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We investigate the role of the learning rate in a Kuramoto Model of coupled phase oscillators in which the
coupling coefficients dynamically vary according to a Hebbian learning rule. According to the Hebbian theory,
a synapse between two neurons is strengthened if they are simultaneously coactive. Two stable synchronized
clusters in antiphase emerge when the learning rate is larger than a critical value. In such a fast learning
scenario, the network eventually constructs itself into an all-to-all coupled structure, regardless of initial
conditions in connectivity. In contrast, when learning is slower than this critical value, only a single synchro-
nized cluster can develop. Extending our analysis, we explore whether self-development of neuronal networks
can be achieved through an interaction between spontaneous neural synchronization and Hebbian learning. We
find that self-development of such neural systems is impossible if learning is too slow. Finally, we demonstrate
that similar to the acquisition and consolidation of long-term memory, this network is capable of generating

and remembering stable patterns.
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I. INTRODUCTION

Spontaneous mass synchronization has been observed in
several biological systems, such as in the synchronous flash-
ing of fireflies [1,2], the chirping of crickets [3], and in the
pacemaker cells in the cardiovascular system [4]. Within the
nervous system, synchronous clustering has been reported in
networks of neurons in the visual cortex [5], olfactory bulb
[6], central pattern generators [7—10] as well as in those in-
volved in generating circadian rhythms [11]. Neuronal syn-
chronization has been attributed to play a role in movement
[12], memory [13], and epilepsy [14,15]. It is clear that in all
these examples the structure of the neural network must play
a crucial role in its function. The adaptive development of
the network structure takes place through the modifications
of synaptic connections, governed by underlying neural
learning mechanisms. Such synaptic modifications are pos-
ited to constitute the neural basis of learning and the conse-
quent acquisition of long term memory [16,17].

In the nervous system, a neuron integrates inputs from
other neurons and generates outputs in the form of action
potentials or spikes when its membrane potential exceeds an
electrophysiological threshold. In particular, tonically spik-
ing neurons are observed to “fire” spikes at regular intervals
with a particular time period. Although the dynamics of
single neurons are essential, complex cognitive phenomena
emerge from the interactions of many neurons. In a given
neuronal network, neurons that make synaptic connections
influence one another through either excitation or inhibition.

Collective synchronization in natural systems has been
previously modeled by representing them as networks of
coupled phase oscillators [18-23]. These studies assumed a
preimposed static network structure and connectivity. In par-
ticular, the influential Kuramoto Model [20] relied on global,
all-to-all connectivity in which each oscillator affected every
other oscillator equally.

Recent theoretical efforts have studied how a network
may develop in accordance with neural learning mechanisms
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in relation to the dynamics of synchronous cluster formation
[21,24-27]. Neurophysiological studies have shown that a
synapse is strengthened if the presynaptic neuron repeatedly
causes the postsynaptic neuron to fire, leading to the long
term potentiation (LTP) of the synapse [28,29]. Symmetri-
cally, long term depression (LTD) occurs when the postsyn-
aptic neuron does not fire when the presynaptic neuron does.
Experimental findings suggest further that learning may not
depend solely on the rate of spikes at a synapse but on the
relative timing of pre- and postsynaptic spikes [30-33]. Ac-
cording to the Hebbian theory [34], the strength of the syn-
apse between two neurons is enhanced if they are simulta-
neously coactive. In this work, we represent the relative time
between spikes in the pre- and postsynaptic neurons as the
relative phase of a pair of coupled oscillators, and in this way
the phase of an oscillator may be used to represent the time
between two spikes generated by a given tonically spiking
neuron. The intrinsic frequency, the frequency of an oscilla-
tor independent of any influence from other oscillators, shall
represent the natural firing-rate of a neuron in a network
[35,36].

Phase oscillator models with slow time-varying coupling
have previously been capable of displaying associative
memory properties, while revealing parameter regimes for
which both synchronized and unsynchronized clusters are
stable [21,26]. We explore how synchronization and learning
mutually affect one another for both slow and fast learning
rates. Similar recent models have assumed homogeneous
networks with equal intrinsic frequencies [24]. We show,
however, that an oscillator network develops stable synaptic
couplings that depend on the relative intrinsic frequencies
and on the learning rate, as well as on the initial network
state. The paper is organized as follows: in Sec. II we intro-
duce the model endowed with dynamic connectivity. In Secs.
IIT and IV we focus on the scenario when the network learns
quickly and slowly, respectively. We extend our findings to
the scenario when the network starts out without any connec-
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tions and self-develops due to the mutual interaction of syn-
chronization and learning in Sec. V. We summarize our find-
ings and provide perspectives in Sec. VL.

II. MODEL

The Kuramoto Model [20] considers a system of limit-
cycle oscillators moving through the phases of their cycles
based on each oscillator’s intrinsic frequency and its interac-
tion with other oscillators,

N
1
_=wi+K72 KiF(d;— ), (1)
=1

where ¢, € [0,277) is the phase of the ith oscillator and w; is
its intrinsic frequency. The intrinsic frequencies w; can be
drawn from a probability distribution g(w), which is assumed
to be unimodal and symmetrically distributed around its
mean. K is an N X N matrix of coupling coefficients, and F is
a coupling function with a period of 2. Following Kura-
moto [20], we assume F(¢)=sin(¢). In order to measure the
degree of synchronization, a global order parameter, r, is
defined as

N

. 1 .
re'(t) = ;/2 e, (2)
j=1

It represents the centroid of the phases with r(z) corre-
sponding to the coherence in phases and () representing
the mean phase. Another convenient measure of synchroni-
zation is given by r* €[0,1], the square of the modulus of
the order parameter.

If we assume constant and identical coupling coefficients,
then K;;=K for all i,;. This is known as the globally coupled
Kuramoto Model. Assuming such coupling, Eq. (1) becomes

N
do; Ks
T NE sin(¢p; — ¢,). 3)

The Kuramoto Model then reduces to a mean-field model.
Any particular oscillator is sensitive only to the mean, global
properties of the entire system of oscillators, making the de-
tailed configuration of coupled oscillators irrelevant. It can
be shown [37] that the degree of synchronization becomes
nonzero (in a second-order phase transition) when K>K,
where K, is a critical coupling. If the distribution g(w) of
intrinsic frequencies is Gaussian, with a standard deviation

o, then
2 8
K.=——= \/ja. 4)
7g(0) T

It should be noted that due to rotational symmetry in the
model, g(w) can always be shifted so that its peak occurs at
w=0. The system of coupled oscillators reaches an average
degree of synchronization that is independent of initial con-
ditions, whether the oscillators started out completely in
phase or distributed over the unit circle [38].

Instead of assuming a constant, preimposed connectivity
and coupling matrix, we wish to investigate how this net-
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work develops through neural learning mechanisms and af-
fects synchronous cluster formation, and vice versa. The
learning mechanisms discussed above can be represented by
dynamically varying coupling coefficients according to the
rule

dK;;
7;1 =€G(p; - ¢j) - Kij]- (5)

Choosing G(¢p)=a cos(¢p) renders Eq. (5) roughly
equivalent to the Hebbian learning rule. Note that ¢; and ¢,
are simultaneously coactive if they are in phase and hence
representative of LTP. When they are in antiphase, that is,
¢i— ¢;=, the condition is representative of LTD. Note that
with this choice, G(¢) is odd with respect to ¢p=1/2, which
means that there is a symmetry between growth and decay of
synaptic strengths.

We define « to represents a learning enhancement factor.
It amplifies the amount of learning if two neurons are coac-
tive. When the learning rate € is small, synaptic modification
is slow. In this case, synchronized clusters are formed which
are usually stable with respect to external noise [26], al-
though we discuss below how the stability depends on «a.
Since such stabilization, as in the Hopfield model [39], is
reflective of long-term associative memory formation [40],
such a representation would be expected to yield an impor-
tant perspective on the mechanisms of learning.

Combining the models of spontaneous synchronization
and Hebbian learning, our joint dynamical system is repre-
sented by

N
bl
E =w;+ ]T]]:El K,'j Sln(¢j - ¢z) (6)
T~ daccos( - ) - K. (M)

The K;; in Eq. (7) is a saturating term which prevents
coupling coefficients from increasing or decreasing without
bound. A hard bound such as restricting |K;|=1 as in [25]
can effectively limit the steady state values of the coupling
coefficients to one of the two hard bounds. Although such
restrictions can account for the memorization of binary data,
a soft bound such as the saturating term we enlist here can
allow the network to possess more diverse connectivity. It
should be noted that the number of parameters appearing in
Eqgs. (6) and (7) could be reduced by means of rescaling time
and absorbing e. However, since both € and a are meaning-
ful from a neurophysiological perspective, we choose to
leave the equations in their present form.

Whereas previous work focused on slow learning [21,26],
we explore the network’s behavior for both fast- and slow-
learning scenarios. We observe qualitatively different behav-
iors depending on the values of € and «. Particularly, we
observe that there is a critical value of the learning rate be-
low which a single synchronous cluster is formed as in the
original Kuramoto Model in Eq. (3). Above this critical
value, two synchronous clusters emerge (see Fig. 4). We de-
fine a new order parameter, r,, as
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The subtraction of the degree of synchronization for a single
cluster r is necessary since r’ is large also for the single
cluster configuration; r, is designed to pick out the dipole
moment of the distribution (i.e., two clusters).

As we will show, the dynamics of the system depends on
whether the learning rate parameter € is large or small com-
pared to some critical €. For fast learning, €> €, the cou-
pling coefficients can adjust themselves rapidly enough ac-
cording to Eq. (7) that they follow the “fixed point”
@ cos(¢;— ¢;) adiabatically as it oscillates before a synchro-
nized state has manifested. For slow learning, e< €., the cou-
pling coefficients cannot follow the oscillation, and thus they
can only depart consistently from the initial values once a
synchronized state has established itself.

To estimate the magnitude of €., we have to compare the
rate at which Eq. (7) can change with the frequency of the
term cos(¢;—¢;). It is clear that Eq. (7) would asymptoti-
cally approach a static fixed point with a time constant of
71=1/€. On the other hand, cos(¢;—¢,) is expected to oscil-
late at a frequency of |wi—wj , and so on average T,=m/20 is
the time it takes for two oscillators starting in phase to have
moved /2 out of phase where they do not influence their
mutual coupling coefficient any longer. Setting these two
time scales equal to one another yields,

2
e==2. 9)
o

In our study, 0=0.1, so that €.~0.064. It should be noted
that the argument above only holds when the starting cou-
pling coefficients of the network satisfy K;(0)>K,~0.16
[see Eq. (4)]. Below K, the system cannot attain global syn-
chronization at all in the slow-learning regime.

III. FAST LEARNING

Situations where memorization of specific details is nec-
essary involve fast learning. Hippocampal conjunctive cod-
ing in particular is believed to involve such rapid, focused
learning [41]. Note that fast learning according to Eq. (9)
does not imply that learning dynamics is faster than indi-
vidual synaptic dynamics, which would be unrealistic. In-
stead, learning dynamics is faster only compared to the rela-
tive synaptic dynamics between two neurons, but it is still
much slower than individual synaptic spike dynamics. In our
joint dynamical system, when e€>¢€,., the coupling coeffi-
cients can follow the “fixed point” and so Kz:a cos(¢;
—¢;). Substituting K;; into Eq. (6) then yields,

do ad
— = w+ — > sin[2(; — B)]. 10
ar =t oy (2 9] (10)
Multiplying both sides of Eq. (10) by 2 and defining ¢/
=2¢; and o =2w; yields,
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FIG. 1. Two-cluster synchronization r% as a function of the
learning enhancement factor a when the initial phases of oscillators
are uniformly distributed over the circle. €e> €. was set at a large
value of 1. A second-order phase transition is observed at a,.=2K,
=0.32 for Gaussian intrinsic frequency distribution of standard de-
viation 0=0.1.

N
¢ = o] + 13 sin(@] - ). (1)
j=1

This is equivalent to the global Kuramoto Model in Eq. (3),
except that the phases are now in double angles. We would
therefore expect to find a critical value of the learning en-
hancement factor, «,, at which a second-order phase transi-
tion to synchronization occurs. Under our previous assump-
tions for g(w),

J glw)dw=1 =f g (w)do', (12)
it follows that
, g(w)
g'(w) = B (13)
Accordingly, comparing with Eq. (4),
2
a,= = 2K, (14)
mg(0)
2

In order to verify the value of «,, we performed a series
of numerical simulations. All simulations in this study em-
ployed an Euler time step of Ar=0.1; all results shown
started with initial oscillator phases spread out over the entire
unit circle. In Fig. 1, € was set to 1.0, so that e>€,=0.064,
and the network consisted of 500 oscillators. Intrinsic fre-
quencies w; were drawn from a Gaussian distribution with
mean u=0 and standard deviation o=0.1. In this case, ac-
cording to Eq. (4), K,~0.16. We then varied the value of «
from 1 toward O and obtained a bifurcation diagram relating
the average eventual degree of synchronization to the learn-
ing enhancement factor. We observe a second-order phase
transition in « for the joint system similar to that of the
original Kuramoto model with global all-to-all coupling.
Critically, this phase transition occurs at a,=0.32=2K, veri-
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FIG. 2. (Color online) Fast Learning (e>¢€,) with a=1> a,.
(A) Polar plot of the distribution of oscillators. Two stable clusters
are formed. (B) Final K;; as a function of the final relative phases
|Agp;j|. The thick line represents the data from simulations, dashed
curve is the theoretical prediction: K;:a cos(¢h;—¢)). (C) Relative
intrinsic frequencies |Awij| as a function of final relative phases
|A¢,-j|. (D) Final K;; as a function of relative intrinsic frequencies
|Aw,~j|. Black dots represent data from simulations, the solid curve
corresponds to the theoretical fit.

fying the theoretical prediction. This critical value is robust
with respect to varying initial conditions of the phase distri-
bution ¢,(0) and connectivity K;;(0).

When a> «,, €> €., and all oscillators do not start out in
phase, two clusters are formed, which remain 180° apart
from each other in mean phase as shown in Fig. 2(A). Here,
the intrinsic oscillator frequencies are displayed along the
radial axis. Analyzing the phase-plane we obtain four fixed
points for the joint dynamics of Egs. (6) and (7). Two of
them are stable, corresponding to ¢;—¢;=0 and ¢;—¢;=.
Thus, stable states for this system occur when pairs of oscil-
lators are either synchronized or antisynchronized with each
other, leading to the formation of the two antisynchronized
clusters. The other steady states, corresponding to a relative
phase of 7 and 3777, are unstable. It follows that for the stable
steady states,

K= acos(¢;— ¢) = * (15)

with Kj;~ a within a synchronized cluster and K;;~-a be-
tween two antisynchronized clusters. As seen in Fig. 2(B),
the final steady-state values of the coupling coefficients for
the two clusters, observed in the simulations, are in excellent
accordance with the prediction of Eq. (15). The final values
of the coupling coefficients K;; can also be correlated against
the initial relative intrinsic frequencies of oscillators Aw;
=|w;— wj|. Here it is useful to first relate the relative intrinsic
frequencies of the oscillators to their final relative phases
[Fig. 2(C)]. Within a cluster, we can calculate the slope of
this relationship. The scatter-plot relating the final steady-
state value of the coupling coefficients to the relative intrin-
sic frequencies of oscillators also depicts the formation of
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FIG. 3. (Color online) The time evolution of the two-cluster
order parameter, r,, when a>«, and e is large (fast learning) for
different initial coupling strengths K(0). a was fixed at 0.5, e=1
and K(0) was varied from 0, 0.25, 0.5 and 0.75. r, attains the same
final value regardless of the initial coupling strengths.

two clusters [Fig. 2(D)]. Using the slope of the line in Fig.
2(C) together with the cosine fit in Fig. 2(B), we can again
match the scatter plot very well.

In the fast learning scenario, the strength of the initial
network coupling has no effect on the eventual network
structure (one or two clusters formed) or degree of synchro-
nization. As shown in Fig. 3, regardless of whether we start
the network without connections, with coupling coefficients
K(0)<a, K(0)=a, or K(0) > «, the two-cluster order param-
eter, r,, always attains the same eventual value. In contrast to
the original Kuramoto model of Eq. (3), here the degree of
synchronization does depend on the initial relative phases of
the oscillators and on the value of @. When a> a, and all
oscillators start out in phase, that is, ¢;(0)=0 for
i=1,2,...,N, then only a single synchronized cluster is
formed (the second cluster being viable but unpopulated),
and a relatively large value of % is observed, while r% tends
toward 0. As discussed above, if a<<a, then no synchroni-
zation can manifest.

IV. SLOW LEARNING

In neuroscience, the ability of abstracting generalizable
properties from specific details is believed to involve slow
learning mediated by the neocortex [41]. In our model of
coupled phase oscillators, slow learning occurs when e<g,.
Qualitatively, since there is very little change in Eq. (7),
K;;=K;(0)=K>K, on an intermediate time scale. Substitu-
tion of this approximate condition into Eq. (6) recovers the
globally coupled Kuramoto Model given by Eq. (3). In this
case, only a single synchronized cluster should form, and this
result is easily verified by simulations.

Whether this single cluster remains stable over long time
scales depends on the value of a. If « is chosen too low, an
interesting phenomenon occurs whereby a cluster initially
forms but at long times disintegrates again. The eventual
disintegration is due to the decrease of the coupling coeffi-
cients at longer times below a value needed to sustain syn-
chronization.

Figure 4 summarizes the transition from a one-cluster
state to a two-cluster state as € is increased above the critical
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FIG. 4. (Color online) One- and two-cluster synchronization as
a function of € when K(0)=0.75. a> a, was set at a large value of
1. The dotted line (with squares) and the solid line (with circles)
represent the average eventual degree of synchronization for a
single cluster 7> and that for two clusters r%, respectively. Each data
point was computed by simulating a network of 250 oscillators for
5000 time steps and averaging over the last 1000 time steps.

value. The dotted trace depicts 7> and the solid trace 3. The
transition from a one-cluster state at small learning rates to a
two-cluster state for fast learning is evident. A starting value
of K;/(0)=0.75> K, was used in the simulations shown, but
other values of K(0) were tested as well. Note that the tran-
sition between the one-cluster and two-cluster state occurs at
the predicted €.=0.064 separating slow and fast learning,
thus verifying the prediction of Eq. (9).

V. SELF-DEVELOPMENT

We now consider the intriguing case of K;;(0)=0 for all
i,j. This means that we start the joint system out with no
connections between oscillators in order to observe how a
connective structure may self-develop in this model. In neu-
roscience terms, we study whether parts of the nervous sys-
tem can develop from the time of conception through the
mutual interaction of spontaneous neural synchronization
and Hebbian learning in order to perform their rich repertoire
of functions.

Let us investigate the role of the learning rate € in the
self-development of synchronized clusters. For this purpose,
the learning enhancement factor, «, is set to a value well
above a,=2K, found earlier (see Fig. 1). We would like to
find the conditions that allow two oscillators that are near in
phase at some instant of time to become entrained to one
another. It is clear that in order for this to happen,

T/4 )
f Kdt=K,, with
0

K= ea cos(Awt). (16)

T denotes the time it would take for the unsynchronized os-
cillator pair to diverge in phase by 27 and thus meet again;
i.e., T=27/Aw. Note that the distribution of frequency dif-
ferences of oscillator pairs is also normally distributed, but
with a standard deviation increased by a factor of 2.

This condition implies that the two oscillators cannot be
any further apart in intrinsic frequency than Aw=ea/K..
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FIG. 5. (Color online) Two-cluster synchronization r% as a func-
tion of learning rate € when K(0)=0. Circles represent the numeri-
cal result for r% (computed as in Fig. 4). The solid line represents
the predicted percentage of synchronized pairs. Squares depict the
mean degree of sync for one cluster 2.

Thus, a first estimation of the percentage of oscillator pairs
which are able to synchronize is given by the following func-
tion of e:

Aw
f g(w)dw=erf(y),

-Aw

e
" 20K,

y (17)

This relationship suggests that the degree of synchroniza-
tion should depart roughly linearly from the origin as € is
raised from zero, indicating the absence of a phase transition
in this case. This prediction is confirmed by numerical simu-
lations. Figure 5 shows the computed one- and two-cluster
order parameters, r? and r%, as a function of €. We observe
that the one-cluster state does not occur for any value of ¢; it
is “frozen” out for the initial condition K(0)=0. In contrast,
the two-cluster state gradually turns on as € is increased from
ZEero.

In order to characterize the coupling coefficients that re-
sult from a self-assembled network further, let us examine
the case €=0.05 (and a=1, as before). Figure 6 depicts a
scatter plot of the final coupling coefficients between all
pairs of oscillators. We observe that the distribution falls into
two distinct groups. The synchronized (and antisynchro-
nized) oscillator pairs fall into the top and bottom arches. For
the unsynchronized oscillators, an envelope (see green line in
the figure) can be derived as follows:

Since for this subpopulation, d¢;/dt= w;, after substitu-
tion into Eq. (7), we obtain the first-order nonhomogeneous
differential equation

Kl]+ fKij: Ex COS(¢i— ¢]) = Ex COS(|Aw,~j|t), (18)

N
Aw.|\?
(]
€

where 6 is a phase offset. Thus, for unsynchronized oscilla-
tors, the relation between the coupling coefficients attained

with solutions of

K1) = cos(|Aw; |t + 9), (19)
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FIG. 6. (Color online) Final coupling coefficients, K;;, in a self-
developed network plotted against |Aw,-j\. Black dots represent
simulation results with N=250 oscillators, a=1, €=0.05. Pairs of
unsynchronized oscillators remain within an envelope while other
oscillators form two synchronized clusters in antiphase with each
other.

and the relative intrinsic frequencies remains within an en-
velope (Fig. 6, green trace) that is expressed by the ampli-
tude term in Eq. (19). For synchronized oscillators, the pre-
vious relationship holds (red line).

Whereas previous research demonstrated the ability of
slow-learning coevolving networks to possess associative
memory properties and learn binary patterns [24,26], here we
provide a mechanism whereby the network generates and
learns more diverse patterns even if learning is fast. Figure 7
illustrates what happens when the learning rate € is changed
abruptly from a high to a low value. This discontinuity hap-
pens at £=1000 in the figure. The color in this density plot
indicates the phase of the 100 oscillators relative to the
middle one. We see that once fast learning establishes a
stable pattern, the switch to slow learning does not alter this
pattern. Stable learning of this kind has been put forward as
a neurally plausible mechanism for the consolidation of de-
clarative memories [41]. In addition, in some connectionist
models [42], short-term or temporary memory has been mod-
eled with fast weight dynamics; this fast learning can then
interact with older associations formed by slower learning
processes.

VI. CONCLUSION

In summary, we have explored the mutual effects of spon-
taneous synchronization and Hebbian learning in a neuronal
network, focusing specifically on the role of the learning
rate. Our work predicts qualitatively different behaviors of
the network depending on whether learning is fast or slow.
Specifically, unless the network is in a pre-existing state of
phase synchrony, when learning is fast, it evolves into two
antisynchronized clusters as long as a learning enhancement
factor, «, is larger than a critical value. We found that
a.=2K,. Furthermore, when learning is fast and a> «,,the
network always organizes itself into an all-to-all coupling
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FIG. 7. (Color online) The learning rate is abruptly changed
from €=0.1 to €=0.01 at a time step of 1000. The color indicates
the oscillator phase relative to the middle oscillator (50). Once a
stable pattern is established with fast learning, it does not change
when the learning rate is reduced below e,.

structure with two clusters, regardless of its initial connec-
tivity.

Fast temporal synchronization of groups of neurons has
been identified as one possible mechanism underlying the
cognitive process of binding [43-47]. Here, the bundling of
multiple representations of a single object (such as its shape
and its color) into a coherent entity is seen as encoded in the
correlations or anticorrelations between groups of neurons.
Anticorrelation, in particular, has been posited to play a role
in segmentation or applications where neurons must sponta-
neously subdivide into several distinct groups (without acci-
dental interferences) on short time-scales [48]. Conversely,
temporal binding has been discussed as a basis for rapid
synaptic plasticity [44]. Our study demonstrates that cluster-
ing and anticorrelation among initially disconnected neurons
can emerge rapidly in the context of a Hebbian learning
model.

We also predict a critical value in the learning rate, €.,
below which learning can be thought of as slow. In this re-
gime, for sufficiently strong initial couplings, only one syn-
chronized cluster forms. This synchronized cluster is stable
and is maintained only if « is greater than its critical value.
Otherwise, the network attains a state of synchrony but in the
long-term returns to a state of disorder.

Finally, we extended our analysis to the case when a net-
work starts out without any connections (or with sufficiently
weak connections). We demonstrated that the degree of syn-
chronization varies continuously with the learning rate and
no phase transition is observed. Here when the learning rate
is too slow, the network remains in an unsynchronized state
indefinitely. Thus, our model predicts that if learning is too
slow, a neuronal network cannot self-develop through the
mutual interactions of neural synchronization and Hebbian
learning. In such a case, pre-existing couplings, or pre-
existing synapses, which are sufficiently strong, are neces-
sary for the neuronal network to self-develop.
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