allowing the decision threshold to vary across coherence
conditions. As before, we fit only the highest three
coherences in order to minimize the effects of fast-
guesses and other contaminants that are clearly present
in the 0 and 4% coherence conditions (see Results section
for discussion).

Nevertheless, fitting procedures are typically noisy, and
there is reason to believe that noisy parameter estimates can
obscure the degree to which data in fact approximate
optimality (see Figs. 4 and F1 in Simen et al., 2009).
Furthermore, using the extended DDM complicates the
process of generating optimality predictions, since with this
model these predictions can only be achieved through
numerical simulations. The parameter-free optimal perfor-
mance curve that is derived from the pure DDM, in
contrast, can be compared to data without any fitting at
all. In this paper, we primarily used the parameter-free
approach (i.e. OPC) but also validate it by a model fitting
approach. We also conducted optimality analysis for the
constrained and full extended DDM by numerical simu-
lations and present it in the supplemental material.

Peak responding Given that the mean response-to-stimulus
interval was 1 s in the free-response dot motion discrim-
ination experiment, we used the 1-s peak interval data to
estimate participants’ uncertainty about the temporal struc-
ture of the task. Median key press times for each trial were
determined for 80 testing trials. The standard deviation of
median response times was then divided by their mean in
order to determine the coefficient of variation, a measure of
timing precision, for each participant.

For multiple regression analyses, we used the data and q
value estimates from sessions 2–13. The effects of session
number and coherence level on accuracy and deviation
from the optimal performance curve were tested using two-
way repeated measures ANOVA. We used the Greenhouse–
Geisser correction when the sphericity assumption was
violated. An alpha level of .05 was used for all statistical
tests. Bonferroni correction was used to correct for multiple
comparisons (unless stated otherwise).

Results

We first examine the relation between observed decision-
making performance and optimal performance as defined
by the DDM, focusing on how this relation evolved over
the course of training. We show that when performance was
characterized in terms of decision times and accuracies
(either separately for, or irrespective of, different coher-
ences), the behavior of highly practiced participants con-
formed to patterns predicted by optimality for all but the
lowest motion coherences. With model fits, we then show
that for decisions that rely on sensory evidence participants
on average adopted a nearly optimal single decision
threshold across all signal qualities. We demonstrate that
by setting a single threshold participants still closely
approximated the maximum possible expected reward rate
predicted by independent optimal thresholds. We further
examine the alternative cost function RRm (Eq. 4), in order
to explain pre-asymptotic performance. Finally, we examine
individual differences in interval timing ability as an
explanation of residual deviations from optimality across
all sessions.

Before presenting results, we note that response times in
the 0 and 4% coherence conditions exhibited a different
pattern than in higher coherences. Visual inspection of the
response time distributions averaged across participants
revealed bimodality particularly for these coherences
(Fig. 1 of supplemental material). Bimodality was also
present in around half the participants’ individual data. The
shorter mode of the response time distribution was well
aligned with the mode of the signal detection time (SDT)
distribution. Furthermore, the density of the short response
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time distribution diminished with increasing signal quality.
These observations suggest the presence of a mixture of
integrative and non-integrative decisions, in which motion
direction evidence is or is not accumulated, respectively.
This is true particularly in the 0 and 4% coherence
conditions (cf. Simen et al., 2009), where a threshold of
nearly 0 would in any case be optimal (at 0% coherence,
the optimal threshold is exactly 0). The greater distance
between the 10th and 90th percentiles of the response time
distribution for the 0 and 4% coherence conditions
(compare Fig. 4, left and right panels) also reflects this
nature of the response time distributions. Thus, the
optimality analyses for DDM fits to the data collected from
0 and 4% conditions should be interpreted with caution. For
this reason, and in order to avoid the contamination of
DDM fits to higher coherences for which decisions were
primarily integrative (i.e. 8–32%), we excluded 0 and 4%
coherence conditions when fitting DDM with a single
threshold. Other arguments regarding fitting the DDM are
discussed in the supplemental material.

Comparison of empirical and optimal performance via OPC

Figure 2a shows average decision times as a function of
average error proportions separately for different coheren-
ces and during four different periods in training (sessions 1,
2–5, 6–9, 10–13). Visual inspection of Fig. 2a suggests that
performance approached the optimal performance curve
over the course of training and reached at its asymptotic
level after around five sessions. At steady state (i.e. sessions
6 and up), participants performed nearly optimally for the
highest three coherences (i.e. 8, 16, and 32%) but
suboptimally for the lower two (i.e. 0 and 4%). In order
to assess the “steady state” performance, we compared the
empirical decision times gathered from sessions 10–13 to
the optimal decision times prescribed by the pure DDM for
the corresponding mean empirical error proportions.
Results corroborated our observations based on Fig. 2a.
Comparison of the empirical to optimal decision times
(computed for the mean empirical accuracies) separately for
different coherences did not reveal any significant differ-
ences for the highest three coherences (all ps > .42,
uncorrected), but did achieve significance for the 0%
[t(16) = 4.78, p < .01, corrected] and 4% [t(16) = 3.22, p <
.05, corrected] coherences. Null findings held after compar-
ing the empirical decision times to the optimal calculated for
accuracies one standard error of the mean (SEM) below and
above the mean (Fig. 2a, horizontal error bars).

Figure 2b, c depicts an alternative characterization of the
performance, namely the average decision times as a
function of the error proportions irrespective of coherences
(as presented and analyzed in the earlier theoretical work of
Bogacz et al., 2006). Blocks from different training periods

were first sorted by accuracy in five categories (ERs = 0–
0.1, 0.1–0.2, 0.2–0.3, 0.3–0.4, 0.4–0.5) irrespective of
coherences. Decision times from these blocks were aver-
aged for each participant separately for each accuracy bin
and training period. These averages were used for summary
statistics for corresponding error proportion bins. In line
with Fig. 2a, visual inspection of Fig. 2b suggests the
overall convergence of these empirical decision times on
the optimal performance curve. Despite this overall im-
provement in performance (and in parallel to Fig. 2a) by the
end of the training, decision times with high error
proportions were still greater than optimal. In order to
assess the “steady state” performance (now characterized
irrespective of coherences), we compared the empirical
decision times gathered from sessions 10–13 (averaged for
each participant) to the optimal decision times prescribed
by the pure DDM for the mean accuracy of each bin. These
comparisons showed that for ER > 0.3, empirical decision
times were significantly larger than the optimal decision
times (both ps < .01, corrected).

In order to control for the contribution of the most
difficult conditions in assessing these deviations, we also
plotted data that excluded the 0 and 4% coherence
conditions (Fig. 2c). Note that even for high coherences,
several participants performed at accuracy levels between
0.3 and 0.5. After the exclusion of these two most difficult
conditions, empirical data approximated the optimal per-
formance curve much more closely and the empirical
decision times were not significantly different from the
optimal decision times for any bin (all ps > .06, corrected).
Briefly, when the no-signal (0%) and difficult (4%) blocks
were excluded, averaged performance converged on the
optimal performance curve by the end of the experiment. In
the supplemental material, we present a more detailed
analysis of the correspondence between empirical and
optimal decision times (see the orthogonal regression
section).

In order to better characterize the improvement in
performance over the course of training, we examined
how deviations from the optimal performance curve
changed from session to session separately for different
coherence levels (thus paralleling the depiction in Fig. 2a).
Here, deviations refer to the difference between the
empirical decision time and the optimal decision time
prescribed by the optimal performance curve for the
corresponding ER (i.e. the vertical distance between the
empirical and optimal decision times in Fig. 2). Figure 3a
shows the cross-participant averaged acquisition curve
separately for the different coherences for up to 13 sessions.
In line with our previous analysis, visual inspection of
Fig. 3a shows that decision times converged towards the
optimal value for all coherences and reached the optimal
performance curve for all but the two lowest motion

Atten Percept Psychophys



coherences. Deviations from the optimal value remained
higher for the lowest two coherences throughout the
training. Results of repeated measures two-way ANOVA
analysis corroborated these observations. Coherence and
training sessions were found to have a significant effect on
the deviation from optimality, F(1.46, 23.41) = 17.17, p <
.001 and F(1.80, 28.79) = 4.75, p < .05, respectively. There
was no significant interaction of coherence and training
sessions, F(3.96, 63.36) = 1.88.

Figures 2b, c, and 3a depict only the change in distance
from the optimal performance curve, a measure that is blind
to possible improvements in accuracy throughout training:
namely, horizontal leftward shifts along the ER axis.
Figure 2a on the other hand suggests small improvements
in accuracy over the course of training particularly for the
higher coherences. To better address this possibility, Fig. 3b
shows the session-by-session, cross-participant averaged
accuracies, plotted separately for different coherence con-
ditions. The plots reveal that accuracies remain stable
(approximately constant) throughout training, although they
differ significantly across coherences, being higher for
higher coherences. Results of repeated measures two-way
ANOVA analysis (excluding the 0% coherence condition)
corroborated these observations. Coherence had a signifi-
cant effect on accuracy, F(2.06, 32.88) = 158.22, p < .0001
while training sessions had no significant effect on
accuracy2, F(3.10, 49.52) = 1.35. There was no significant
interaction between coherence and sessions, F(7.56, 120.99) =

Fig. 3 Session by session cross-participant averaged a signed
deviations from the optimal performance curve in each coherence
condition, b accuracies for different coherence conditions. Dashed
curves in (a) are power function fits to the averaged data. Dashed lines
in (b) are linear regression fits to the average accuracy data. Data are
depicted up to the 13th session

2 Figure 3b, however, suggests a slight increase in accuracy (see also
Fig. 2a) for some coherences (i.e. 8 and 16%). In contrast to all others,
one participant performed at chance for all the coherence levels for the
first 4 sessions, and these slight, non-significant enhancements in
accuracy were primarily due to this participant. Training sessions did
not have an effect on accuracy, even when each motion coherence
condition was analyzed separately (all ps > .15).

Fig. 2 a Mean empirical decision times grouped by coherence and
shown separately for sessions 1, 2–5, 6–9, and 10–13. Vertical error
bars SEM for decision times, horizontal error bars SEM for error
proportions. The inverted U-shaped bold curve is the optimal
performance curve of the pure DDM, (Eq. 3). b Average empirical
decision times separated in five error proportion bins. Blocks were

sorted by accuracy in five categories: ERs = 0–0.1, 0.1–0.2, 0.2–0.3,
0.3–0.4, and 0.4–0.5 irrespective of coherences. Decision times from
these blocks were averaged for each participant separately for each
accuracy bin and training period. These averages were used for
summary statistics for the corresponding error proportion bins. c Same
as in Fig. 2b but excluding 0 and 4% coherence conditions

Atten Percept Psychophys



1.15. Figure 3 of supplemental material presents plots that
are analogous to Figs. 2b and 3a but depict individual
participant data that corroborates this finding. The data
therefore suggest that reductions in response time occurred
over training without concomitant reductions in accuracy
(cf. Dye, Green, & Bavelier, 2009).

Comparison of empirical and optimal performance
via DDM fits

Deviations from the optimal performance curve are indirect
measures of the degree to which model parameters approx-
imate their optimal values. In contrast, fitting model
parameters allows direct comparison to theoretically optimal
values (although the comparison then depends on the quality
of the fitting procedure, which is not the case for the
parameter-free OPC analysis). In order to depict the quality
of pure DDM, extended DDM, and constrained extended
DDM fits (see Data Analysis), Fig. 4 shows quantile-
probability plots (Ratcliff, 2001) separately for 0–4%
(Fig. 4a) and 8–32% (Fig. 4b) coherences. Model compar-
ison statistics for pure DDM, extended DDM, and con-
strained extended DDM are reported in the Methods section.

Since the pure DDM fits the data fairly well and since
the only known, closed-form expression for an OPC is
derived from the pure DDM (Eq. 3), we will conduct
optimality analyses primarily based on the parameter
estimates from pure DDM fits. In the supplemental

material, we present simulation-based optimality analysis
for the constrained and full extended DDM. We first present
our statistical analysis of the parameter values gathered
from pure DDM fits. Pair-wise comparisons of drift rates
estimated from individual participants’ data across different
coherences (Fig. 5a) revealed significant differences across
all coherences (all ps < .01, corrected).

We then calculated the optimal threshold given the drift
rate separately for different coherence levels. This compu-
tation was done in two different ways to ensure that our
results were not an artifact of any particular averaging
method: (1) separate thresholds were computed for a set of
individual drift rates, each estimated from an individual
participant’s data, and these thresholds were then averaged
across participants (Fig. 5b, Definition I, solid red line); and
(2) a threshold was computed for the across-participant
average of the individual drift values (Fig. 5b, Definition II,
dashed orange line). Figure 5b shows that the estimated
thresholds were far from the optimal threshold for the 0 and
4% coherence conditions; in contrast, they were clustered
around the optimal threshold for the higher coherence
conditions. In Fig. 5c, we show averaged fitted thresholds
separately for highest three coherence levels. On the same
figure, we also show the mean optimal threshold (Definition
I, calculated for each participant, solid red line) along with
optimal thresholds calculated for the mean drift rate
(Definition II, dashed orange line). For this plot, we excluded
those participants with thresholds that were two standard

Fig. 4 Quantile probability plots for all five coherences at the 10th,
30th, 50th, 70th, and 90th percentiles of response times separately for
0–4% (left panel) and 8–32% (right panel) coherences. Points depict
the empirical data. Solid lines with circles depict pure DDM fits,
dashed lines with squares depict constrained extended (c. ext.) DDM
fits, and dotted lines with triangles depict full extended DDM fits.
Vertical dashed lines indicate different coherences, for errors (left) and

correct responses (right). Error proportions and accuracies cor-
responding to different coherences are presented at the top. The
full extended DDM fits the data best followed by the constrained
extended DDM. The pure DDM predicts equal mean error and correct
response times, which also provides a fairly good, although perfectly
symmetrical, fit to the data
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deviations above and below the mean separately for each
coherence (thus excluding one participant from the 8% and
one participant from the 32% coherence condition). When
these threshold estimates were compared to the two different
optimal threshold curves (Definitions I and II) separately for
different coherences, there were no significant differences
between the empirical and optimal values for the 8, 16, and
32% coherences (all ps > .84, corrected), whereas they were
reliably different for the 0 and 4% coherences (all ps < .01,
corrected). Briefly, our comparison of the empirical and
optimal performance via decision thresholds estimated from
the fits corroborated our comparison via the OPC.

Despite both empirical and optimal thresholds qualitatively
following the same curvilinear pattern across the highest three
coherences, there were no statistically significant overall
differences (one-way between-subjects ANOVA) among
either the optimal thresholds F(2, 46) = 1.26, p = .29 or the
empirical thresholds F(2, 46) = .11, p = .90 across these
coherences. Thus, it seems quite possible that participants
adopted a single threshold rather than multiple thresholds for
these coherences. This is particularly likely given that the
optimal thresholds themselves were not significantly different
from each other across the top three coherence conditions.
Furthermore, the relationship between decision time and error
proportion observed in Fig. 2a qualitatively suggests a single
threshold across all coherences, including the lowest two, for
which a large drop in both estimated thresholds and empirical
decision times was expected but was observed only for a
subset of participants in a subset of the trials.

DDM fits with single thresholds

Based on these observations, we also fit individual
participants’ data without allowing the decision threshold

to vary across coherences. In order to minimize the effect of
contaminants, we fit only the data from the higher three
coherences. In all cases, based on AICc and BIC values,
models with multiple thresholds fit the data equally well or
better than models with single thresholds. Model compar-
ison statistics for different training periods are presented in
Table 1 of the supplemental material. In order to compare
the single versus multiple threshold models for these
conditions, we further conducted a split-half cross-
validation analysis. For this analysis, we first pooled the
data across participants for sessions 10 and above and
randomly sampled half the data points (without replace-
ment). The DDM with single and multiple thresholds was
then fit to the first, randomly sampled half of the pooled
dataset. The best fitting parameters of the two models were
then used to evaluate AICc and BIC values for the other
half of the data. This procedure was conducted 100 times,
and the mean and median difference between the AICc and
BIC values usually favored the single threshold model over
the multiple threshold model (mean ΔAICc = 3.00, mean
ΔBIC = 7.88 favoring the single threshold model). For the
highest three coherences at least, these results reinforced
the notion that a single threshold was used by most
participants and optimized for the ensemble of task
conditions, rather than that a separate threshold value was
encoded, retrieved and finely tuned for each coherence
condition. Subsequent results will therefore be based on
single-threshold estimates based on fits to the highest three
coherences. Later, we also discuss the possibility that some
participants transition into a distinct state of non-
integrative responding (with starting point-to-threshold
distances equal to 0) at very low coherences.

We compared the best fitting single thresholds with
optimal single thresholds (computed numerically) at steady

Fig. 5 a Average drift rates estimated separately for individual
participants’ data for different coherences. b Empirical decision thresh-
olds plotted along with median optimal thresholds calculated for drift
rates estimated from individual participants’ data (Def I, see text) and
optimal thresholds calculated for average drift rate estimates (Def II, see
text). Each blue point corresponds to an individual participant’s data in

each of five different coherence levels. Error bars IQI c Average
thresholds (after excluding two outliers) along with the average optimal
thresholds (Def I, for the corresponding participants) and optimal
thresholds estimated from the averaged drift rate (Def II, for the
corresponding participants) separately for the highest three coherences.
Refer to text for these definitions. Error bars SEM
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state (i.e. Sessions 10 and above). Fitted single thresholds
were not significantly different from the optimal single
thresholds, t(16) = 1.71, p = .11. As stated earlier, the
particular relation between decision times and error
proportions that is revealed when data is categorized based
on coherences (Fig. 2a) qualitatively suggested single
decision threshold setting. Thus, we also fit the empirical
decision times and corresponding error proportions with a
single threshold given the average drift rate estimates from
DDM fits with single thresholds (see Fig. 6).

We fit data collected from four different training periods
twice: once based on the highest three coherences (solid
lines) and once based on all coherences (dotted lines). In
these fits, we used drift rates averaged across participants
separately for different coherences. Drift rates for the
highest three coherences were gathered from fits with the
threshold constrained to be equal across conditions. Drift
values for the lower two coherences (i.e. 0 and 4%) were
estimated from fits allowing thresholds to vary across
conditions. Figure 6 shows that despite systematic discrep-
ancies in the estimation of observed error proportions and a
bad fit to the data from session 1, a single, cross-coherence
threshold per training period could account for the observed
relation during the majority of the training. Fitting both
decision threshold and drift rate rather than using the drift
rate estimates gathered from the DDM fits revealed very
similar fits to the data. We note also that a better fit to these
average DT/average ER data points can be obtained with
lower drift and threshold estimates than were recovered by
model fits to the complete response time distributions,

suggesting some degree of parameter inflation in the DDM
fits (cf. similar evidence of parameter-estimation bias
during DDM-fitting in Simen et al., 2009). The leftmost
points of the solid lines under these parameterizations shift
leftward as the session number increases, as do the
empirical data.

Comparison via proportion of maximum expected reward
rate

So far, we have characterized performance directly and
indirectly based on the correspondence between optimal
and estimated DDM parameters. An alternative way to
characterize performance within the framework of optimal-
ity is to examine the proportion of the maximum possible
expected reward rate secured by the participants. After all,
what participants should have valued most in the task (if
instructions were followed) was the monetary reward they
earned.

The proportion of maximum possible expected reward
rate was computed both liberally and conservatively. For
the liberal computation, we simply divided the expected
reward rate given the fitted threshold by the maximum
possible expected reward rate for that coherence and
participant. Note that this approach assumes that the worst
thing a participant could do in the task is to set the decision
threshold to infinity and thus not respond (thus a reward
rate of 0). On the other hand, participants could simply
choose not to integrate evidence and to respond as soon as
they detect a stimulus (i.e., to respond non-integratively),
which would result in reward rate that would be expected
with a decision threshold of 0. In order to prevent this
possibility from skewing our assessment of how closely
participants approached optimal performance, we also
computed the proportion of maximum earnings in a
conservative manner: namely, we computed the proportion
of the difference between the expected reward rate at the
fitted threshold and the expected reward rate at a threshold
of 0 to the difference between the maximum possible
reward rate and the reward rate expected at a threshold of 0,
(RRemp – RRz=0)/(RRmax – RRz=0). We computed these
values for the best fitting single threshold as well as for the
multiple-threshold fits.

Regardless of the type of analysis (conservative or
liberal) and the type of fit (single or multiple thresholds)
participants secured more than 95% (mean 98%) of the
maximum possible expected reward rate for the highest
three coherences (taking independent optimal thresholds for
each coherence as the reference). This value on average
(evaluated only for multiple-threshold fits) decreased to 90
and 78% for the 4 and 0% coherences, respectively. When
performance was quantified based on the reward rate
averaged across the highest three coherences (dashed red
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Fig. 6 Single-threshold fits in speed-inaccuracy space (the same data
is presented in Fig. 2a). Solid and dotted horizontal lines are fits with a
single threshold to the empirical decision time and error proportion
data (filled circles). Dotted black lines connect the empirical data
points from different sessions that come from the same coherence
condition. Fits depicted by solid lines were computed based on drift
rates solely for the highest three coherences. Fits depicted by dotted
lines are based on drift rates for all five coherences. Note that the fits
to the data from the last two training periods (sessions 6–9 and 10–13)
superimpose
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curves in Fig. 7), participants overall secured 98% of the
maximum possible expected reward rate (see Table 2 of
supplemental material). This value decreased to 94%, when
0 and 4% conditions were also included in the computation
of the average reward rate.

Table 2 of supplemental material presents these propor-
tions also for multiple thresholds. Briefly, participants were
nearly optimal when performance was characterized in
terms of the proportion of reward rate. Importantly, the use
of a single threshold would have been only negligibly
costly to participants. Table 2 of the supplemental material
summarizes the output of this analysis for sessions 10 and
above. The proportion of maximum expected reward rate
earned, based on parameter estimates from the pooled data,
were very close to the proportions derived from fits to
individual participants’ data.

Evolution of critical DDM parameters over the course
of training

To get a clearer picture of how drift rate and decision
threshold estimates evolved over the course of training (cf.
Dutilh, Vandekerckhove, Tuerlinckx, & Wagenmakers,
2009), we fit the pure DDM to the session-by-session
pooled data separately for each coherence (Fig. 8). In line
with the average acquisition curves for deviations from the
optimal performance curve, decision threshold estimates
decreased over the course of training (Fig. 8, left panel).
There were also local qualitative resemblances between
these two plots (compare with Fig. 3a). In contrast with
decision threshold, drift rates increased over the course of
training, indicating improvement in signal-to-noise ratio,
particularly for the high coherence conditions (Fig. 8, right
panel)3. This is notable because it implies that the observed
improvements in participants’ earnings derived from an
increase in speed without a concomitant change in
accuracy, despite the evidence of increasing SNR over
training.

Accounting for deviations from optimality: favoring
accuracy over reward rate

One account for suboptimal performance in our task could
be an emphasis that participants place on accuracy over
reward rate, and the convergence of decision times onto the

optimal performance curve with practice could be inter-
preted as a decrease in this emphasis on accuracy over time.
To address this possibility, we examined the session by
session changes in q value estimates from our RRm fits (see
Fig. 9a and Fig. 3c of supplemental material); we also show
concomitant increase in rewards. In parallel to our previous
observations of diminishing deviations from the optimal
performance curve and optimal decision thresholds with
practice, q value estimates diminished over the course of
training. Corroborating this observation, repeated measures
one-way ANOVA revealed a significant effect of sessions
on the q value, F(4.44, 70.98) = 4.81, p < .01.

Figure 9b shows the median q parameter fits based on
the best fitting single threshold to the highest three
coherences as well as the median normalized deviation
from the optimum single threshold [i.e. (empirical–optimal)/
optimal]. Consistent with Fig. 9a, b shows that q values and
normalized deviations from optimal single thresholds
decreased together over the course of training to negligible
levels. In fact, at steady state, the q values and normalized
deviations from the optimal threshold were not significantly
different from 0; t(16) = 1.36, p = .19 and t(16) = 1.40, p =
.18, respectively.

For each individual participant, Fig. 10 shows the reward
rate curve averaged across the highest three coherences
(dotted blue curves) and the optimal decision threshold
(vertical dashed blue line) for the corresponding participant.
On the same plots, we show the best fitting single threshold
to those coherences (vertical solid red line) and the
modified reward rate (RRm) curve for which this observed
single threshold was the optimum single threshold (solid
red curves; see Fig. 9b for depiction of derived values).
Consistent with our statistical analysis based on q values
and normalized deviations from the optimal threshold,
Fig. 10 suggests that, except in a few cases late in training,
participants performed very close to optimally assuming
that they selected a single threshold. Note that both vertical
lines terminate at points on the blue average reward rate
curve with very close reward rate values.

Accounting for deviations from optimality: temporal
uncertainty

Rather than deriving from an alternative cost function such
as RRm, suboptimal performance could instead reflect the
effects of timing uncertainty (Zacksenhouse et al., 2010).
As discussed above, such timing imprecision might in turn
introduce variability and bias in threshold estimation. Given
the asymmetry of the reward rate curve around the optimal
threshold (e.g., Figs. 7 and 10), it is optimal to distribute
threshold estimates around a mean that is higher than the
optimal value. In order to determine whether there was
any effect of temporal uncertainty on decision-making

3 In both Figs.3a and 8, there is an evident change in the performance
of the participants at around sessions 10–12. This is possibly due to
the indirect effects of the inclusion of response-deadlined dot motion
discrimination blocks at session 9 and thereafter (data from which are
not analyzed here). Nevertheless, the comparison of the deviation
from the optimal performance curve and fitted q values from sessions
10–12 separately from the preceding sessions (starting from session
7), did not reveal any significant differences (all ps > .05).
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performance, we therefore conducted two sets of hierarchical
regression analyses, assessing the degree to which q value and
timing uncertainty predicted the suboptimal performance.

In the first, we adopted a conservative approach and first
entered the q estimates from the RRm model (estimated
directly from the empirical deviation from the optimal
performance curve) as the primary predictor of the vertical
deviations from the optimal performance curve, and then
added the timing coefficient of variation (CV) and signal
detection time in the model (stepwise) in the second block.
The hierarchical regression revealed a good fit (R2 = .88).
ANOVA revealed that the overall model (q and CV) was
significant, F(2, 14) = 48.85, p < .0001. Adding the CV
accounted for additional variance, ΔR2 = .07. Both accuracy
weight q (β = .75, p < .0001) and CV (β = .3, p < .05) were
influential predictors, whereas signal detection time (β = .05)
was not. Figure 11 shows the multiple regression fit to the

data. In a follow-up regression analysis, we first entered CV
as the primary predictor of the deviation from the optimal
performance curve and then entered q estimates in the
model. This analysis revealed an R2 of .45 for CV itself,
F(1, 15) = 12.1, p < .01. Adding q accounted for additional
variance, ΔR2 = .43. These results suggest that CV and q
shared considerable variance. We did not find any reliable
relation between the deviations from optimality and the
uncertainty about the remaining three peak-interval durations
(2, 4, and 8 s), which were all longer than the mean response-
to-stimulus interval used in the decision-making task.

The same results held when this analysis was conducted
using temporal uncertainty and q value estimates from
single thresholds fits (Fig. 10) as predictors of the
normalized deviation from the single optimum threshold.
The details of this analysis are presented in the supplemental
material.

Fig. 7 Each plot corresponds to an individual participant’s data.
These plots show the reward rate curves as a function of decision
thresholds computed from fits to the highest three coherences (i.e., 8,
16, and 32%) without allowing the decision threshold to vary. Solid
blue curves are the pure DDM’s expected reward rate curves for fitted
drift and T0 estimates, with the drift value fitted separately for each
coherence level. The dashed red curve is the average of the three

reward rate curves for the high coherences. The solid line with empty
circles is the envelope of the optima that connects the peaks of each
curve, with each circle denoting the optimal decision threshold and its
expected reward rate for the corresponding motion coherence
condition. The red filled circle and the vertical dotted red line denote
the optimum single threshold. The green vertical dashed is the best
fitting single threshold to highest three coherences

Fig. 8 Session-by-session decision threshold (left panel) and drift rate (right panel) estimates gathered from the pure DDM fits to the data pooled
across participants
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Discussion

In many situations, success depends on speedy simple
decisions. However, despite their intrinsic simplicity,
decision makers typically have limited access to informa-
tion, so that time pressures imposed by the environment
compromise their accuracy. The drift-diffusion model
predicts optimal speed–accuracy trade-offs in 2AFC tasks
administered with fixed signal-to-noise ratios and response-
to-stimulus intervals in each block of trials (Bogacz et al.,
2006). In a recent study of this prediction, 70% of human

participants were found to adopt suboptimal speed–accura-
cy trade-offs in single session two-alternative forced-choice
tasks (Bogacz et al., 2010), while in a second experiment,
extended practice with relatively high signal-to-noise ratios
led to nearly optimal performance (Simen et al., 2009; see
also Starns & Ratcliff, 2010). We expanded these inves-
tigations by further lengthening the training (up to 15
sessions) and testing a wide range of signal-to-noise ratios
(0–32% coherence). We also conducted a new investigation
of the relationship between the deviation from the optimal
trade-off and uncertainty in representing the temporal

Fig. 10 Reward rate curves computed from fitted DDM parameters to
the highest three coherences during sessions 10 and above. For the fits
presented here, the decision threshold was constrained to be equal
across coherences. Each plot corresponds to a different participant.
Dotted blue curves are the reward rate curves estimated from the best
fitting DDM parameters (q = 0) along with the optimum single

threshold denoted by the dashed blue vertical line. The vertical red
solid line shows the best fitting single threshold to highest three
coherences. Solid red curves are the modified reward rate (RRm)
curves for which the best fitting single decision threshold was the
optimal decision threshold under the assumption that participants were
optimizing an alternative reward rate function (Eq. 4)

Fig. 9 a q values from the RRm

fits (solid line) along with the
session-total monetary rewards
(dashed line). Data are depicted
up to the 13th session. b q
values and normalized deviation
from the optimal single decision
threshold for four different
training periods (sessions 1, 2–
5, 6–9, 10 and above). Values
reported in (b) were computed
from DDM fits with a single
threshold to the highest three
coherences
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structure of the task (i.e. mean response-to-stimulus
interval).

Participants in our study converged on the optimal
speed–accuracy trade-off over the course of training,
without significant increases in accuracy. This was a result
of an interaction between decreasing decision thresholds
and increasing drift rates (perceptual learning) over the
course of training (see also Dutilh et al., 2009). In other
words, participants did not increase the reward rate simply
by speeding their decisions but also by improving their
perceptual abilities over the course of training in such a
way that decreased response times traded off against
improvements in accuracy.

Irrespective of how we characterized performance, either
as a function of coherence or error proportion, in the last 8/
15 sessions observed speed–accuracy trade-offs were close
to optimal in the case of higher signal qualities (i.e.
coherence ≥8%), whereas participants still appeared to set
their decision thresholds well above the optimal threshold
in the difficult (i.e. 4%) and no-signal conditions (i.e. 0%).
When the performance was categorized solely as a function
of error proportions and low coherence data were excluded
from the analysis (see also Bogacz et al., 2006), optimal
performance was observed over all error proportions. In
summary, following sufficient training, humans adopted
near-optimal speed–accuracy trade-offs for a wide range of
signal qualities whereas deviations from optimality per-
sisted for the difficult and no-signal conditions.

Interestingly, the relation revealed by categorizing
performance by coherence (Fig. 2a) suggested the use of a
single threshold across coherences rather than independent
decision thresholds for each coherence. Drift diffusion
model fits with varied decision thresholds further supported

this conclusion as neither empirical nor optimal decision
thresholds were found to vary across the highest three
coherences. Importantly, we found that adopting a single
threshold rather than multiple thresholds resulted in
negligible decrements in the maximum possible expected
reward rate. We further showed that, under both single and
multiple threshold assumptions, participants secured around
98% of the maximum possible expected reward rate (taking
multiple thresholds as our reference for optimality). Briefly,
participants adopted nearly optimal single, or possibly
multiple, decision thresholds such that they secured almost
all of the maximum possible expected reward rate.

Adopting optimal, independent decision thresholds for
different coherence conditions would appear, in any case, to
require the ability to estimate signal qualities accurately
from a limited number of trials. This is a computationally
difficult learning problem, however. Furthermore, exercis-
ing such an ability might reasonably be expected to impose
costs in terms of effort and decision speed. When such costs
are taken into account, and given the negligible effect of
precise, condition-specific threshold tuning on the expected
reward rate, it may be that setting a single threshold is
effectively closer to “optimal” than setting multiple thresh-
olds. We note that, even though subjects might simply have
sped up over the course of early sessions, they appeared to
converge on a reward maximizing single threshold on
average after six sessions. No further speeding followed
this convergence, despite the possibility of doing so, as
indicated by faster signal detection response times than
decision making response times at asymptote.

Suboptimal performance in economic decision making
tasks has previously been explained by the hypothesis that
participants favor accuracy above and beyond its contribu-
tion to the rewards that can be earned (Maddox & Bohil,
1998). Our results suggest that while participants started the
experiment placing a strong emphasis on accuracy, they
decreased or eliminated this emphasis with further training
to the point that performance was almost exclusively driven
by reward rate maximization. Interestingly, this process
interacted with the signal quality. Suboptimal performance
continued even after extensive training for the difficult and
no signal conditions (4 and 0% coherence, respectively),
whereas it almost disappeared for the higher signal qualities
irrespective of the experienced error proportion. Corrobo-
rating this finding, Bogacz et al. (2010) found closer to
optimal performance for the easier conditions in another
2AFC task, in which the participants decided if more cells
were filled or empty on a 10 × 10 grid. Evidence for optimal
performance in a dot-motion task like the one investigated
here (Simen et al., 2009) was also based primarily on data
that involved accuracies above 85%.

Initially large but diminishing deviations from the
optimal speed–accuracy trade-off might be the result of a
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Fig. 11 Deviations from OPC of individual participants averaged
across all coherences, plotted as a function of coefficient of variation
and accuracy weight q of the RRm. The fitted multiple regression
plane is also plotted
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long-term strategy that participants adopt when faced with a
wide range of signal qualities in a novel stimulus.
Specifically, in such instances, participants might initially
choose to increase the duration of stimulus viewing on
each trial in order to form reliable estimates of crucial
task parameters, such as stimulus–response associations,
signal-to-noise ratios, distribution of signal-to-noise
ratios, reward magnitudes, etc. Reducing uncertainty in
these estimations would in the long run benefit partic-
ipants, allowing them to base their decisions on more
accurate and precise task related information. The
adoption of this strategy is particularly likely in our
study since participants were aware of the multiple-
session testing and that the experimental manipulation
was the signal-to-noise ratio of a novel stimulus.
Increasing drift rate estimates over the course of training
support this possible source of suboptimal performance.
It should also be expected that the acquisition process
would take longer for the low signal-to-noise ratio and
no signal conditions (depending on the perceptual ability
of the participant). This becomes clearer particularly in
the case of the no-signal condition, since it requires the
participant to learn that the stimulus contains no
information, a process that would be slowed by any
prior assumption that all blocks contain motion-direction
information that could be detected with more training
and vigilance. Informing participants explicitly about the
presence of 0% coherence conditions (which we did not
do) would address this particular possibility.

Our results suggest a general explanation of the findings
of other researchers, in which an increase in speed occurs as
a function of practice without any accompanying change in
accuracy (e.g., Dye et al., 2009). Perhaps participants in
most perceptual decision making tasks are generally
converging on the optimum of a reward function as they
practice; and perhaps total reward maximization in most
tasks favors first tuning up a participant’s bottom-up
perceptual parameters (by favoring accuracy at the
expense of time and short-term reward rate) before fine-
tuning such top-down strategic parameters as decision
thresholds.

It is important to note that response time distributions
were sometimes bimodal, particularly in the difficult task
conditions. The shorter mode of these mixture distributions
was well-aligned with the mode of the signal detection time
distribution. This observation implies that both integrative
and non-integrative decision processes were in operation
and that participants switched between these two decision
strategies (whether or not to accumulate motion direction
evidence). Responding at the signal detection latency (i.e.
DT = 0) indeed constitutes the optimal decision strategy in
the absence of a signal (0%). The interplay between these
two decision strategies was further reflected in the

decreasing proportion of non-integrative response times
with increasing signal quality. In other words, when the
stimulus contained more signal, participants were more
likely to choose to integrate the evidence and vice versa.
Simen et al. (2009) also reported bimodal response time
distributions when the probabilities of the leftward and
rightward motion directions were unequal. In parallel to our
observations, the shorter mode of those distributions was
also well-aligned with the signal detection time and its mass
diminished as the left/right probabilities approached p = .5,
corresponding to the reward maximizing strategies under
those task conditions. Briefly, these observations suggest
that in the 0 and 4% coherence conditions, participants
might be switching between optimal and suboptimal
strategies, possibly driven by their signal-to-noise ratio
uncertainty (particularly given the wide range of experienced
signal-to-noise ratios).

Importantly, our results also indicated a reliable relation
between temporal uncertainty and deviations from optimal
performance. Specifically, participants with higher timing
uncertainty about the response-to-stimulus interval were
found to deviate more from the optimal performance curve.
This suggests another source of suboptimal performance,
which was predicted by the asymmetrical relation between
reward rates and threshold (decision boundaries) originally
reported in the theoretical work of Bogacz et al. (2006) and
further analyzed using information gap decision theory in
Zacksenhouse et al. (2010). This relation states that if
decision makers are to minimize loss due to timing
uncertainty in reward rate estimates (uncertainty regarding
the denominator of Eq. 2), they should err towards longer
than optimal instead of shorter than optimal decision
boundaries. Consequently, apparently conservative
decision-boundaries might be viewed as an intrinsically
adaptive bias in response to timing uncertainty. We note
that a similar bias is also predicted by uncertainty in
keeping track of average accuracy (the numerator of Eq. 2).
Since we have no independent measure of this ER
uncertainty, we could not test this hypothesis. There may
be additional reasons to favor high decision boundaries as
well; namely, to prevent anticipations, which are bound to
happen if there is trial-to-trial start point or decision
threshold variability.

In line with our findings with respect to optimal
performance, recently Starns and Ratcliff (2010) showed
that young but not old adults can nearly optimally adapt
decision thresholds after extensive training. This age
difference might also be partially mediated by differences
in the timing abilities of young and old adults; older people
show poorer interval timing ability in dual task paradigms
(for review, see Balci, Meck, Moore, & Brunner, 2009).

Overall, our findings suggest that two independent
factors lead to deviations from optimal performance in
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2AFC tasks with response-terminated stimuli. One of these
factors appears to be a competition between reward
maximization and accuracy that may interact with signal
quality (Maddox & Bohil, 1998). This might be an adaptive
strategy in the long run, since it could allow participants to
form more accurate estimates of the critical task parameters
early in training. In particular, it could allow for better
estimates of the average signal-to-noise ratio in a task.
Since taking extra time to compute better estimates in the
service of maximizing long-term rewards would eventually
lead to diminishing returns, a gradual shift might be
expected from the exploration of task-parameters toward
the exploitation of current knowledge for short-term gain.
The second process contributing to suboptimal performance
appears to be mediated by timing uncertainty, which may
be closely linked to a participant’s precision in estimating
reward rates. Our results show that such a bias might indeed
be driven by a participant’s level of temporal uncertainty.
Finally, it may be that the first process—computing better
estimates of signal-to-noise ratios—depends intimately on
the second: keeping track of how long decisions are taking.
Comparing the accuracy achieved to the time invested in
decisions is one way to estimate signal-to-noise ratios, and
the current experiment may be taken as evidence in favor
such an approach.

Finally, it is also possible that participants start the
experiment with a prior that errors result in negative costs,
which should disappear when non-negative costs are experi-
enced throughout training. When negative costs are assumed
for errors, one would expect the decision times to follow an
optimal performance curve that is parameterized by the
relative cost assumed for errors (see Fig. 1). As this prior
disappears the decision times would converge on the optimal
performance curve of the DDM with q = 0 approximately
following the sequence of curves with decreasing q depicted
in Fig. 1. This issue can be empirically addressed by
experiments that test both negative and non-negative costs
for errors. The relationship between temporal uncertainty and
free-response, two-alternative forced-choice performance
might be more pronounced in such experiments, where
within-participant manipulations include the response-to-
stimulus intervals. Response-to-stimulus interval, after all,
is the task parameter most directly related to timing
capability. Furthermore, the use of timing tasks that are less
vulnerable to additional non-timing related sources of
variability (e.g., an interval bisection task; Balci & Gallistel,
2006; Wearden, 1991), would add to the generalizability of
our findings. We are currently conducting such experiments.
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