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Kernel Mean Embedding (KME)

Let kK : X x & — R be a positive definite kernel.

» Kernel trick:

» Equivalently,

@,H/ k(-,x)dd,(x)
X
» Generalization:

P /k(-,x)dIP’(x) =: up.
<&

kernel mean embedding



Properties

» KME is a generalization of
» Characteristic function : k(-,x) =e vV 1) x e RY
» Moment generating function : k(- x) = e x € R?

to arbitrary X.
» In general, many PP can yield the same KME!!
for k(x,y) = (x,y), we have P — pup.

» Characteristic kernels: They ensure that no two different I’ can have
the same KME.

P / x) dP(x) is one-to-one.

Examples: Gaussian, Matérn, ... (infinite dimensional RKHS)



Application: Two-Sample Problem

i.i.d.

» Given random samples {X1,..., X} ~ P and
{Yl; LERE Yn} "Ld' Q

» Determine: P=Q or P £ Q7

» (P, Q) : distance metric between P and Q.
Ho:P=Q Hy:~(P,Q)=0
Hi:P#£Q H;:~v(P,Q)>0

> Test: Say Ho if 4 ({Xi},, {Y;}/_;) < e. Otherwise say H.

Idea: Use

7(P,Q) = H [ #x @)~ [ K400

He

with k being characteristic.



More Applications

v

Testing for independence (Gretton et al., 2008)

v

Conditional independence tests (Fukumizu et al., 2008)

v

Feature selection (Song et al., 2012)

v

Distribution regression (Szabé et al., 2015)

v

Causal inference (Lopez-Paz et al., 2015)

v

Mixture density estimation (Sriperumbudur, 2011), ...



Estimators of KME

> In applications, P is unknown and only samples {X;}7_; from it are
known.

» A popular estimator of KME that has been employed in all these
applications is the empirical estimator:

1 n
ip =~ > k(- Xi
Hup n,.:l (a )

Theorem (Smola et al., 2007; Gretton et al., 2012; Lopez-Paz et al., 2015)
Suppose sup, ¢y k(x,x) < C < 0o where k is continuous. Then for any

>0,
n n N C 2CT .
P <{(x,-),-1:|m/Mkz\fﬁ\ﬁ}) cer

Alternatively E ||fip — ppll4, < % for some C’ > 0.



Shrinkage Estimator
Given (Xi)"_; i N(p,021), suppose we are interested in estimating
pe R
» Maximum likelihood estimator: i = %Z:Ll X; which is the
empirical estimator.
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Shrinkage Estimator
Given (Xi)"_; i N(p,021), suppose we are interested in estimating
pe R
» Maximum likelihood estimator: i = %Z;Ll X; which is the
empirical estimator.

> (James and Stein, 1961): constructed an estimator /i such that for
dZ3fora|Iu€Rd,

Ellfi —pl* <E I

i = p
and for at least one p, the strict inequality holds.

Kernel setting: Based on the above motivation, (Krikamol et al., 2015)
proposed a shrinkage estimator, [ip of up and showed that

E|ljie — pellfy, < Elfm — e, + Op(n™>/?)

as n — oo and E||jip — ppl/3, < C"n=*/? for some C” > 0.



Main Message

Question: Can we do using some other estimators?

Answer: for a large class of kernels the answer is NO.
We can do better in terms of constant factors (Muandet et al., 2015).

But not in terms of rates w.r.t. sample size n or dimensionality d (if
X =R9).

Tool: Minimax theory
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Given:
> A class of distributions P on a sample space X;

» A mapping 6 : P — O, P— 6(P).
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Given:
> A class of distributions P on a sample space X;
» A mapping 6 : P — O, P— 6(P).
Goal:

» Estimate ¢(IP) based on i.i.d. observations (X;)7_; drawn from the
unknown distribution P.

Examples:
» P ={N(0,0°) : 0 € R} with known variance: 6(P fdeP’

» P = {set of all distributions}: §(P) = [ k(-,x) dP(x

Estimator:
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>

Define a distance p : © x © — R to measure the error of 0 for the
parameter 6.
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SEJ/[Z E {/)((‘/A. o( ”)}



Minimax Risk

How good is the estimator, 07

>

Define a distance p : © x © — R to measure the error of 0 for the
parameter 6.

The average performance of f is measured by the risk:
R(0;P) =E {p(é H(nﬁ))} .

Obviously, we would want an estimator that has the smallest risk for
every IP : not achievable!!

Global view: Minimize the average risk (Bayesian view) or the

maximum risk,

sup I {,;((—7. H(’P))]

0* is called a minimax estimator if

M, (6(P)) : minimax risk

sup B [p(é*,e(rp))} = inf sup [/)(é,@([@))} .




Minimax Estimator

» Statistical decision theory has two goals:
> Find the minimax risk, M,(6(P)).

» Find the minimax estimator that achieves this risk.

» Except in simple cases, finding both the minimax risk and the
minimax estimator is usually very hard.



Minimax Estimator

» Statistical decision theory has two goals:

> Find the minimax risk, M,(6(P)).

» Find the minimax estimator that achieves this risk.

» Except in simple cases, finding both the minimax risk and the
minimax estimator is usually very hard.

» So we settle for an estimator that achieves the minimax rate:

sup E (. 0(P))| = M)

_ b
a,=b, = Z: s 3 are bounded



Minimax Estimator

» Suppose we have an estimator 0, such that

sup E | p(0,. 0(P))]| < Cu,
PeP

for some C > 0 and ¢, — 0 as n — o©.

> If
./\/ln(H(P)) > cy

for some ¢ > 0, then é* is minimax ,-rate optimal.




Minimax Estimator

» Suppose we have an estimator 0, such that

sup E | p(0.. 0(P))| < Cuy
PeP

for some C > 0 and ¢, — 0 as n — o©.

> If
M, (6(P)) > ¢y,

for some ¢ > 0, then HA* is minimax ,-rate optimal.

Our Problem:
> O(P) = iy = [ (-, X) dP(x)
> p=1-[lu

» We have that supp.p E [p(é*, Q(P))} < % for A, being an empirical
estimator, shrinkage estimator and kernel density based estimator.

What is M,(u(P))?
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From Estimation to Testing

Key ldea: Reduce the estimation problem to a testing problem and
bound M ,(6(P)) in terms of the probability of error in testing problems.

Setup:
> Let {P,}yey C P where V ={1,...,M}.

» The family induces a collection of parameters {6(P,)},cv.
» Choose {P,},cy such that
p(O(P,),0(P,)) > 26, forall v #£ v/,
> Suppose we observe (X;)?_; is drawn from the n-fold product
distribution, . for some v* € V.

» Construct O(X1,...,X,).

Testing problem:
» Based on (X;)!_;, test which of M hypothesis is true.
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» For a measurable mapping W : X" — V), the error probability is
defined as
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Minimum distance test:

A
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From Estimation to Testing

» For a measurable mapping W : X" — V), the error probability is
defined as
mea;(IP’\}(\ll(Xl, ooy Xn) # V).

Minimum distance test:

A

v — inp(d,0(P,
argryelg/)(, (Py))

» p(0,0(P,)) <6 = V*=v
> U v = p(0,0(P,)) > 6
> PI(p(0,0(P,)) > 8) > Po(V* # v)



From Estimation to Testing
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From Estimation to Testing

Mo(0(P)) = inf sup = [0(6,0(P))]

\%

Y

%



From Estimation to Testing

Mo(0(P)) = inf sup = (0. 0())]

> §inf sup P" (p(é, o(P)) > 5)
6 PeP

v

%



From Estimation to Testing

Mo(0(P)) = inf sup = (0. 0())]

>4 |nf sup P" (p(9 0(P)) > )

> §inf meax]P’" (p(0 o(P,)) > 5)

>



From Estimation to Testing

M, (6(P)) = igf;ggIE[ ).0(P))]

A
>4 |nf sup P" (p(9 o(P)) > )
> 5inf maxIP’C p(0,6(P,)) > 5)

>
] |{|11f Tea&dP (V£ v)

minimax probability of error
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Minimax Probability of Error
Suppose M =2, i.e., V = {1,2}. Then

|nfmaxIP’”(\U £v)> = lnf [PI(V # 1) + Po(V # 2)]

veVy
The minimizer is the likelihood ratio test and so
. N 1 : n mn
|(1Uf r\w/weaédP’v(\IJ #v) > E/mln(dIP’l,dI%)

_1— [Py P3|y
e




Minimax Probability of Error
Suppose M =2, i.e., V = {1,2}. Then

|nf maxP(V # v) >

vey

inf [Bf (W # 1) + P3(V # 2)]

I\Jll—l

The minimizer is the likelihood ratio test and so
. N 1 : n mn
|3f Tea\)}(P"(w #v) > E/mln(dIP’l,dI%)

1B - B3l
~ Bl

Mn(0(P)) = 5 (1 — [P = P3| 7v)

N\Oq



Minimax Probability of Error
Suppose M =2, i.e., V = {1,2}. Then

inf max (W # v) > liqlf [PV £ 1) + B3V # 2)]

veVy
The minimizer is the likelihood ratio test and so
. N 1 : n mn
'G,f rVnEag]P’V(\IJ #v) > E/mln(dIP’l,dI%)

_ 1 [[P7 - Py
T

6 n n
M,(0(P)) > 5 (1—|P{ = P3ll7v)
Recipe: Pick Py and P, in P such that ||P] — P3| v < 3 and
p(0(P1),0(P2)) > 24. (Le Cam, 1973)

General theme: The minimax risk is related to the distance between
distributions.



Le Cam’'s Method

Theorem
Suppose there exists Py, P, € P such that:

> p(@(Pl),o(Pz)) > 26 > 0;
> KL(PT|IPS) < o < o0.

Then

Mo(6(P)) > 6 max (:” 1\2F/2> .

Strategy: Choose ¢ and guess two elements P; and P, so that the
conditions are satisfied with « independent of n.



Main Results
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Gaussian Kernel
Let k(x,y) =exp ( M) n > 0. Choose

Py =pidy +(1—p1)d.  and Py = pd, + (1 — p2)d,

where y,z € R, p; > 0 and p, > 0.

>
PP(0(P1), 6(F2)) = ||, — pe, 3,
=2(p1 — P2)2 (1 — exp (_|y2—77222>>
> 2(p1 — p2 )2y2,, i ly — z|* < 2.
> KL(P}|[P5) < torpalt

» Choose p, = 3 and py such that (p1 — p2)? = &; y, z such that

_ 2
Hyzngll >3 >0.

Il



Gaussian Kernel

In words:

» If P is the set of all discrete distributions, then

1 /5
Ma((P)) > LV

» For any estimator é, there always exists a discrete distribution, P
such that up cannot be estimated at a rate faster than n=1/2.

Is such a result true if P is a class of distributions with smooth density?
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General Result

Theorem

Suppose P is the set of all discrete distributions on RY. Let k be
shift-invariant, i.e., k(x,y) = ¥ (x — y) with 1) € Co(R?) and
characteristic. Assume there exists xo € R? and 8 > 0 such that

$(0) — ¥(x0) = B

Then
128

‘ , 1
Ma(u(P)) = ﬁ\/ —.

n



General Result

Theorem

Suppose P is the set of all distributions with infinitely differentiable
densities on RY. Let k be shift-invariant, i.e., k(x,y) = {(x — y) with
1 € Cp(R?) and characteristic. Then there exists constants cy, €, > 0
depending only on 1 such that for any n > i

[
| Cyy

Ma(p(P)) > \ o

| =

Idea: Exactly same as that of the Gaussian kernel. But the crucial work
is in showing that there exists constants €, ,2 and ¢y 2 such that if

1 = po|? < €y 02

then
(N1, 0°1)) = (N(p2, 0°1)) 3, > cyo2llia — p2ll-



Summary

v

Mean embedding of distributions is popular in various applications.

v

Various estimators of kernel mean are available.

» We provide a theoretical justification for using these estimators,
particularly the empirical estimator.

v

The empirical estimator of the mean embedding is minimax rate
optimal with rate n=1/2,



Thank You



