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 Motivation 

 

 Function Classification/Regression 

 

 Finding anomalous functions and distributions 

 

 Function-to-Function Regression 

 

 FuSSO = Functional Shrinkage and Selection Operator 

(Functional Lasso) 

 

Overview 
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Most ML algorithms operate on feature vectors... 

ML on complex objects 

• sets 

• distributions 

• functions 

• graphs 

• stochastic processes 

• … 

input output 

 How to learn? 

 What can we learn?  

 How fast can we learn? 

 How many sample points do we need? 

 Supervised/unsupervised/active learning … 

Questions: 

3 



Finance 

Functional Data is Everywhere 
Neuroscience 

Diffusion Weighted 
Imaging 

http://www.wired.com/wp-
content/uploads/2014/07/brain1.jpg 

Cosmology 

http://static.thetimenow.com/img/astronomy
/all/the-big-bang-abstract.jpg 

http://healingtheworldthroughmusic.com/wp
-content/uploads/2013/09/PBI-Music-
Note.jpg 

https://farm6.staticflickr.com/5035/cameras/
72157625858229685_model_huge_3a1ee48e
6f.jpg 

https://en.wikipedia.org/wiki/Main_Page#/m
edia/File:Garni_Temple_02.JPG 

Images 
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www.juhokim.com/projects.php 

Cristiano Ronaldo Rio Ferdinand Owen Hargreaves 

Manchester United 07/08 
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Motivating Examples 
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Distribution Regression / Classification  

Y1=1 

P1 

Y2=0 

P2 

? 

Pm+1 

Y3=1 

P3 

Ym=0 

Pm …   

The inputs are distributions, density functions (not vectors) 

 We don’t know these distributions, only sample sets are available 

(error in variables model) 

Differences compared to standard methods on vectors 



ML on Distributions 

blood pressure,  

heart rate,  

temperature,  

blood sample 

 … 

Standard machine learning 

Feature vector 

Classifier 

Healthy 

Sick 

Medical tests:  

healthy or sick? 

 

What happens if we repeat the medical tests? 

ML on sets/distributions 

Set of feature vectors 
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Dealing with complex objects  

 break into smaller parts, represent the input as a set of smaller parts 

 treat the set elements as sample points from some unknown distribution 

 do ML on these unknown distributions represented by sets 
8 

ML on Distributions 



Distribution Classification 

Problems: 

Solution: Use RKHS based SVM!  

Dual form of SVM: 
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Calculate the Gram matrix 



Object Classification 
ETH-80 [Leibe and Schiele, 2003] 

 BoW: 88.9% 

 NPR: 90.1%   

8 categories, 400 images, each image is represented by 576 18 dim points 

Póczos, Xiong, Sutherland, & Schneider, CVPR 2012 
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2-fold CV,16 runs 



Outdoor Scenes Classification 
[Oliva and Torralba, 2001] 

 Best published: 91.57% 
(Qin and Yung, ICMV 2010) 

 NPR: 92.3%   

coast 

mountain country 

forest 

street 

highway city 

tall building 

8 categories, 2688 images,  

each represented by 1815 53 dim points. 

Póczos, Xiong, Sutherland, & Schneider, CVPR 2012 11 

10 fold CV, 16 runs 



8 categories, 1040 images, each represented by 295 to 1542 57 dim points. 

Sport Events Classification 
[Li and Fei Fei, 2007] 

 Best published: 86.7% 
(Zhang et al, CVPR 2011) 

 NPR: 87.1%   

Póczos, Xiong, Sutherland, & Schneider, CVPR 2012 12 2 fold CV, 16 runs 

badminton bocce croquet polo sailing climbing rowing snowboard 



Emerging images 

Niloy J. Mitra, 2009 
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Emerging images 

Niloy J. Mitra, 2009 
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Image Representation with Distributions 

 Each image patch is represented by PCA compressed SIFT vectors. 

        SIFT = Scale-invariant feature transform. PCA: 128dim) d dim  

Image patches 
•Overlapping  
•Non-overlapping 
 

Patch locations 
•Grid points 
•Interesting points 
•Random 
 

Patch sizes 
•Same 
•Different,  
•Hierarchy  

Dealing with complex objects  

 break into smaller parts,  

 represent the object as a sample set of these parts 

d-dimensional sample set representation of the image 

15 

 Each set is considered as a sample set from some unknown distribution. 

 Each image is represented as a set of these d dim feature vectors. 



Detecting Anomalous Images 
B. Póczos, L. Xiong & J. Schneider, UAI, 2011. 

50 highway images 

5 anomalies 

2-dimensional sample set representation of images (128 dim SIFT ) 2 dim) 

Anomaly score: divergences between the distributions of these sample sets 
16 



Detecting Anomalous Images 
1 2 3 4 9 5 8 6 7 10 

55 54 53 51 52 17 



Noisy USPS Dataset Classification with SDM 

Results: 

SVM on raw images  82.1 ± .5% accuracy 

 Original (noiseless) USPS dataset is easy ~97% 

SDM on the 2D distributions, Rényi divergence: 96.0 ± .3% accuracy 
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160 

160 

 Each instance (image) is a set of 500 2d points 

 1000 training and 1000 test instances 



Multidimensional Scaling of USPS Data 

Raw images  

using Euclidean distance 
Estimated Euclidean distance 

between the distributions 

Nonlinear embedding with MDS into 2d. 

10 instances from figures 1,2,3,4. 
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Calculate pairwise Euclidean distances. 



Local Linear Embedding of Distributions 

72 rotated COIL froggies Edge detected COIL froggy 

Euclidean distance between images Euclidean distance between distributions 
20 



B. Póczos, L. Xiong & J. Schneider, UAI, 2011. 

What are the most anomalous galaxy clusters? 

The most anomalous galaxy cluster contains mostly 

 star forming blue galaxies 

 irregular galaxies 

Sloan Digital Sky Survey (SDSS)  

 continuum spectrum   

505 galaxy clusters   

    (10-50 galaxies in each)  

7530 galaxies 

Finding Unusual Galaxy Clusters  

Blue galaxy Red galaxy 

Credits: ESA, NASA   21 



Understanding Turbulences 

Credits: ESA, NASA, PPPL, Wikipedia 22 



Turbulence Data Classification 

Simulated fluid flow through time 
(JHU Turbulence Research Group, Alex Szalay)  

 

Positive (vortex) Negative Negative 

Velocity distributions 
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•11 positive, 20 negative examples 

find interesting events, patterns, phenomena Goal:  find vortices! 

•Results: Leave one out cross-validation : 97% 



Finding Vortices 

Classification probabilities 
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Find Interesting Phenomena  
in Turbulence Data 

Anomaly scores 

Anomaly detection with 1-class SDM 
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Function-to-Function regression 
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Function to Function (F2F) Regression 

Given an input function p, can we predict an output function q? 

Forward Prediction Co-occurring Prediction 

Image Segmentation Future Distribution Prediction 

27 



Data-Model 

We observe functional observation pairs (Pi, Qi), for i=1,..,N 
corresponding to input/output functions (pi, qi), where f(pi) = qi. 

 

We predict output function q0 given unseen observation P0. 
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true density 
estimated  

density 
observation 



Previous Approaches: 
 RKHS approach (Kadri et al. 2010) 
 Kernel smoothing approach (Oliva et al. 2013) 

 

Kernel Methods Don’t Scale 

N evaluations 
 

N x N 
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Kernel Methods Don’t Scale 
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Kernel smoothing approach 



Our Approach: Triple Basis Estimator 
(3BE) 

High-level idea: 
 

p z(p) q 
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 Embed input functions p with a non-linear map z(p) 
 then use a linear map to estimate q. 



... 
Orthonormal Basis 



Orthogonal Projection Embedding 

<     ,     > 
<     ,     > 
<     ,     > 
<     ,     > 

<     ,     > 

... 
http://upload.wikimedia.org/wikipedi

a/commons/2/2d/BoysSurfaceTopV

iew.PNG 

p z(a(p)) q a(p) a(q) 
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Calculating a(p) projection coefficient in the training set (Basis 1):  



Function from Orthogonal Projections 

http://upload.wikimedia.org/wikipedi

a/commons/2/2d/BoysSurfaceTopV

iew.PNG 

<     ,   > <     ,   > <     ,   > 

p z(a(p)) q a(p) a(q) 
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Calculating a(q) projection coefficients in the training set (Basis 2):  



Function-to-Function mapping 

http://upload.wikimedia.org/wikipedi

a/commons/2/2d/BoysSurfaceTopV

iew.PNG 

<     ,     > 

<     ,     > 

<     ,     > 

p z(a(p)) q a(p) a(q) 

... 
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r regression problems (Multi task learning) 



Function-to-Function mapping 

<     ,,   > 

The kth regression problem:  

Let us use a kernel smoother for this regression: 
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Random Kitchen Sinks 

Theorem [Rahimi & Recht, NIPS 2007] 
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Fast Projection Estimation (Basis 3) 

p z(a(p)) q a(p) a(q) 

<     ,   > 

RKS (Rahimi & Recht 2007): 
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D dim linear regression!  

We have r of these. This is the kth. 



Sample Projection Function Estimate  

p z(a(p)) q a(p) a(q) 
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Let us write the r D-dim linear regression in a matrix form  

on the N training data 



Computational Complexity for Prediction 
:  # of instances (input/output pairs) 

:  # of sample points per function observation 
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s :  # of projection coefficients for p  

r :  # of projection coefficients for q  

D :  # of random basis functions 



Risk Upper Bound  

:  # of instances (input/output pairs) 

:  # of sample points per function observation 

:  input function smoothness parameter 

:  output function smoothness parameter 
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Rectifying 2LPT Simulations 
(2nd order Lagrangian Perturbation Theory) 

2LPT 

N-body 

42 



Co-occurring Prediction with MoCap 
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Forward Prediction with Music Data 
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True sound 

SHMM 

Dyna 

LSE 

3BE 



F2F Learning - Summary 

Scalable Function-to-Function regression with Triple Basis 
Estimator (3BE) 

 
 Orthonormal basis to represent input functions 
 Orthonormal basis to represent output functions 
 Random basis mapping input functions to output functions 
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FuSSO = Functional Shrinkage and Selection Operator 

(Functional Lasso) 
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We present the FuSSO, a functional analogue to the LASSO: 

     

 Finds a sparse set of functional input covariates to regress a 

real-valued response 

 

 The FuSSO is semi-parametric: No parametric assumptions on 

input functional covariates  

 

 Assumes linear form to response from functional covariates 

 

 We provide a statistical backing for use of the FuSSO via proof of 

asymptotic sparsistency under various conditions 

 

 Furthermore, we observe good results on both synthetic and 

real-world data 

FuSSO 
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Real Valued Regression with Multiple 

Functional Covariates 

Function to real regression is a previously 

studied problem (e.g. in functional analysis); 

here the mapping takes in one function: 
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Similarly, one may consider a mapping that takes in 

multiple functions: 
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The number of functional input covariates may be 

very large; thus, a sparse model that depends only 

on a few of the functional covariates may be 

preferred: 
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Example Applications 

² Finance:

{ Inputs: Time-series of several com-

modities prices in the past

{ Output: Price of a particular com-

modity in the nearby future

² Neuroscience:

{ Inputs: Functions at each voxel (e.g.

orientation distribution functions)

{ Output: The age of the subject

51 



…
 

…
 Future Price 

A’s Prices 

J’s Prices 

K’s Prices 

…
 

Age Voxel’s 

ODF 

52 



Linear Functional Regression 

Real Vector Covariate Functional Covariate 

One Real Vector vs. Functional Covariate: 

Yi = hXi;wi+ ²i Yi = hf(i); gi+ ²i

f (i); g 2 L2(ª) and

hf (i); gi =
R
ª
f (i)(t)g(t)dt

Xi; w 2 Rd and

hXi; wi =
Pd

j=1Xijwj

There are functional analogues to familiar

real-vector linear regression models; for Yi 2
R, ²i » N (0; ¾), and ª µ Rk, a compact set:

53 



Real Vector 

Covariates 

Functional Covariates 

Multiple Real Vectors vs. Functional Covariates: 

w1; : : : ;wp 2 Rd

Yi =

pX

j=1

hf (i)j ; gji

+ ²i

g1; : : : ; gp 2 L2(ª)

Similarly, instead of having one input covari-

ate per data instance, one may have p fea-

ture vectors, fXi1; : : : ;Xipj; Xij 2 Rdg, or
functions, ff (i)

1 ; : : : ; f
(i)
p j f (i)

j 2 L2(ª)g, as-
sociated to each data instance i:

Yi =

pX

j=1

hXij ; wji

+ ²i
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Let ª = [0; 1], © = f'mg1m=1 be an orthonor-

mal basis for L2(ª):

FuSSO: Functional Shrinkage 

and Selection Operator 

Regression with Basis Functions: 

Let f~®jmgMn

m=1 approximate f®jmgMn

m=1, and

Similarly gj(x) =
P1

m=1 ¯
¤
jm'm(x), then by

orthonormality:

f
(i)

j (x) ¼ ~f
(i)

j (x) =

MnX

m=1

~®
(i)

jm'm(x)

f
(i)

j (x) =

1X

m=1

®
(i)

jm'm(x); where ®
(i)

jm =

Z 1

0

f
(i)

j (t)'m(t)dt

hf (i)j ; gki =
1X

m=1

®
(i)

jm¯
¤
km
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Optimization Problem: 

^̄ ´ argmin¯
1

2N

NX

i=1

Ã
Yi ¡

pX

j=1

MnX

m=1

~®
(i)

jm¯jm

!2

+ ¸N

pX

j=1

vuut
MnX

m=1

¯2
jm

We may then estimate gj =
P1

m=1 ¯
¤
jm'm as

ĝj =
PMn

m=1
^̄
jm'm where
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Theory: Sparsistency 

P
³
supp( ^̄) = supp(¯¤)

´
! 1 when given a

dataset D = f(f~y (i)

j gpj=1; Yi)gNi=1, where

~y
(i)

j =~f
(i)

j + »
(i)

j ;

~f
(i)

j =
³
f
(i)

j (1=n); f
(i)

j (2=n); : : : ; f
(i)

j (1)
´T

;

»
(i)

j

iid»N (0; ¾2
»In);

and f
(i)

j ; gj : [0; 1] 7! R. The proof is gener-

alizable to higher dimensions, and when f
(i)

j

are pdfs and one observes samples.
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Results 
Synthetic Dataset: 

² Tested on datasets of D = f(f~y (i)

j gpj=1; Yi)gNi=1

{ ~y
(i)

j grid of n noisy grid function evaluations

² The number of true functional covariates in the

support, s, was ¯xed to be 5

² Functions f
(i)

j and gj were generated randomly
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(p;N; n) r ¢

(100,50,5) .68 .2125

(1000,500,25) 1 .4771

(20000,500,25) 1 .4729

Name De¯nition

p # of input covariates

N # of data instances

n # of grid evaluations

r % of trails w/ support found

¢ avg. range of ¸ w/ support

Experiments’ Variables: 

Experiments’ Results: 

For each experiment we ran 100 trials and recorded the

following:
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Figures for (p,N,n) = (100,50,5): 

Figures for (p,N,n) = (1000,500,25): 
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Neurological Dataset: 

² Dataset with over 25K functions per subject for 89

total subjects

{ Orientation distribution functions (ODF) at white

matter voxels

² We regress a subject's age, given ODFs

² We compared to using the LASSO with peak ODF

(quantitative anisotropy) values

Method: FuSSO 

(ODFs) 

LASSO 

(QAs) 

Mean 

Predict 

MSE: 70.85 77.13 156.43 

Results 
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Ages 

Absolute Errors per 

Subject 

Voxel ODF 

Bootstrap Selected 

Voxels 

Image Sources: http://www.aging2.com/wp-content/uploads/2013/05/Screen-Shot-2013-05-28-at-9.48.49-PM.png;  

http://media.salon.com/2013/02/money1.jpg; http://3278as3udzze1hdk0f2th5nf18c1.wpengine.netdna-cdn.com/wp-content/uploads/2010/10/connectome-brain-diffusion-spectrum-imaging.jpg 62 



If you are interested, contact me!  

bapoczos@cs.cmu.edu, GHC-8231 

Functional data has so many 

applications! 

 

 

Some results on 

regression/classification/anomaly 

detection/ Lasso 

 

Lots of missing theoretical results: 

Lower bounds, active learning 
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Thanks for your attention!  


