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Introduction

I Given a target probability measure (distribution) π on
(X,B(X)), we would like to obtain exact samples from π.

I Some methodology: inverse transform, special relationships,
rejection sampling.

I In many practical situations, none of the above are suitable.
I Markov chain Monte Carlo: define a Markov kernel P with

stationary distribution π
I One can obtain samples whose asymptotic distribution is π.

I In the 90s the ability to sample exactly from the stationary
distribution of a Markov chain was investigated.
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Sampling from the stationary distribution

I Asmussen et al. (1992) investigated methods to sample from
the stationary distribution of a Markov chain.

I These methods were prohibitively expensive to implement on
general-state spaces.

I Propp and Wilson (1996) proposed an alternative method:
Coupling From The Past (CFTP).

I This has had notable successes on discrete state spaces.

I Murdoch and Green (1998) proposed a CFTP method for
general state spaces: the multigamma coupler.

I One of the algorithms we propose is a multigamma coupler.
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Structure of the talk

I We will overview, for a Markov kernel P with stationary
distribution π,

I regeneration and the split chain,
I mixture representations of π,
I perfect simulation.

I We will then discuss the special case where P is intractable
but admits a singleton atom and defines a uniformly ergodic
Markov chain.

I Solutions to Bernoulli factory problems provide
implementations of perfect simulation in this context.

I We then discuss how one can introduce an artificial singleton
atom, as in Brockwell and Kadane (2005).

I Finally, we use the methodology to sample from a
Feynman–Kac path measure.

4 / 47



Motivation

I The primary methodology we propose is for uniformly ergodic
Markov chains.

I However, the transition kernel P can be intractable in the
sense that we cannot compute, e.g., p(x , y) where

P(x ,A) =

ˆ
A
p(x , y)dy , A ∈ B(X), x /∈ A.

I There is no barrier, e.g., to letting P be an iterate of another
kernel.

I In our primary example the Markov kernel is intractable but
“almost” a perfect sampler.

I Of course, there can be difficulties in applying the method,
which we will discuss.
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Primary example: Feynman–Kac path measures
I We consider a generic discrete-time Feynman–Kac model with

time horizon n.
I Let (Z,B(Z)) be a measurable space and define

I a probability measure µ : B(Z)→ [0, 1],
I some Markov kernels Mp : Z× B(Z)→ [0, 1] for

p ∈ {2, . . . , n} and
I non-negative B(Z)-measurable functions Gp : Z→ R+ for

p ∈ {1, . . . , n}.
I We define for any p ∈ {1, . . . , n}, the measure γp by

γp(A) :=

ˆ
A

 p∏
q=1

Gq(zq)

µ(dz1)

p∏
q=2

Mq(zq−1, dzq), A ∈ B(Zp),

and its associated probability measure πp := γp(Zp)−1γp.
I With X := Zn the Feynman–Kac path measure of interest is

the probability measure π := πn on B(X).
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Hidden Markov models

I One direct application is for inferring the distribution of the
latent variables in a hidden Markov model.

I Here µ andM := (Mp)p∈{2,...,n} determine the unconditional
distribution of the latent variables.

I G := (Gp)p∈{1,...,n} encode the probability densities of the
observed data, i.e.,

Gp(xp) = g(xp, yp),

where (y1, . . . , yn) is the sequence of observed data at the
times 1, . . . , n.
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Sequential Monte Carlo

I Expressing π using this Feynman–Kac formalism has
immediate methodological consequences.

I One can approximate π(f ) :=
´
X f (x)π(dx) using SMC or

particle filtering methods.
I The following algorithm is a particle filter.
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A particle filter

1. Simulate ζ i
1 ∼ µ for i ∈ {1, . . . ,N}.

2. For p = 2, . . . , n:
I For each i ∈ {1, . . . ,N}:

2.1 Simulate Ai
p−1 ∼ C

(
Gp−1(ζ

1
p−1), . . . ,Gp−1(ζ

N
p−1)

)
.

2.2 Simulate ζ i
p ∼ Mp(ζ

Ai
p−1

p−1 , ·).

3. Set V = (ζ11 , . . . , ζ
N
n ,A

1
1, . . . ,A

N
n−1).

I Here C denotes a categorical distribution, i.e.

Pr(Ai
p−1 = k) =

Gp−1(ζk
p−1)∑N

j=1 Gp−1(ζ j
p−1)

.
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Motivation for perfect simulation

I Following Andrieu et al. (2010), for any k ∈ {1, . . . ,N}, we
define the ancestral lineage Bk to be the {1, . . . ,N}n-valued
random variable satisfying Bk

n := k and Bk
p := A

Bk
p+1

p .
I The random variable

ζk := (ζ
Bk

1
1 , . . . , ζ

Bk
n

n )

is then a path taking values in X.
I Let QN be the probability measure associated with the path
ζK chosen by tracing an ancestral line after picking K with

Pr (K = k) =
Gn(ζk

n )∑N
k=1 Gn(ζ j

n)
.

I How close is QN to π?
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Hope...

Proposition
Assume there exists B <∞ such that for each p ∈ {1, . . . , n},
0 < Gp(zp) < B for all zp ∈ Z. Then there exists F <∞ such that
for any N ≥ 2,

sup
x∈X

π(dx)

QN(dx)
≤
(
1 +

F
N

)n

.

I Great!
I Can we make these samples perfect somehow?
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Iterated Conditional SMC

I This is a Markov kernel, defined by running a conditional SMC
algorithm with a fixed path, followed by picking a new path.

PN(x ,A) :=

ˆ
VN

Q̄N
x (dv)QN

v (A), x ∈ X,A ∈ B(X).

I Q̄N
x is the probability measure associated with the random

variable V produced by conditional SMC with fixed path x .
I QN

v is the probability measure associated with the path ζK

chosen by tracing an ancestral line after picking K with

Pr (K = k) =
Gn(ζk

n )∑N
k=1 Gn(ζ j

n)
.

I This is a reversible, π-invariant Markov kernel (Andrieu et al.,
2010).
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Uniform ergodicity of i-cSMC

I This Markov kernel has been studied in detail in Chopin and
Singh (2013), Andrieu et al. (2013) and Lindsten et al. (2014).

I If assume π-essential boundedness of each Gp, then

PN(x , ·) ≥ εNπ(·),

where limN→∞ εN = 1.
I Quantitative bounds provided in Andrieu et al. (2013) and

Lindsten et al. (2014) can be used to bound εN under various
assumptions.
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Remarks

I In Andrieu et al. (2012), a perfect sampling method is
proposed where the mechanism governing particle offspring is
fundamentally changed from selection with a constant
population size at each time to stochastic branching.

I Computational guarantees are yet to be established.

I The only other perfect sampling method on a general state
space is rejection in O(exp(n)) time.

I Some applications of our methodology are presented in the
paper on arXiv, I will cover only the methodology here.
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Notation
I Recall that π is a probability measure on (X,B(X)).
I Let X := (Xn)n≥1 be a time-homogeneous, π-irreducible,

Harris recurrent Markov chain with π-invariant transition
kernel P , i.e.,

P(x ,A) = Pr(Xn ∈ A | Xn−1 = x).

I We will use the notation, where µ : B(X)→ [0, 1],

µP(A) :=

ˆ
X
µ(dx)P(x ,A), A ∈ B(X),

and for n ∈ N,

Pn(x ,A) :=

ˆ
X
P(x , dy)Pn−1(y ,A).

I We assume we can sample from P(x , ·) for any x ∈ X.
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Atoms

I The set α is a proper atom for P is there exists a probability
measure µ such that

P(x ,A) = µ(A), x ∈ α,A ∈ B(X).

I A proper atom is accessible if π(α) > 0 so that (ind. of X1)

Pr

∑
n≥1

I(Xn ∈ α) =∞

 = 1.

I Intuition: when a proper atom exists, the Markov chain
occasionally visits α, at which point it regenerates.

I X can then be split into independent “tours”.
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The split chain

I On general state spaces, proper atoms are not guaranteed to
exist.

I A key theoretical development was the split chain (Athreya
and Ney, 1978; Nummelin, 1978).

I The key assumption is that P satisfies a minorization condition

P(x , ·) ≥ s(x)ν(·),

for some function s with π(s) =
´
X s(x)π(dx) > 0 and a

probability measure ν.
I This is a bivariate Markov chain X̃ν,s = (X̃ (ν,s)

n )n≥1 evolving
on X× {0, 1} whose first coordinate has identical law to X.
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The split chain
I When the minorization P(x , ·) ≥ s(x)ν(·) holds we can write

P(x , ·) = s(x)ν(·) + [1− s(x)]Rν,s(x , ·)

where for s(x) > 0, the residual kernel is

Rν,s(x , ·) :=
P(x , ·)− s(x)ν(·)

1− s(x)
.

I We then define P̃ as

P̃(x , ρ; dy , %) := {I(ρ = 1)ν(dy) + I(ρ = 0)Rν,s(x ,dy)} s(y)%[1−s(y)]1−%,

and we can see that P̃(x , 1; ·) = ν̃ν,s(·) where

ν̃ν,s(dy , %) := ν(dy)s(y)%[1− s(y)]1−%.

I That is, X× {1} is a proper atom for P̃ .
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The split chain

I Since the law of the first coordinate of X̃ν,s is identical to X
we will write X̃ν,s := (Xn, ρ

(ν,s)
n )n≥1.

I This emphasizes that it is the regeneration indicators ρ(ν,s)
n

that are affected by ν and s.
I We can call the times τ such that ρ(ν,s)

τ = 1 the regeneration
times.

I We can think of Xτ as being the sample just before
regeneration, since Xτ+1|(ρ(ν,s)

τ = 1) ∼ ν.
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Simulating the split chain

I There are two relatively simple ways.
I The first is the “direct approach” using P̃ when one can

sample from ν and Rν,s and flip an s(x)-coin.
I The second involves simulating X using P and then imputing

the values of (ρ
(ν,s)
n )n≥1, using

Pr
(
ρ

(ν,s)
n−1 = 1 | Xn−1 = xn−1,Xn = xn

)
= s(xn−1)

dν(·)
dP(xn−1, ·)

(xn),

as observed in Mykland et al. (1995).
I In general, it may not be possible to sample from ν or access

the Radon–Nikodym derivative above.
I It may not be easy to detect regenerations!
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General mixture representation
I Perfect simulation algorithms can be motivated using a

mixture representation of π (Asmussen et al., 1992; Hobert
and Robert, 2004; Hobert et al., 2006)

π(A) =
∑
n≥1

Pν,s(τν,s ≥ n)

Eν,s(τν,s)
Pν,s(Xn ∈ A | τν,s ≥ n),

where A ∈ B(X), τν,s := inf{n ≥ 1 : ρ
(ν,s)
n = 1} is the first

regeneration time and Pν,s and Eν,s are probabilities and
expectations w.r.t. the law of X̃ν,s when X1 ∼ ν.

I Asmussen et al. (1992) observed this, but the expected
computational time of the algorithm is not finite.

I Implementation requires use of a Bernoulli factory, and
inspired Keane and O’Brien (1994).

I See also Blanchet and Meng (2007) and Flegal and Herbei
(2012).
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A special case

I We consider now a special case where s = ε > 0 is a constant
function.

I This implies that X is uniformly ergodic.

I The same general mixture representation then yields

π(A) =
∑
n≥1

Pν,ε(τν,ε = n)νRn−1
ν,ε (A)

=
∑
n≥1

ε(1− ε)n−1νRn−1
ν,ε (A).

I This mixture representation was highlighted in Hobert and
Robert (2004).

I Key observation (in this special case): the sample just prior to
regeneration, Xτν,ε , is an exact sample from π.
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Two algorithms

I Algorithm 1: simulate the split chain X̃ν,ε, imputing the
regeneration indicators using Mykland et al. (1995):

Pr
(
ρ

(ν,ε)
n−1 = 1 | Xn−1 = xn−1,Xn = xn

)
= ε

dν(·)
dP(xn−1, ·)

(xn).

I We can stop as soon as ρn−1 = 1 for some n ≥ 1 and we then
output Xn−1.

I Algorithm 2: simulate N ∼ Geometric(ε), and Y ∼ νRN−1
ν,ε .

I This is the multigamma coupler of Murdoch and Green (1998),
which can also be validated using a CFTP argument.

I Problem: how can we (in general)
I calculate dν(·)/dP(x , ·), or
I simulate from Rν,ε(x , ·)?

23 / 47



Two algorithms

I Algorithm 1: simulate the split chain X̃ν,ε, imputing the
regeneration indicators using Mykland et al. (1995):

Pr
(
ρ

(ν,ε)
n−1 = 1 | Xn−1 = xn−1,Xn = xn

)
= ε

dν(·)
dP(xn−1, ·)

(xn).

I We can stop as soon as ρn−1 = 1 for some n ≥ 1 and we then
output Xn−1.

I Algorithm 2: simulate N ∼ Geometric(ε), and Y ∼ νRN−1
ν,ε .

I This is the multigamma coupler of Murdoch and Green (1998),
which can also be validated using a CFTP argument.

I Problem: how can we (in general)
I calculate dν(·)/dP(x , ·), or
I simulate from Rν,ε(x , ·)?

23 / 47



Outline

Introduction

Regeneration and perfect simulation

Singleton atoms and Bernoulli factories

Introduction of an artificial singleton atom

Perfect simulation from a Feynman–Kac path measure

Remarks

23 / 47



Singleton atoms

I We will now assume that P admits a proper, accessible,
singleton atom α = {a}.

I We let p(x) := P(x , α), and assume that

p := inf
x∈X

p(x) ≥ β > 0,

for some known constant β.
I p ≥ β > 0 implies uniform ergodicity.
I Singleton atoms are rare.
I Later, we will introduce a generic modification of P to

construct a Markov kernel P̌ for which this does occur.
I It is important that we can flip a p(x)-coin for any x ∈ X.
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Bernoulli factories

I Perfect simulation in this context hinges upon our ability to
solve a Bernoulli factory.

I Given the ability to flip a p-coin, can you flip an f (p)-coin?

I Existence of Bernoulli factories is shown in Keane and O’Brien
(1994), but the proof is not constructive.

I Bernoulli factory algorithms have been provided in (Nacu and
Peres, 2005; Łatuszyński et al., 2011; Thomas and Blanchet,
2011; Flegal and Herbei, 2012; Huber, 2014).

I Most attention is paid to the Bernoulli factory for f satisfying

f (p) =

{
cp cp ≤ γ,
? otherwise.

for a given c > 0 and γ ∈ (0, 1).

25 / 47



Perfect simulation algorithms

I These will all involve choosing some β ∈ (0, p] and ε ∈ (0, β)

and, simulation of the split chain X̃ν,ε, where

ν = δa.

I Note that this is a bit unnatural since a more obvious
regeneration scheme would be to use s(x) = P(x , α).

I This natural approach does not lead to efficient perfect
simulation algorithms.

I We will, however, have an interest in Ra,p(x , ·) later.

I The only requirement will be that we know β ≤ p.
I We suggest to choose ε = β/2 (with justification to follow).
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Imputation-based algorithm

1. Set X1 = a.
2. For n = 2, 3, . . .:

2.1 Simulate Xn ∼ P(Xn−1, ·).
2.2 If Xn = a, sample ρ(a,ε)

n−1 ∼ Bernoulli(ε/p(Xn−1)).
Otherwise, set ρ(a,ε)

n−1 = 0.
2.3 If ρ(a,ε)

n = 1, stop and output Xn−1.

I The important part is that

Pr
(
ρ

(a,ε)
n−1 = 1 | Xn−1 = xn−1,Xn = xn

)
= ε

I(xn = a)

P(xn−1, α)
.

I We are all set if we can flip an (ε/p)-coin for arbitrary p > ε.
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Multigamma coupler I

1. Sample N ∼ Geometric(ε).
2. Set X1 = a.
3. For n = 2, 3, . . . ,N:

3.1 Sample Xn ∼ Ra,ε(Xn−1, ·).

4. Output XN .

I Great, but how can I sample from Ra,ε(Xn−1, ·)?
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Multigamma coupler II

I We need to sample from

Ra,ε(x , ·) =
P(x , ·)− εδa(·)

1− ε

=
1− p(x)

1− ε
Ra,p(x , ·) +

p(x)− ε
1− ε

δa(·).

I So with probability [1− p(x)]/[1− ε] we simulate from
Ra,p(x , ·), otherwise output a.

I We can trivially sample from Ra,p(x , ·) by rejection:

Ra,p(x , dy) =
P(x , dy)I(y 6= a)

1− p(x)
.
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Multigamma coupler III

1. Sample N ∼ Geometric(ε).
2. Set X1 = a.
3. For n = 2, 3, . . . ,N:

3.1 Simulate Yn ∼ Bernoulli([1− p(Xn−1)] / [1− ε]).
3.2 If Yn = 1, sample Xn ∼ Ra,p(Xn−1, ·). Otherwise set Xn = a.

4. Output XN .

I We are all set if we can flip a ([1− p]/[1− ε])-coin for
arbitrary p > ε.
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Bernoulli factory algorithms

I The solution for f (p) = [1− p]/[1− ε] is solved by standard
algorithms.

I For f (p) = ε/p we can flip an f (p)-coin by:
I Simulating K ∼ Geometric(ε).
I Simulating a [(1− p)/(1− ε)]K−1-coin.

I From the Maclaurin series for 1/[1− (1− p)] = 1/p:

ε

p
= ε

∞∑
k=1

(1− p)k−1 =
∞∑

k=1

ε(1− ε)k−1
(
1− p
1− ε

)k−1
.

I In practice, one can “stop early” if any of the
(1− p)/(1− ε)-coin flips are 0.
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Cost of perfect simulation

Proposition
Assume β ≤ 0.5 and ε = β/2. Then the expected number of
simulations from P order to obtain a perfect sample using either
the imputation approach or the multigamma coupler is 12ε−1.

I Expected number of (1− p)/(1− ε)-coin flips required to
simulate a single tour of the split chain X̃a,ε is ε−1 − 1.

I Expected number of samples from P to additionally simulate
the tour itself is ε−1.

I With β ≤ 0.5, ε = β/2, and using the Bernoulli factory
algorithm of Huber (2014), the expected number of p-coin flips
to produce a (1− p)/(1− ε)-coin flip is bounded above by 11.
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Artificial singleton atoms

I We propose to use generic methodology along the lines of
Brockwell and Kadane (2005).

I That is, we introduce a new transition kernel P̌ that evolves
on X̌ := X ∪ α = X ∪ {a}.

I We require that it is Harris recurrent and irreducible with
unique invariant probability measure π̌ satisfying, for some
k ∈ (0, 1),

π̌(A) = kπ(A ∩ X) + (1− k)I(a ∈ A), A ∈ B(X̌).

I When this holds, it follows that π̌(A) = kπ(A) for any
A ∈ B(X).

I We denote by X̌ := (X̌n)n≥1 the Markov chain with transition
kernel P̌ .
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Definition of π̌

I In many applications π admits a density w.r.t. to a dominating
measure λ on X and we can compute an unnormalized version
γ(x) of this density.

I In this case, we can choose a b > 0 and define an
unnormalized version γ̌(x) of the density of π̌ w.r.t. the
dominating measure λ+ δa on X̌ through

γ̌(x) := I(x ∈ X)γ(x) + I(x = a)b.

I It follows that π̌(dx) = γ̌(x) {λ (dx) + δa (dx)} /γ̌(X) satisfies
our requirements with k = {1 + b/γ(X)}−1.
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Comments on the construction

I In practice, we would like π̌({a}) to be not too close to either
0 or 1 so

I P̌(x , {a}) can be fairly large, but
I perfect samples from π̌ are often X-valued.

I An estimate of γ(X) is necessary to be able to choose an
appropriate value of b.
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A simple example

I We define, for some w ∈ (0, 1) and transition kernels Π1 and
Π2,

P̌(x , dy) := wP1(x , dy) + (1− w)P2(x , dy),

where P1(x , dy) = I(x ∈ X)P(x , dy) + I(x = a)δa(dy) and P2
allows the chain to move between X and {a}.

I One choice of P2, suggested by Brockwell and Kadane (2005),
is a Metropolis–Hastings kernel with proposal

Qx (dy) = I(x ∈ X)δa (dy) + I(x = a)µ (dy) ,

where µ is a “re-entry” distribution.
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Useful results

Proposition
Assume that a generic Markov kernel P̌ : X̌× B(X̌)→ [0, 1]
satisfies P̌(a,X) > 0 and for some w > 0,

P̌(x ,A) ≥ wP(x ,A), x ∈ X,A ∈ B(X).

Then X being uniformly ergodic implies that X̌ is uniformly ergodic
(although the converse does not hold).

I Moreover, the existence of a β > 0 such that p ≥ β is
guaranteed in general for uniformly ergodic X̌.

I This requires one to consider a m-step transition kernel since
for some m ∈ N and d > 0,

inf
x∈X̌

P̌m(x , {a}) ≥ d .
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The problem & solution

I The goal is to use the iterated conditional SMC Markov kernel
to sample from π, since

PN(x , ·) ≥ εNπ(·).

I The problem(s):

I We cannot evaluate εN
dπ(·)

dPN(x,·) pointwise.
I We cannot sample according to ν (which is π in this case!) or

the residual kernel Rπ,εN .
I There is no proper, accessible, singleton atom in general.

I The solution: we will introduce an artificial singleton atom.

38 / 47



Recap on discrete-time Feynman–Kac path measures
I We focus on a generic discrete-time Feynman–Kac model with

time horizon n.
I Let (Z,B(Z)) be a measurable space and consider

I a probability measure µ : B(Z)→ [0, 1],
I some Markov kernels Mp : Z× B(Z)→ [0, 1] for

p ∈ {2, . . . , n} and
I non-negative B(Z)-measurable functions Gp : Z→ R+ for

p ∈ {1, . . . , n}.
I We define for any p ∈ {1, . . . , n}, the measure γp by

γp(A) :=

ˆ
A

 p∏
q=1

Gq(zq)

µ(dz1)

p∏
q=2

Mq(zq−1, dzq), A ∈ B(Zp),

and its associated probability measure πp := γp(Zp)−1γp.
I With X := Zn the Feynman–Kac path measure of interest is

the probability measure π := πn on B(X).
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Atomic extension of a Feynman–Kac path measure

I Let Ž := Z ∪ α, where α = {a} and a is a distinguished point.
I Let X̌ := Žn and an := (a, . . . , a).
I We propose a generic way to define a new probability measure
π̌ on X̌ which satisfies for some k ∈ (0, 1),

π̌(A) = kπ(A ∩ X) + (1− k)I(an ∈ A), A ∈ B(X̌).
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Atomic extension of a Feynman–Kac path measure

I The extended Feynman–Kac model is defined by the initial
distribution µ̌, the Markov kernels M̌ := (M̌p)p∈{2,...,n} and
potential functions Ǧ := (Ǧp)p∈{1,...,n} on Ž which are given by

µ̌(A) := (1− b)µ(A ∩ Z) + bI{a ∈ A},
M̌p(x ,A) := Mp(x ,A)I{x ∈ X}+ I{x = a,A = α},
Ǧp(x) := Gp(x)I{x ∈ X}+ ψpI{x = a},

for A ∈ B(Ž) where b ∈ (0, 1) and ψ1, . . . , ψn are user-defined
positive constants.
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Atomic extension of a Feynman–Kac path measure

I We define the measure γ̌n by

γ̌n(A) :=

ˆ
A

 n∏
p=1

Ǧp(xp)

 µ̌(dx1)
n∏

p=2

M̌p(xp−1, dxp), A ∈ B(X̌),

and its associated probability measure π̌ := γ̌n(X̌)−1γ̌n.
I It follows that

π̌(A) = kπ(A ∩ X) + (1− k)I(an ∈ A), A ∈ B(X̌)

holds with

k =
1− b

1− b + bγn(X)−1
∏n

p=1 ψp
.
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Perfect simulation from a Feynman–Kac path measure

I If we assume π-essential boundedness of each Gp, then

inf
x∈X̌

P̌N(x , {an}) ≥ ε̌N π̌({an}),

where limN→∞ ε̌N = 1.
I For our perfect simulation algorithms we need a lower bound

on ε̌N × π̌({an}).
I Such bounds are typically difficult to obtain analytically, but it

is straightforward to obtain conservative estimates.
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Estimation ingredients

I The value of π̌({an}) = 1− k depends only on b and
∏n

p=1 ψp:

k =
1− b

1− b + bγn(X)−1
∏n

p=1 ψp
.

I We have limN→∞ε̌N = 1, and performance is improved if

ψq ≈
γq(X)

γq−1(X)
.

I All of the ψq can be estimated using standard SMC.
I One can also use diagnostics that check probabilistically that

infx∈X̌ P̌N(x , {an}) ≥ β for some β > 0.

44 / 47



Outline

Introduction

Regeneration and perfect simulation

Singleton atoms and Bernoulli factories

Introduction of an artificial singleton atom

Perfect simulation from a Feynman–Kac path measure

Remarks

44 / 47



Diagnostics and estimation of β

I Now we return to the general setting with X = (Xn)n≥1 the
Markov chain with transition kernel P .

I Recall that all we require in general is knowing
p = infx∈X P(x , α) ≥ β for some known β > 0.

I One approach could be to find p by some stochastic
optimization procedure.

I Another approach is to simulate X for a long time and
estimate p using the chain.

I One could then impute regeneration indicators to obtain
perfect samples.

I Yet another could be to monitor the validity of the assumption
that a chosen β satisfies β ≤ p.
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Monitoring diagnostic

I At each state x visited during the course of any of the
algorithms, one can simply flip p(x)-coins until their average
exceeds β.

1. If π − ess infx∈X p(x) < β, then the algorithm will not
terminate with positive probability.

2. If π − ess infx∈X p(x) = β, then the algorithm has infinite
expected running time.

3. If π − ess infx∈X p(x) > β, then the algorithm has finite
expected running time.

I Quantitative results are also available for the expected running
time.
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Other remarks

I One can obtain quantitative bounds on the total variation
distance between the target probability measure and the
probability measure one samples from if β < p.

I One can use a single perfect sample to obtain unbiased and
consistent estimates using MCMC or SMC.

I Extensions to the general methodology for non-uniformly
ergodic Markov chains are complicated but possible in
principle.

I Theoretical work on establishing rigorous bounds on p is of
practical interest.

I In an ideal case with a “forgetting” Feynman–Kac model, the
overall perfect simulation procedure is (expected) O(n2).

I contrast with O(exp(n)) expected time for rejection sampling.
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