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Figure S 1. Experimental procedure: triads of trials Subjects face triads of trials: ’leading’, then ’test’, then
’trailing’. Throughout a trial, the reward intensity and price are all held fixed; each trial lasts T = 25 times the
price, plus a fixed, extra time (2s) on each occasion that the price is attained, during which the lever is retracted so
that subjects cannot work. This enables the subject to harvest 25 rewards if it works for the entire trial duration.
The leading trial involves maximal reward intensity and the shortest (1s) price; the trailing trial involves minimal
reward intensity and the shortest (1s) price. Each trial is separated by a 10s cue during which house-lights are
switched on, clearly indicating that a trial has ended and a new trial shall begin. The leading and trailing trials
were provided so that subjects could calibrate and adequately evaluate the reward and price on test trials.
Engaging in leisure on trailing trials also ensured that the subjects would not be fatigued on test trials.

S-1 Supplemental Methods

We formulate our model as a infinite-horizon (unichain) Semi-Markov Decision Process (SMDP) [1]. A
state ~s contains all the information necessary for making a decision. The subject’s next state in the future
~s′ depends on its current state ~s, the action a, and the duration τa of that action, but is independent of
all other states, actions and durations in the past. We further assume subjects jointly choose both the
actions and their durations, as in [2–4].

A choice rule or policy π([a, τa]|~s) specifies the subject’s probability of taking action a for time τa in
state ~s. Under a given policy, we can define the expected reward rate, or the average reward per unit
time

ρπ = lim
T→∞

Eπ
[∑T−1

t̄=0 rt̄([at′ , τat′ ])− ct̄([at′ , τat′ ])
]

T
(S-1)

where rt′ and ct′ denote the benefits and costs at time points t′. Note that the expected reward rate is
independent of the starting state.

Normatively, a subject should try to (approximately) maximise its expected return. The expected
return or Q-value of taking action a, for duration τa from state ~s is
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Qπ(~s, [a, τa]) = Eπ

[ ∞∑
t̄=0

(rt̄([at′ , τat′ ])− ct̄([at′ , τat′ ])− ρ
πτat′ ) |st = s, at = a, τat = τa

]
= r̂(~s, [a, τa])− ĉ(~s, [a, τa])− ρπτa + V π(~s′)

= r̂(~s, [a, τa])− ĉ(~s, [a, τa])− ρπτa +
∑
a′

∫
τa′

π([a′, τa′ ]|~s′) Qπ(~s′, [a′, τa′ ]) dτa′ (S-2)

where V π(~s) =
∑
a

∫
τa
π([a, τa]|~s) Qπ(~s, [a, τa]) is the value of state ~s, averaged across all actions and their

times. The subject pays an automatic opportunity cost of time ρπτa for taking action a for time τa [2–4].
The Q values in this formulation are approximately equivalent to those obtained using shallow, explicit
exponential discounting over an infinite horizon [1, 5].

While simultaneously solving Eqs. (S-1) and (S-2) for the reward rate and the Q-values, we have
more unknowns than equations. As conventional, we therefore set the value of a state to 0, and solve
for the Q values relative to this baseline. The Q values reported here are therefore differential and not the
actual ones. We drop differential denotations and simply refer to them as Q-values.

We used a stochastic, approximately-optimal softmax policy over action-duration pairs [a, τa] (see Eq.
(4.5)). Subjects will be more likely to choose the action-duration with a greatestQ-value, but have a non-
zero probability of choosing a suboptimal action-duration. Since arbitrarily long durations should be
less likely to be chosen, this was combined with a prior probability density µa(τa) of choosing duration
τa to yield the net policy π that generates choices. The reward rate ρπ depends on the policy, and vice-
versa (Eqs (4.1-4.5)). Excluding this prior would a priori permit infinitely long leisure durations τL to be
chosen with the same probability as short ones; these long leisure durations would significantly reduce
the reward rate. On the other hand, all work durations τW that attain the price (τW ≥ P − w) would
have an identical effect. Since the policy is over all action-durations ([a, τa]), irrespective of whether
they are of work and leisure, arbitrarily long leisure durations would have a greater effect on the reward
rate than work durations. Including a prior that makes longer leisure durations less likely to be chosen
normalizes the contributions of durations of work and leisure to the reward rate, affording both an
equal role. We therefore employed an exponential prior for leisure µL(τL); the exponential prior for
work durations µW (τW ) did not matter as long its mean was not so short that it made attaining of the
price much unlikely.

Since the policies depend on Q-values, which themselves recursively depend on the policies, except
in the case of the optimal policy, we cannot solve for them in closed form. We use policy iteration to
find them [1,6]. Starting from an initial guess, each iteration involves updating the policy while holding
the Q-values fixed, and then updating the Q-values while holding the policy fixed, until they are self-
consistent, i.e. policy iteration has converged. Since, to our knowledge, policy iteration for stochastic
policies has not been proved to converge to a unique policy, we executed the algorithm from different
starting points. All policies reported in the main text are the only dynamic equilibria of policy iteration
(irrespective of the starting point, they converged to the same equilibrium). An alternative would be
to compute optimal Q-values (for which policy iteration provably converges to a unique equilibrium
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[7]) and then make stochastic choices based on them; however, this would result in policies that are
inconstant with their Q-values.

For convenience, we considered a weighted sum of linear and sigmoid benefits of leisure, with the
same maximal slope as our canonical microscopic benefit-of-leisure functions

CL(τ) = α KL τ + (1− α) CLmax

1 + exp
[
− 4 KL

CLmax
(τ − CLshift)

] (S-3)

where CLmax and CLshift are the maximum and shift of the sigmoidal component and α ∈ [0, 1] is the
weight on the linear component (see Figure 2B)

S-2 Linear benefit-of-leisure yields exponential instrumental leisure

duration distributions

If CL(τL + τPav) is linear in duration τL, then, according to Eq. (4.2), the total Q-value of engaging in
instrumental leisure in the post-reward state is also linear, Qπ(post, [L, τL]) = (KL − ρπ)(τL + τPav) +

V π([pre, 0]). Then, according to the softmax policy, the probability of choosing to engage in instru-
mental leisure for time τL in the post-reward state is proportional to the exponential of the Q-value
(minus the λτL contributed by the effective prior probability density, see Eq. (4.5)). This probabil-
ity is π([L, τL] |post) ∝ exp [−{β(ρπ −KL) + λ}τL], which is an exponential distribution with mean
E[τL|post] = 1

β(ρπ−KL)+λ . Thus, for linear CL(·), instrumental leisure bout durations are always expo-
nentially distributed with a mean which depends on the reward rate. The greater the reward rate, the
shorter is the mean leisure bout.

When CL(τL + τPav) is nonlinear, it is typically not possible to derive the optimal policy analytically.
We therefore report numerical results.

S-3 Derivation of Equation 5.1

We derive the result in Eq. (5.1). We consider a linear CL(τL + τPav) = KL(τL + τPav), and make two
further simplifications: (i) the subject does not engage in leisure in the pre-reward state (and so works
for the whole price when it works); and (ii) a priori, arbitrarily long leisure durations are possible (λ = 0).
Then the reward rate in Eq. (1) becomes

ρπ =
RI +KL{ E[τL|post] + τPav}

P + E[τL|post] + τPav
(S-4)

As discussed in the Results section, the probability of engaging in instrumental leisure in the post-
reward state is π([L, τL] |post) = exp [−{β(ρπ −KL)}τL], which is an exponential distribution with
mean

E[τL|post] =
1

β(ρπ −KL)
(S-5)

3



Re-arranging terms of this equation,

ρπ =
1

β E[τL|post]
+KL (S-6)

Equating Eqs. (S-4) and (S-6) and solving for the mean instrumental leisure duration E[τL|post], we
derive

E[τL|post] =
P + τPav

β(RI −KLP )− 1
(S-7)

which is the second line of Eq. (5.1). This is the mean instrumental leisure duration as long as RI −
KLP > 1/β, and E[τL|post] → ∞ otherwise. When the former condition holds, we may substitute Eq.
(S-7) into Eq. (S-4) and solve for ρπ

ρπ =
(RI −KLP ) [β(RI +KLτPav)− 1]

(RI −KLP ) β(P + τPav)

=
β(RI +KLτPav)− 1

β(P + τPav)
(S-8)

which is the first line of Eq. (5.1).
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