
Kernels for Deep
Learning - With and

without tricks
Amir Globerson (Tel Aviv University)

Uri Heinemann (HUJI), Roi Livni (HUJI, Princeton), Gal Elidan
(HUJI, Google), Elad Eban (Google), Yoav Wald (HUJI)

Deep Learning
• A class of prediction models.

• Excellent empirical performance in some domains

• Training is non convex

• Sometimes a problem, sometimes not

• Great opportunity for theory!

This Talk
• Consider a larger class of models

• Show that it corresponds to SVM learning with a
particular kernel

• Learn by:

• Closed form expression for kernel

• Online sampling

• Multifocal attention

• Robust conditional probability estimation.

Binary Classification
• Map feature vectors x to binary label y

• Consider a class of functions

• Classify using:

• Learn from labeled data

• Minimize loss:

• Where is a loss function (e.g., hinge, logistic)

y = ⇥ [f(x,w)]

f(x,w)

w {xi, yi}Mi=1

1

M

X

i

`(xi, yi,w) + Ckwk22

`

Optimization Challenges
• Want to minimize:

• What if it’s a non-convex function of ?

• Can apply SGD, sometimes with good results.

• But would be nice to have something with more
guarantees.

1

M

X

i

`(xi, yi,w) + Ckwk22

w

Improper Learning
• Consider an extended hypothesis class,

parameterised by a function

g(x,↵) =

Z
↵(w)f(x,w)dw

↵(w)

• If then:↵(w) = �(w �w0)

g(x,↵) =

Z
↵(w �w0)f(x,w)dw = f(x,w0)

• We have a larger class
FG

1

2

3

4

5 7

8

6

Improper Deep Kernels
Uri Heinemann, Roi Livni, Gal Elidan, Elad Eban, Amir Globerson

The Hebrew University of Jerusalem, Google, Tel Aviv University

ProofMotivation
Deep Learning

Improper Learning

Improper Kernel

A Kernel for Improper
Deep Learning

Experiments

Theoretical Results

Conclusion
• Expanding hypothesis space leads to tractable optimization
• Cost is in sample complexity
• The kernel can be calculated in closed form in some cases
• Many challenges: convnets, pooling, algorithms for cases

where kernel has no closed form.

• A highly expressive hypothesis class

• Works well in many domains

• Optimization is non-convex

• Why optimization still “works” is an open
problem

Kernel Methods

• A highly expressive hypothesis class

• Does not work as well as DL

• Optimization is convex

• Kernel needs to be chosen

A connection?

Consider inputs x with label y

Neural networks: y = f(x;w)

For training set want to
minimize loss

nX

i=1

`(xi, yi;w)

{xi, yi}

New hypothesis class:

Hard

g(↵) =

Z
f(x;w)↵(w)dw

• Parameterized by functions

• Contains neural networks, since is
obtained from

↵(w)

↵(w) = �(w �w0)

f(x;w0)

• In the improper learning setting, a model is
specified via a function on weight space

• Can’t explicitly optimize over those

• But g is linear in

• Can use the kernel trick, with the kernel
defined via:

↵(w)

K(x,x0) =

Z

w
f(x;w)f(x0;w)dw

• Classifier is sign of:
X

i

�iyiK(xi,x)

• The are learned via quadratic prog.�i

• Cho and Saul used related kernels, from the perspective of a
continuously infinite network

• Only need to calculate the kernel now

• Define:

• Key ideas:

• Because the activation function is sign,
the kernel is a volume calculation

• There are many symmetries because of
the fully connected architecture

• Weights are sampled independently,
which further factors the integral

• Since activation is sign, there’s a finite
number of outputs for each layer, and we
can sum over these, using symmetries
and counting to reach a closed form.

Vn,q(x,x
0) =

Nn�1X

s=1

Nn�1X

s0=1

min{s,s0}X

k=[s+s0�Nn�1]+

✓
JNn�q(s, s0, k)(0.5� J(s, s0, k))qB(Nn�1, k, s, s

0)Vn�1,s+s0�2k(x,x
0)

◆

B(Nn, k, s, s
0) =

✓
Nn

k, s� k, s0 � k,Nn � s� s0 + k

◆

H(v,v0
) =

Z
⇥

�
wTv

�
⇥

�
wTv0� dw =

1

2

� 1

2⇡
arccos

v · v0

kvk2kv0k2
.

• Focus on fully connected networks with sign
function activation

• Theorem: K(x,x0) = VM,0(x,x
0)

J(k, l,m) = 0.5� 1

2⇡
arccos

mp
k
p
l

• Ni number of neurons in layer i • Learning with kernels generalizes well if
there’s a low norm solution

• In our case, corresponds to low norm of
the function

• Naturally maps to the volume of good
solution in weight space.

↵(w)

R
Good weights

Need samples, where N
is the number of parameters.

O

✓
R�N

log

1
�

✏2

◆

Not surprising that we need exponential
in N, since problem is hard.

• Compare our kernel (IDK) to RBF,
Cho&Saul (CS0, CS1)

• IDK works well for small margin

• Image categorization on CIFAR and STL

• Preprocessing as in Gens and DomnigosImproper Deep Kernels

IDK RBF CS0 CS1 SPN CKN
CIFAR-10 81.8 81.8 81.63 82.49 83.96 82.18
STL-10 62.6 61.7 62.3 52 62.3 62.32

Table 1: Classification accuracy (in %) for the CIFAR-10 and STL-10 benchmarks. Compared are our IDK kernel, as well as the
CS0,CS1 and RBF kernels, Sum Product Networks (SPN) [7], and Convolutional Kernels Networks (CKN)[14].

by 0.7%, and SPN outperforms all methods. For STL-10
CS1 performs quite badly, and the IDK method outper-
forms the other methods, although by a small margin.

6 Discussion

We presented a method for learning a class that extends
deep neural networks. Learning in the extended class is
equivalent to solving an SVM with the kernel derived in
Theorem 3.1. The neural nets we consider use a threshold
activation function, and a fully connected architecture with
different parameters for each weight. In this case the
outputs of hidden layers are binary, a fact which lets us
enumerate over the possible outputs and use symmetries
in the integral. Furthermore, the fact that each weight
has its own parameter further decouples the integral, and
facilitates our recursive close form kernel.

Modern deep learning architectures are different from our
architecture in several respects. First, they typically use a
rectified linear unit (ReLU) for activation (e.g., see [12]),
which yields better models.5 It is not clear whether our
integral can be solved in closed form for ReLUs, as we
can no longer use the discrete nature of the outputs. A
second difference is the use of convolutional networks,
which essentially tie different weights in the network. Such
tying does complicate our recursive derivation, and it is not
clear whether it will allow a closed form solution. Finally,
a commonly used component is max-pooling, which again
changes the structure of the integral. An exciting avenue
for future research is to study the kernel resulting from
these three components, and seeing whether it can be
evaluated in closed-form or approximated.

As mentioned in Section 5.1, it is natural to try and
evaluate the kernel numerically by sampling a finite set of
parameters w, and approximating the integral in Equation
6 as a finite average over these. As our experiments show,
this does not perform as well as using our closed form
expression for the integral, even with a large number of
random features. However, for cases where the integral
cannot be found in closed form, there may be intermediate
versions that combine partial closed form and sampling.
This may have interesting algorithmic implications, since
random features have recently been shown to result in fast
kernel based learning algorithms [5].

5Note that it is not clear whether this is due to improved
optimization or better modeling.

Recent work [13] has shown that replacing the activation
function with a quadratic unit results in improper learn-
ing that is poly time both algorithmically and in sample
complexity. It would be interesting to study such activation
functions with our kernel approach.

Another interesting recent work employing kernels is [14].
However, there the focus is on explicitly constructing a
kernel that has certain invariances. Our empirical results
show comparable results to [14].

The algorithm we present is polynomial in the number
of samples, and globally optimal due to convexity. Our
analysis in Section 4 shows that the cost of convexity is
an increase in sample complexity. Namely, to guarantee
finding a model that generalizes as well as the original
neural architecture, we need O(LN

) samples. This is
perhaps not unexpected given the recently proved hardness
of improper learning for related hypothesis classes such as
intersection of hyperplanes [6]. As we also show in 4, the
input dimension d can be replaced with the inverse margin
1

�2 . Again, exponential dependence on margin for such
problems is manifested in related works [1, 10, 19, 13].

The key open problem in this context, and indeed for
the deep learning field, is to understand what alternative
distributional assumptions may lead to both algorithmic
tractability and polynomial sample complexity. Our kernel
approach attains tractability at the cost of increased sample
complexity. It will be very interesting to study which
assumptions will improve its sample complexity.

Acknowledgments: This work was supported by the ISF Centers
of Excellence grant 1789/11, by the Intel Collaborative Research
Institute for Computational Intelligence (ICRI- CI), and by a
Google Research Award. Roi Livni is a recipient of the Google
Europe Fellowship in Learning Theory, and this research is
supported in part by this Fellowship.

References

[1] Rosa Arriaga, Santosh Vempala, et al. An algorithmic
theory of learning: Robust concepts and random
projection. In Foundations of Computer Science,
pages 616–623. IEEE, 1999.

[2] Maria-Florina Balcan, Avrim Blum, and Santosh
Vempala. Kernels as features: On kernels, margins,
and low-dimensional mappings. Machine Learning,
65(1):79–94, 2006.

Uri Heinemann, Roi Livni, Elad Eban, Gal Elidan, Amir Globerson

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Margin

Er
ro

r R
ed

uc
tio

n
ov

er
 R

BF

IDK
RBF
CS 0
CS 1

102 103 104

0.15

0.16

0.17

0.18

0.19

0.2

0.21

Number of Random Features

Er
ro

r

Random features
IDK

Figure 1: (left) Comparison of test prediction accuracy as a function of the margin for our kernel (IDK) and those of Choi and Saul
(CS0 and CS1) relative to the performance of the RBF on synthetic data generated from a network with two hidden layers. The y

axis shows accuracy advantage over RBF so that larger numbers correspond to larger reduction in error. Results are averaged over 700
repetitions. (right) Comparison of test prediction accuracy when using our IDK kernel to a numerical estimation of the kernel integral
using random features, as a function of the number of features used for estimation.

5.1 Synthetic Experiments

We start by considering a synthetic setting. Training
data is generated from a network with two hidden layers,
and a threshold activation function ⇥ (·), as in our kernel
derivation. The input to the network is two dimensional
and the number of hidden neurons is 40 and 20 for the first
and second layer (performance was not sensitive to these
settings). The weight of each unit is sampled uniformly
in the range [�1, 1] and normalized to 1. Inputs were
uniformly sampled form the two dimensional unit square.
Input samples were also required to have a balanced label
distribution, so that cases where one of the label probabili-
ties was below 0.4 were discarded.

Finally, our theoretical analysis predicts that data with a
large margin should be easier to learn. We thus vary the
margin of the training data by removing training points
that are � close to the decision boundary.

Comparison to Other Kernels: To fairly compare
the accuracy of the different kernels, we tune
the hyperparameters of all kernels on a holdout
set. For RBF , the kernel width is chosen from
[0.001, 0.01, 0.1, 1, 10, 100]. For IDK, we consider
network structures [40], [40, 20], [4, 4, 4, 4]. Similarly, for
CS0, CS1, we choose between 1� 5 hidden layers.

Figure 1(left) shows the performance of the classifiers as
a function of the margin parameter. It can be seen that
our IDK kernel outperforms the other methods across all
margin values. It can also be seen that as the margin grows,
all methods improve, as expected.

Comparison to Random Features: Recall that our kernel
is based on a closed form solution of the integral Equation
6. An alternative to evaluating this integral is to sample
w vectors randomly, and numerically evaluate the integral
via an empirical average. This approach is similar to the
kitchen sinks of [15], and has the advantage of being solved
via a linear SVM (where the dimension is the number of
sampled features). Here we test this approach for different
numbers of random features. For this comparison, both our
closed form IDK and the random features use the correct
model structure. Results are shown in Figure 1(right). It
can be seen that the random features approach improves as
more features are added (note the logarithmic scale of the
x-axis) but there is still a gap between it and the closed form
IDK kernel.

5.2 Object Recognition Benchmarks

One of the great success stories of deep learning is the
task of object recognition [11]. Namely, labeling an image
with a set of categories (e.g., building, frog, paper clip).
Here we evaluate IDK on two such standard benchmarks.
We use the CIFAR-10 and STL-10 datasets, with the same
preprocessing as in [7].

For the IDK hyperparameters we test the structures
[4], [4, 4, 4, 4], [16], [32], [32, 16] and [32, 16, 4]. For both
CS0 and CS1, we test up to eight hidden layers. For RBF
we test widths of [0.01, 0.1, 1, 10, 100].

Results are reported in Table 1 where we also two ad-
ditional literature baselines, namely Sum Product Net-
works (SPN) [7] and Convolutional Kernels Networks
(CKN)[14]. On CIFAR-10 the CS1 outperforms IDK

Uri Heinemann, Roi Livni, Elad Eban, Gal Elidan, Amir Globerson

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Margin

Er
ro

r R
ed

uc
tio

n
ov

er
 R

BF

IDK
RBF
CS 0
CS 1

102 103 104

0.15

0.16

0.17

0.18

0.19

0.2

0.21

Number of Random Features

Er
ro

r

Random features
IDK

Figure 1: (left) Comparison of test prediction accuracy as a function of the margin for our kernel (IDK) and those of Choi and Saul
(CS0 and CS1) relative to the performance of the RBF on synthetic data generated from a network with two hidden layers. The y

axis shows accuracy advantage over RBF so that larger numbers correspond to larger reduction in error. Results are averaged over 700
repetitions. (right) Comparison of test prediction accuracy when using our IDK kernel to a numerical estimation of the kernel integral
using random features, as a function of the number of features used for estimation.

5.1 Synthetic Experiments

We start by considering a synthetic setting. Training
data is generated from a network with two hidden layers,
and a threshold activation function ⇥ (·), as in our kernel
derivation. The input to the network is two dimensional
and the number of hidden neurons is 40 and 20 for the first
and second layer (performance was not sensitive to these
settings). The weight of each unit is sampled uniformly
in the range [�1, 1] and normalized to 1. Inputs were
uniformly sampled form the two dimensional unit square.
Input samples were also required to have a balanced label
distribution, so that cases where one of the label probabili-
ties was below 0.4 were discarded.

Finally, our theoretical analysis predicts that data with a
large margin should be easier to learn. We thus vary the
margin of the training data by removing training points
that are � close to the decision boundary.

Comparison to Other Kernels: To fairly compare
the accuracy of the different kernels, we tune
the hyperparameters of all kernels on a holdout
set. For RBF , the kernel width is chosen from
[0.001, 0.01, 0.1, 1, 10, 100]. For IDK, we consider
network structures [40], [40, 20], [4, 4, 4, 4]. Similarly, for
CS0, CS1, we choose between 1� 5 hidden layers.

Figure 1(left) shows the performance of the classifiers as
a function of the margin parameter. It can be seen that
our IDK kernel outperforms the other methods across all
margin values. It can also be seen that as the margin grows,
all methods improve, as expected.

Comparison to Random Features: Recall that our kernel
is based on a closed form solution of the integral Equation
6. An alternative to evaluating this integral is to sample
w vectors randomly, and numerically evaluate the integral
via an empirical average. This approach is similar to the
kitchen sinks of [15], and has the advantage of being solved
via a linear SVM (where the dimension is the number of
sampled features). Here we test this approach for different
numbers of random features. For this comparison, both our
closed form IDK and the random features use the correct
model structure. Results are shown in Figure 1(right). It
can be seen that the random features approach improves as
more features are added (note the logarithmic scale of the
x-axis) but there is still a gap between it and the closed form
IDK kernel.

5.2 Object Recognition Benchmarks

One of the great success stories of deep learning is the
task of object recognition [11]. Namely, labeling an image
with a set of categories (e.g., building, frog, paper clip).
Here we evaluate IDK on two such standard benchmarks.
We use the CIFAR-10 and STL-10 datasets, with the same
preprocessing as in [7].

For the IDK hyperparameters we test the structures
[4], [4, 4, 4, 4], [16], [32], [32, 16] and [32, 16, 4]. For both
CS0 and CS1, we test up to eight hidden layers. For RBF
we test widths of [0.01, 0.1, 1, 10, 100].

Results are reported in Table 1 where we also two ad-
ditional literature baselines, namely Sum Product Net-
works (SPN) [7] and Convolutional Kernels Networks
(CKN)[14]. On CIFAR-10 the CS1 outperforms IDK

• IDK works better than random features

w

↵(w)

w

A linear classifier
• Our classifier is a linear function of ↵(w)

• is a function. How do we optimize over it?↵(w)

• Recall the objective:

g(x,↵) =

Z
↵(w)f(x,w)dw = h↵, f(x, ·)i

• The subgradient is:

X

i

[1� yih↵, f(xi, ·)i]+ + Ck↵k22

@`

↵(w)
= �yif(xi,w) + C↵(w)

• So SGD will lead to: ↵(w) =
X

i

�if(xi,w)

The Kernel Trick
• can be expressed as:

• Still a function of w, but what we care about is:

↵(w) =
X

i

�if(xi,w)

g(↵) = h↵, f(x, ·)i =
X

i

�ihf(xi, ·), f(x, ·)i

K(x,x0) = hf(x, ·), f(x0, ·)i =
Z

f(x0,w)f(x,w)dw

• The kernel:

• If we can calculate it, learning becomes
tractable and convex!

↵(w)

g(x,↵)

A Kernel For Neural Nets
• A function

• Defined recursively:

x

f(x)

z1
z2

f(x,w)

zk = h(Wkzk�1)

z0 = x

• h is an activation function

f(x,w) = wL · zL�1

Calculating the Kernel
• We want:

K(x,x0) = hf(x, ·), f(x0, ·)i =
Z

f(x0,w)f(x,w)dw

• Need to integrate over all weights

• Surprisingly, it’s possible under some conditions:

• Activation function is the threshold.

• All to all connections

A key integral
• Denote the threshold function by

• We’ll make repeated use of the integral:

⇥(x)

H(v,v0
) =

Z
⇥(w · v)⇥(w · v0

)dw =

1

2

� 1

2⇡
arccos

v · v0

kvk2kv0k2

[Cho and Saul, NIPS 2009]

� =
�

2⇡

v v0

Activation turns into volume!

=

1

2

� 1

2⇡
arccos

v · v0

kvk2kv0k2

A Key Integral
• H depends only on norms and dot product

H(v,v0
) =

Z
⇥(w · v)⇥(w · v0

)dw =

1

2

� 1

2⇡
arccos

v · v0

kvk2kv0k2
=

1

2

� 1

2⇡
arccos

v · v0

kvk2kv0k

• For integral the dot products and norms will
also be integral.

• Define: J(k, l,m) =

1

2

� 1

2⇡
arccos

mp
kl

v,v0

Deep Improper Kernel
• Our integral is (for three layers):

K(x,x0) =

Z �
w

T
3 ⇥(W2⇥(W1x)

� �
w

T
3 ⇥(W2⇥(W1x

0)
�
dw3dW2dW1

• Recursively calculate:

V1,q(x,x
0) = HN1�q(x,x0)(0.5�H(x,x0))q.

K(x,x0) = VM,0(x,x
0)

Vi,j(x,x
0)

i = 1

i = 3
j = 1j = 5

Vn,q(x,x
0) =

Nn�1X

s=1

Nn�1X

s0=1

min{s,s0}X

k=[s+s0�Nn�1]+

r(s, s0, k)Vn�1,s+s0�2k(x,x
0)

See paper for definition

Key Ideas

010 1 10

• Discrete outputs

• Integrate over weights that
product these outputs

W
z2 = [0, 1, 0, . . . , 1, 0]

• Volume integral that looks a
lot like H(v,v0

) =

Z
⇥(w · v)⇥(w · v0

)dw =

1

2

� 1

2⇡
arccos

v · v0

kvk2kv0k2

• Use many symmetries, as a
result of independence of
weight distribution.

Generalization Bounds
• Large hypothesis space. Generalization?

• Generalization function of

• Suppose data generated from network

• Can be achieved with

k↵k2 B

w

↵(w)

w0

w0

↵ = �(w �w0)

Unbounded Norm!

Stable Solutions
• Often many networks that implement the

same rule.

• Sample complexity is then:

• Can also give dimension independent
bounds using margin.

• Exponential sample complexity expected,
since problem is NP hard (Daniely et al.,
2015)

w

↵(w)

w0

w

↵(w)

w0

R

O

✓
R�d

✏2

◆

Toy Experiments
• Compare our “improper deep kernel” to RBF

kernels, and two “infinite layer” kernels.Uri Heinemann, Roi Livni, Elad Eban, Gal Elidan, Amir Globerson

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Margin

Er
ro

r R
ed

uc
tio

n
ov

er
 R

BF

IDK
RBF
CS 0
CS 1

102 103 104

0.15

0.16

0.17

0.18

0.19

0.2

0.21

Number of Random Features
Er

ro
r

Random features
IDK

Figure 1: (left) Comparison of test prediction accuracy as a function of the margin for our kernel (IDK) and those of Choi and Saul
(CS0 and CS1) relative to the performance of the RBF on synthetic data generated from a network with two hidden layers. The y

axis shows accuracy advantage over RBF so that larger numbers correspond to larger reduction in error. Results are averaged over 700
repetitions. (right) Comparison of test prediction accuracy when using our IDK kernel to a numerical estimation of the kernel integral
using random features, as a function of the number of features used for estimation.

5.1 Synthetic Experiments

We start by considering a synthetic setting. Training
data is generated from a network with two hidden layers,
and a threshold activation function ⇥ (·), as in our kernel
derivation. The input to the network is two dimensional
and the number of hidden neurons is 40 and 20 for the first
and second layer (performance was not sensitive to these
settings). The weight of each unit is sampled uniformly
in the range [�1, 1] and normalized to 1. Inputs were
uniformly sampled form the two dimensional unit square.
Input samples were also required to have a balanced label
distribution, so that cases where one of the label probabili-
ties was below 0.4 were discarded.

Finally, our theoretical analysis predicts that data with a
large margin should be easier to learn. We thus vary the
margin of the training data by removing training points
that are � close to the decision boundary.

Comparison to Other Kernels: To fairly compare
the accuracy of the different kernels, we tune
the hyperparameters of all kernels on a holdout
set. For RBF , the kernel width is chosen from
[0.001, 0.01, 0.1, 1, 10, 100]. For IDK, we consider
network structures [40], [40, 20], [4, 4, 4, 4]. Similarly, for
CS0, CS1, we choose between 1� 5 hidden layers.

Figure 1(left) shows the performance of the classifiers as
a function of the margin parameter. It can be seen that
our IDK kernel outperforms the other methods across all
margin values. It can also be seen that as the margin grows,
all methods improve, as expected.

Comparison to Random Features: Recall that our kernel
is based on a closed form solution of the integral Equation
6. An alternative to evaluating this integral is to sample
w vectors randomly, and numerically evaluate the integral
via an empirical average. This approach is similar to the
kitchen sinks of [15], and has the advantage of being solved
via a linear SVM (where the dimension is the number of
sampled features). Here we test this approach for different
numbers of random features. For this comparison, both our
closed form IDK and the random features use the correct
model structure. Results are shown in Figure 1(right). It
can be seen that the random features approach improves as
more features are added (note the logarithmic scale of the
x-axis) but there is still a gap between it and the closed form
IDK kernel.

5.2 Object Recognition Benchmarks

One of the great success stories of deep learning is the
task of object recognition [11]. Namely, labeling an image
with a set of categories (e.g., building, frog, paper clip).
Here we evaluate IDK on two such standard benchmarks.
We use the CIFAR-10 and STL-10 datasets, with the same
preprocessing as in [7].

For the IDK hyperparameters we test the structures
[4], [4, 4, 4, 4], [16], [32], [32, 16] and [32, 16, 4]. For both
CS0 and CS1, we test up to eight hidden layers. For RBF
we test widths of [0.01, 0.1, 1, 10, 100].

Results are reported in Table 1 where we also two ad-
ditional literature baselines, namely Sum Product Net-
works (SPN) [7] and Convolutional Kernels Networks
(CKN)[14]. On CIFAR-10 the CS1 outperforms IDK

Random Features
• What if we just sample random models

K(x,x0) =

Z
f(x,w)f(x0,w)dw ⇡ 1

M

MX

i=1

f(x,wi)f(x
0,wi)Uri Heinemann, Roi Livni, Elad Eban, Gal Elidan, Amir Globerson

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Margin

Er
ro

r R
ed

uc
tio

n
ov

er
 R

BF

IDK
RBF
CS 0
CS 1

102 103 104

0.15

0.16

0.17

0.18

0.19

0.2

0.21

Number of Random Features

Er
ro

r

Random features
IDK

Figure 1: (left) Comparison of test prediction accuracy as a function of the margin for our kernel (IDK) and those of Choi and Saul
(CS0 and CS1) relative to the performance of the RBF on synthetic data generated from a network with two hidden layers. The y

axis shows accuracy advantage over RBF so that larger numbers correspond to larger reduction in error. Results are averaged over 700
repetitions. (right) Comparison of test prediction accuracy when using our IDK kernel to a numerical estimation of the kernel integral
using random features, as a function of the number of features used for estimation.

5.1 Synthetic Experiments

We start by considering a synthetic setting. Training
data is generated from a network with two hidden layers,
and a threshold activation function ⇥ (·), as in our kernel
derivation. The input to the network is two dimensional
and the number of hidden neurons is 40 and 20 for the first
and second layer (performance was not sensitive to these
settings). The weight of each unit is sampled uniformly
in the range [�1, 1] and normalized to 1. Inputs were
uniformly sampled form the two dimensional unit square.
Input samples were also required to have a balanced label
distribution, so that cases where one of the label probabili-
ties was below 0.4 were discarded.

Finally, our theoretical analysis predicts that data with a
large margin should be easier to learn. We thus vary the
margin of the training data by removing training points
that are � close to the decision boundary.

Comparison to Other Kernels: To fairly compare
the accuracy of the different kernels, we tune
the hyperparameters of all kernels on a holdout
set. For RBF , the kernel width is chosen from
[0.001, 0.01, 0.1, 1, 10, 100]. For IDK, we consider
network structures [40], [40, 20], [4, 4, 4, 4]. Similarly, for
CS0, CS1, we choose between 1� 5 hidden layers.

Figure 1(left) shows the performance of the classifiers as
a function of the margin parameter. It can be seen that
our IDK kernel outperforms the other methods across all
margin values. It can also be seen that as the margin grows,
all methods improve, as expected.

Comparison to Random Features: Recall that our kernel
is based on a closed form solution of the integral Equation
6. An alternative to evaluating this integral is to sample
w vectors randomly, and numerically evaluate the integral
via an empirical average. This approach is similar to the
kitchen sinks of [15], and has the advantage of being solved
via a linear SVM (where the dimension is the number of
sampled features). Here we test this approach for different
numbers of random features. For this comparison, both our
closed form IDK and the random features use the correct
model structure. Results are shown in Figure 1(right). It
can be seen that the random features approach improves as
more features are added (note the logarithmic scale of the
x-axis) but there is still a gap between it and the closed form
IDK kernel.

5.2 Object Recognition Benchmarks

One of the great success stories of deep learning is the
task of object recognition [11]. Namely, labeling an image
with a set of categories (e.g., building, frog, paper clip).
Here we evaluate IDK on two such standard benchmarks.
We use the CIFAR-10 and STL-10 datasets, with the same
preprocessing as in [7].

For the IDK hyperparameters we test the structures
[4], [4, 4, 4, 4], [16], [32], [32, 16] and [32, 16, 4]. For both
CS0 and CS1, we test up to eight hidden layers. For RBF
we test widths of [0.01, 0.1, 1, 10, 100].

Results are reported in Table 1 where we also two ad-
ditional literature baselines, namely Sum Product Net-
works (SPN) [7] and Convolutional Kernels Networks
(CKN)[14]. On CIFAR-10 the CS1 outperforms IDK

Vision Experiments
• Evaluate on two image datasets: CIFAR and STL-10

• Compared several kernel and non-kernel based
methods Improper Deep Kernels

IDK RBF CS0 CS1 SPN CKN
CIFAR-10 81.8 81.8 81.63 82.49 83.96 82.18
STL-10 62.6 61.7 62.3 52 62.3 62.32

Table 1: Classification accuracy (in %) for the CIFAR-10 and STL-10 benchmarks. Compared are our IDK kernel, as well as the
CS0,CS1 and RBF kernels, Sum Product Networks (SPN) [7], and Convolutional Kernels Networks (CKN)[14].

by 0.7%, and SPN outperforms all methods. For STL-10
CS1 performs quite badly, and the IDK method outper-
forms the other methods, although by a small margin.

6 Discussion

We presented a method for learning a class that extends
deep neural networks. Learning in the extended class is
equivalent to solving an SVM with the kernel derived in
Theorem 3.1. The neural nets we consider use a threshold
activation function, and a fully connected architecture with
different parameters for each weight. In this case the
outputs of hidden layers are binary, a fact which lets us
enumerate over the possible outputs and use symmetries
in the integral. Furthermore, the fact that each weight
has its own parameter further decouples the integral, and
facilitates our recursive close form kernel.

Modern deep learning architectures are different from our
architecture in several respects. First, they typically use a
rectified linear unit (ReLU) for activation (e.g., see [12]),
which yields better models.5 It is not clear whether our
integral can be solved in closed form for ReLUs, as we
can no longer use the discrete nature of the outputs. A
second difference is the use of convolutional networks,
which essentially tie different weights in the network. Such
tying does complicate our recursive derivation, and it is not
clear whether it will allow a closed form solution. Finally,
a commonly used component is max-pooling, which again
changes the structure of the integral. An exciting avenue
for future research is to study the kernel resulting from
these three components, and seeing whether it can be
evaluated in closed-form or approximated.

As mentioned in Section 5.1, it is natural to try and
evaluate the kernel numerically by sampling a finite set of
parameters w, and approximating the integral in Equation
6 as a finite average over these. As our experiments show,
this does not perform as well as using our closed form
expression for the integral, even with a large number of
random features. However, for cases where the integral
cannot be found in closed form, there may be intermediate
versions that combine partial closed form and sampling.
This may have interesting algorithmic implications, since
random features have recently been shown to result in fast
kernel based learning algorithms [5].

5Note that it is not clear whether this is due to improved
optimization or better modeling.

Recent work [13] has shown that replacing the activation
function with a quadratic unit results in improper learn-
ing that is poly time both algorithmically and in sample
complexity. It would be interesting to study such activation
functions with our kernel approach.

Another interesting recent work employing kernels is [14].
However, there the focus is on explicitly constructing a
kernel that has certain invariances. Our empirical results
show comparable results to [14].

The algorithm we present is polynomial in the number
of samples, and globally optimal due to convexity. Our
analysis in Section 4 shows that the cost of convexity is
an increase in sample complexity. Namely, to guarantee
finding a model that generalizes as well as the original
neural architecture, we need O(LN

) samples. This is
perhaps not unexpected given the recently proved hardness
of improper learning for related hypothesis classes such as
intersection of hyperplanes [6]. As we also show in 4, the
input dimension d can be replaced with the inverse margin
1

�2 . Again, exponential dependence on margin for such
problems is manifested in related works [1, 10, 19, 13].

The key open problem in this context, and indeed for
the deep learning field, is to understand what alternative
distributional assumptions may lead to both algorithmic
tractability and polynomial sample complexity. Our kernel
approach attains tractability at the cost of increased sample
complexity. It will be very interesting to study which
assumptions will improve its sample complexity.

Acknowledgments: This work was supported by the ISF Centers
of Excellence grant 1789/11, by the Intel Collaborative Research
Institute for Computational Intelligence (ICRI- CI), and by a
Google Research Award. Roi Livni is a recipient of the Google
Europe Fellowship in Learning Theory, and this research is
supported in part by this Fellowship.

References

[1] Rosa Arriaga, Santosh Vempala, et al. An algorithmic
theory of learning: Robust concepts and random
projection. In Foundations of Computer Science,
pages 616–623. IEEE, 1999.

[2] Maria-Florina Balcan, Avrim Blum, and Santosh
Vempala. Kernels as features: On kernels, margins,
and low-dimensional mappings. Machine Learning,
65(1):79–94, 2006.

A Bayesian Interpretation
• Recall: K(x,x0) =

Z
f(x,w)f(x0,w)µ(w)dw

K(x,x0) =

Z
f(x|w)f(x0|w)µ(w)dw

• Assume f is a conditional density:

• Then K is the probability that and were
generated assuming they are IID given .

x

x

0

w

Kernels in Deep Learning
• Early work by Neal on Bayesian neural networks

• Continuous Neural Networks (Le Roux and Bengio,
2007),Kernels for Deep Learning (Cho and Saul, 2009),
Convex NN (Bach 2015): consider continuum of hidden
units.

• Recursively constructed kernels (Daniely, Frostig and
Singer, 2016). Relations to initialization.

• Kernels and invariance - Mairal et al. Learn neural nets
to approximate an invariant kernel.

Diffusion Estimation
• Consider the problem of predicting the

spread of activity in a network

• Many generative models exist
(independent cascade, threshold etc).

• Can use an improper approach to integrate
over these.

• Empirically successful (Rosenfeld, Nitzan, G.,
WSDM 16).

Influence estimation:

seed set influence

sample set

No tricks…
• Our closed form assumed: threshold

activation, full connectivity, and no
parameter sharing

• Real networks use: Relu activation
convolutions and pooling

• We can do some of these in some
restricted cases, but general case
seems hard

• What can we do?

Sampling
• Recall: K(x,x0) =

Z
f(x0,w)f(x,w)µ(w)dw

• Recast as:

• 1st try: sample as many W as you need to
approximate the kernel

• But need to do this every sample.

• Our end goal is learning. How many samples do
we need for that?

K(x,x0) = E [f(x,W)f(x0,W)]

Optimal Sampling
• Can we achieve the same guarantees of closed

form kernel, with sampling?

• Yes (for quadratic loss)!

• With closed form kernel need examples to
reach accurate classifier

• We achieve the same sample complexity by
sampling weights.

O

✓
1

✏2

◆

✏

O

✓
1

✏4

◆

Key Ideas
• Objective is:

• Then:

• Assume at time t: ↵(w) =
tX

j=0

�jf(xj ,w)

X✓
yi �

Z

w
f(xi,w)↵(w)µ(w)dw

◆2

sample Unbiased!

• Gradient is:
✓
yi �

Z

w
f(xi,w)↵(w)µ(w)dw

◆
f(xi,w)

Z
f(xi,w)↵(w)µ(w)dw =

tX

j=0

�j

Z
f(xj ,w)f(xi,w)↵(w)µ(w)dw

Double Sampling

• Sample proportional to |�j |j1, . . . , jm

• Sample from w1, . . . ,wm µ(w)

• Estimate:
Z

w
f(xi,w)↵(w)dw =

1

m

mX

k=1

�jkf(xjk ,wk)f(xi,wk)

• Unbiased estimate.

Z
f(xi,w)↵(w)µ(w)dw =

tX

j=0

�j

Z
f(xj ,w)f(xi,w)↵(w)µ(w)dw

Shrinking Gradient Algorithm
• Similar to SGD, but with:

• An unbiased estimate of the gradient as above

• Shrinking the weights if estimate gets too large

• Detailed analysis (using online stochastic
optimization tools) provides the sample complexity
bound.

�

Related Work
• Rahimi and Recht (2007,2008) showed that random

features could approximate a kernel.

• They obtain sample complexity bounds for a more
restricted hypothesis class than ours.

• Dai et al. (2014) introduce a doubly stochastic
algorithm with sample complexity. O(

1

✏4
)

Example
• On synthetic data from Dai et al.

Multi Focal Attention
• Attention models have become

widespread in machine vision

• Commonly one focus of attention

• Easy to optimize with soft-max

Neural Image Caption Generation with Visual Attention

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

two variants: a “hard” attention mechanism and a “soft”
attention mechanism. We also show how one advantage of
including attention is the ability to visualize what the model
“sees”. Encouraged by recent advances in caption genera-
tion and inspired by recent success in employing attention
in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
gate models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:
• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work
In this section we provide relevant background on previous
work on image caption generation and attention. Recently,
several methods have been proposed for generating image
descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
only show the image to the RNN at the beginning. Along

• What is the multi-focal extension?

• How is soft-max extended?

Entity Linking
Caroline was the last, best hope for the family, which
has had members in the Senate since Jack was
elected in 1952. Following him: RFK and Ted joined
the Senate, both of them with presidential dreams that
didn't materialize (because of Bobby's assassination
and Teddy's being not as beloved as Bobby and Jack).

Multi-Focal Attention
• In ACL 16, we provide a soft multi-focal attention

mechanism.

• Nicely generalizes soft-max.

Sentence with mention Entity Attn. focus mentions
Caroline has dropped her name base: Caroline (given name) Democratic Party
from consideration for the seat attn: Caroline Kennedy New York
that Hillary has left vacant. Robert Kennedy
Chris Johnson had just 13 tackles last base: Chris Johnson (running back) Oakland Raiders
season, and the Raiders currently have attn: Chris Johnson (cornerback) Oakland Raiders
have 11 defensive backs on their roster. Oakland Raiders

Table 5: Examples of gains by our algorithm, showing the resolved mention, the entities it resolves to in the baseline and the
attention models, and the mentions in the document that are attended to (here K = 3). In the first example, the baseline labels
the mention “Caroline” as the given name, whereas the attention model attends to mentions that identify it as the diplomat
Caroline Kennedy. In the second example, both models resolve “Chris Johnson” to football players, but the attention model
finds the correct one by attending to three mentions of his former team, the Oakland Raiders.

the corresponding Lagrangian by L(u,�,↵). We
will show the result by using the dual g(�,↵) =

maxu L(u,�,↵) and the fact that the solution of
Eq. (6) is min�,↵ g(�,↵).

Maximizing L with respect to ui yields:

ui = e�zi�1+����↵i (13)

From this we can obtain the convex dual g(�,↵),
and after minimizing over � we arrive at:

g(↵) = K��1

log

P
i e

�zi��↵i

K
+

X

i

↵i (14)

Next, we maximize the above with respect to ↵ �
0. Introduce Lagrange multipliers �i for the con-
straint ↵i � 0 and the corresponding Lagrangian
¯L(↵, �). We propose a solution for ↵, � and show
that it satisfies the KKT conditions. Minimizing ¯L
wrt ↵ we can characterize the optimal � as:

�i = �K
e�zi��↵i

P
i e

�zi��↵i
+ 1 (15)

Set ↵i as follows:

↵i =

(
zi � 1

� log

Pn
i=R+1

e�zi

K�R 1 i R

0 R < i n
(16)

It can now be confirmed that the ↵, � from Equa-
tions 16 and 15 satisfy the KKT conditions. Plug-
ging the ↵ value into g(↵) yields the solution
in the proposition. Differentiability follows from
Nesterov (2005) and the gradient is ui in Eq. (13).

References

[Alhelbawy and Gaizauskas2014] Ayman Alhelbawy
and Robert Gaizauskas. 2014. Graph ranking

for collective named entity disambiguation. In
Proc. 52nd Annual Meeting of the Association for
Computational Linguistics, ACL 14, pages 75–80.

[Bahdanau et al.2014] Dzmitry Bahdanau, Kyunghyun
Cho, and Yoshua Bengio. 2014. Neural machine
translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.

[Bollacker et al.2008] Kurt D. Bollacker, Colin Evans,
Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: a collaboratively created graph
database for structuring human knowledge. In Proc.
of the 2008 ACM SIGMOD International Confer-
ence on Management of Data, pages 1247–1250.
ACM.

[Bunescu and Pasca2006] Razvan C. Bunescu and Mar-
ius Pasca. 2006. Using encyclopedic knowledge for
named entity disambiguation. In Proc. 11th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, EACL 06.

[Chen and Manning2014] Danqi Chen and Christo-
pher D Manning. 2014. A fast and accurate de-
pendency parser using neural networks. In EMNLP,
pages 740–750.

[Cheng and Roth2013] Xiao Cheng and Dan Roth.
2013. Relational inference for wikification. In
EMNLP Conference, pages 1787–1796.

[Chisholm and Hachey2015] Andrew Chisholm and
Ben Hachey. 2015. Entity disambiguation with
web links. Transactions of the Association for
Computational Linguistics, 3:145–156.

[Cucerzan2007] Silviu Cucerzan. 2007. Large-scale
named entity disambiguation based on Wikipedia
data. In Proc. of EMNLP-CoNLL 2007, pages 708–
716.

[Cucerzan2012] Silviu Cucerzan. 2012. The MSR sys-
tem for entity linking at TAC 2012. In In Proc. of
the Text Analysis Conference, TAC 12.

[Dredze et al.2010] Mark Dredze, Paul McNamee,
Delip Rao, Adam Gerber, and Tim Finin. 2010.

Reasoning About
Conditional Probabilities

• Given features X, what is
• Typically hard to estimate directly
• Models (e.g., logistic regression) often used,

but hard to relate to real probabilities
• Given statistics as we have, we can reason

about range of values for conditionals

p(Y |X1, . . . , Xn)

Marginals as Constraints
• Assume we know the following marginals:

Distributions that
agree with µ

• These inform us about the real distribution .p⇤

p(y = 1|x) = 0.7

p(y = 1|x) = 0.1

p⇤

Bounds on Conditionals
• So what can we say about ?

• It has a minimum and maximum value
• When evidence for y=1 is strong, we expect a

large minimum
• Can we calculate it?

p(y = 1|x)

Distributions that
agree with µ

p(y = 1|x) = 0.7

p(y = 1|x) = 0.1

p⇤

Bounds on Conditionals
• We study bounds on probabilities given:

• We can give results for:

• Useful for semi-supervised learning, where goal is
to label unlabelled data with high confidence.

min p(x, y),max p(x, y),min p(y|x)

Min Conditional
• Define:

min p(y|x) = f(x, y)

f(x, y) +
P

y minij µij(xi, xj , y)

• Then we can show that if (i,j) define a tree then:

f(x, y) = min p(x, y) =
X

i

(1� di)µi(xi, y) +
X

ij

µij(xi, xj , y)

• As expected: Large for y with close to deterministic
relations to x, and other y less so.

Part of Speech Tagging
• Assign POS tags to sentence:

John hit the ball
N V D N

• Use pairwise statistics on words and word-tag pairs.

x
y

Summary
• Discussed:

• Improper learning with kernels

• Closed and non-closed form approaches

• Multi Focal Attention

• Robust reasoning about conditionals

