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Kernel Mean Embedding (KME)

Let k : X × X → R be a positive definite kernel.

I Kernel trick:

y 7→

k(·,y)︷︸︸︷
φ(y)

I Equivalently,

δy 7→
∫
X

k(·, x) dδy (x)

I Generalization:

P 7→
∫
X

k(·, x) dP(x)︸ ︷︷ ︸
kernel mean embedding

=: µP.



Properties

I KME is a generalization of

I Characteristic function : k(·, x) = e−
√
−1〈·,x〉, x ∈ Rd

I Moment generating function : k(·, x) = e〈·,x〉, x ∈ Rd

to arbitrary X .

I In general, many P can yield the same KME!!

for k(x , y) = 〈x , y〉, we have P 7→ µP.

I Characteristic kernels: They ensure that no two different P can have
the same KME.

P 7→
∫
X

k(·, x) dP(x) is one-to-one.

Examples: Gaussian, Matérn, . . . (infinite dimensional RKHS)



Application: Two-Sample Problem

I Given random samples {X1, . . . ,Xm}
i.i.d.∼ P and

{Y1, . . . ,Yn}
i.i.d.∼ Q.

I Determine: P = Q or P 6= Q?

I γ(P,Q) : distance metric between P and Q.

H0 : P = Q H0 : γ(P,Q) = 0
≡

H1 : P 6= Q H1 : γ(P,Q) > 0

I Test: Say H0 if γ̂
(
{Xi}mi=1, {Yj}nj=1

)
< ε. Otherwise say H1.

Idea: Use

γ(P,Q) =

∥∥∥∥∫ k(·, x) dP(x)−
∫

k(·, x) dQ(x)

∥∥∥∥
Hk

with k being characteristic.



More Applications

I Testing for independence (Gretton et al., 2008)

I Conditional independence tests (Fukumizu et al., 2008)

I Feature selection (Song et al., 2012)

I Distribution regression (Szabó et al., 2015)

I Causal inference (Lopez-Paz et al., 2015)

I Mixture density estimation (Sriperumbudur, 2011), . . .



Estimators of KME

I In applications, P is unknown and only samples {Xi}ni=1 from it are
known.

I A popular estimator of KME that has been employed in all these
applications is the empirical estimator:

µ̂P =
1

n

n∑
i=1

k(·,Xi )

Theorem (Smola et al., 2007; Gretton et al., 2012; Lopez-Paz et al., 2015)

Suppose supx∈X k(x , x) ≤ C <∞ where k is continuous. Then for any
τ > 0,

Pn

({
(Xi )

n
i=1 : ‖µ̂P − µP‖Hk

≥
√

C

n
+

√
2Cτ

n

})
≤ e−τ .

Alternatively E ‖µ̂P − µP‖Hk
≤ C ′√

n
for some C ′ > 0.



Shrinkage Estimator

Given (Xi )
n
i=1

i.i.d.∼ N(µ, σ2I ), suppose we are interested in estimating
µ ∈ Rd .

I Maximum likelihood estimator: µ̂ = 1
n

∑n
i=1 Xi which is the

empirical estimator.

I (James and Stein, 1961): constructed an estimator µ̌ such that for
d ≥ 3 for all µ ∈ Rd ,

E‖µ̌− µ‖2 ≤ E‖µ̂− µ‖2

and for at least one µ, the strict inequality holds.

Kernel setting: Based on the above motivation, (Krikamol et al., 2015)

proposed a shrinkage estimator, µ̌P of µP and showed that

E‖µ̌P − µP‖2
Hk

< E‖µ̂P − µP‖2
Hk

+ Op(n−3/2)

as n→∞ and E‖µ̌P − µP‖Hk
≤ C ′′n−1/2 for some C ′′ > 0.
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Main Message

Question: Can we do better using some other estimators?

Answer: for a large class of kernels the answer is NO.

We can do better in terms of constant factors (Muandet et al., 2015).

But not in terms of rates w.r.t. sample size n or dimensionality d (if
X = Rd).

Tool: Minimax theory



Estimation Theory: Setup

Given:

I A class of distributions P on a sample space X ;

I A mapping θ : P → Θ, P 7→ θ(P).

Goal:

I Estimate θ(P) based on i.i.d. observations (Xi )
n
i=1 drawn from the

unknown distribution P.

Examples:

I P =
{

N(θ, σ2) : θ ∈ R} with known variance: θ(P) =
∫

x dP(x).

I P = {set of all distributions} : θ(P) =
∫

k(·, x) dP(x).

Estimator:
θ̂(X1, . . . ,Xn)



Estimation Theory: Setup

Given:

I A class of distributions P on a sample space X ;

I A mapping θ : P → Θ, P 7→ θ(P).

Goal:

I Estimate θ(P) based on i.i.d. observations (Xi )
n
i=1 drawn from the

unknown distribution P.

Examples:

I P =
{

N(θ, σ2) : θ ∈ R} with known variance: θ(P) =
∫

x dP(x).

I P = {set of all distributions} : θ(P) =
∫

k(·, x) dP(x).

Estimator:
θ̂(X1, . . . ,Xn)



Estimation Theory: Setup

Given:

I A class of distributions P on a sample space X ;

I A mapping θ : P → Θ, P 7→ θ(P).

Goal:

I Estimate θ(P) based on i.i.d. observations (Xi )
n
i=1 drawn from the

unknown distribution P.

Examples:

I P =
{

N(θ, σ2) : θ ∈ R} with known variance: θ(P) =
∫

x dP(x).

I P = {set of all distributions} : θ(P) =
∫

k(·, x) dP(x).

Estimator:
θ̂(X1, . . . ,Xn)



Estimation Theory: Setup

Given:

I A class of distributions P on a sample space X ;

I A mapping θ : P → Θ, P 7→ θ(P).

Goal:

I Estimate θ(P) based on i.i.d. observations (Xi )
n
i=1 drawn from the

unknown distribution P.

Examples:

I P =
{

N(θ, σ2) : θ ∈ R} with known variance: θ(P) =
∫

x dP(x).

I P = {set of all distributions} : θ(P) =
∫

k(·, x) dP(x).

Estimator:
θ̂(X1, . . . ,Xn)



Minimax Risk
How good is the estimator, θ̂?

I Define a distance ρ : Θ×Θ→ R to measure the error of θ̂ for the
parameter θ.

I The average performance of θ̂ is measured by the risk:

R(θ̂;P) = E
[
ρ(θ̂, θ(P))

]
.

I Obviously, we would want an estimator that has the smallest risk for
every P : not achievable!!

I Global view: Minimize the average risk (Bayesian view) or the
maximum risk,

sup
P∈P

E
[
ρ(θ̂, θ(P))

]
I θ̂∗ is called a minimax estimator if

sup
P∈P

E
[
ρ(θ̂∗, θ(P))

]
=

Mn(θ(P)) : minimax risk︷ ︸︸ ︷
inf
θ̂

sup
P∈P

E
[
ρ(θ̂, θ(P))

]
.
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Minimax Estimator

I Statistical decision theory has two goals:

I Find the minimax risk,Mn(θ(P)).
I Find the minimax estimator that achieves this risk.

I Except in simple cases, finding both the minimax risk and the
minimax estimator is usually very hard.

I So we settle for an estimator that achieves the minimax rate:

sup
P∈P

E
[
ρ(θ̂a, θ(P))

]
�︸︷︷︸

an�bn ≡ an
bn
, bn

an
are bounded

Mn(θ(P))
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Minimax Estimator

I Suppose we have an estimator θ̂? such that

sup
P∈P

E
[
ρ(θ̂?, θ(P))

]
≤ Cψn

for some C > 0 and ψn → 0 as n→∞.

I If
Mn(θ(P)) ≥ cψn

for some c > 0, then θ̂? is minimax ψn-rate optimal.

Our Problem:

I θ(P) = µP =
∫

k(·, x) dP(x)

I ρ = ‖ · ‖H

I We have that supP∈P E
[
ρ(θ̂?, θ(P))

]
≤ C?√

n
for θ̂? being an empirical

estimator, shrinkage estimator and kernel density based estimator.

What is Mn(µ(P))?
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From Estimation to Testing

Key Idea: Reduce the estimation problem to a testing problem and
bound Mn(θ(P)) in terms of the probability of error in testing problems.

Setup:

I Let {Pv}v∈V ⊂ P where V = {1, . . . ,M}.

I The family induces a collection of parameters {θ(Pv )}v∈V .

I Choose {Pv}v∈V such that

ρ(θ(Pv ), θ(Pv ′)) ≥ 2δ, for all v 6= v ′.

I Suppose we observe (Xi )
n
i=1 is drawn from the n-fold product

distribution, Pn
v∗ for some v∗ ∈ V.

I Construct θ̂(X1, . . . ,Xn).

Testing problem:

I Based on (Xi )
n
i=1, test which of M hypothesis is true.
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From Estimation to Testing

I For a measurable mapping Ψ : X n → V, the error probability is
defined as

max
v∈V

Pn
v (Ψ(X1, . . . ,Xn) 6= v).

Minimum distance test:

Ψ∗ = arg min
v∈V

ρ(θ̂, θ(Pv ))

I ρ(θ̂, θ(Pv )) < δ =⇒ Ψ∗ = v

I Ψ∗ 6= v =⇒ ρ(θ̂, θ(Pv )) ≥ δ

I Pn
v (ρ(θ̂, θ(Pv )) ≥ δ) ≥ Pn

v (Ψ∗ 6= v)
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From Estimation to Testing

Mn(θ(P)) = inf
θ̂

sup
P∈P

E
[
ρ(θ̂, θ(P))

]
≥ δ inf
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P∈P
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(
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≥ δ inf
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max
v∈V

Pn
v

(
ρ(θ̂, θ(Pv )) ≥ δ

)
≥ δ inf
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v∈V

Pn
v (Ψ 6= v)︸ ︷︷ ︸

minimax probability of error
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Minimax Probability of Error

Suppose M = 2, i.e., V = {1, 2}. Then

inf
Ψ

max
v∈V

Pn
v (Ψ 6= v) ≥ 1

2
inf
Ψ

[Pn
1(Ψ 6= 1) + Pn

2(Ψ 6= 2)]

The minimizer is the likelihood ratio test and so

inf
Ψ

max
v∈V

Pn
v (Ψ 6= v) ≥ 1

2

∫
min(dPn

1, dPn
2)

=
1− ‖Pn

1 − Pn
2‖TV

2
.

Mn(θ(P)) ≥ δ

2
(1− ‖Pn

1 − Pn
2‖TV )

Recipe: Pick P1 and P2 in P such that ‖Pn
1 − Pn

2‖TV ≤ 1
2 and

ρ(θ(P1), θ(P2)) ≥ 2δ. (Le Cam, 1973)

General theme: The minimax risk is related to the distance between
distributions.
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Le Cam’s Method

Theorem
Suppose there exists P1, P2 ∈ P such that:

I ρ(θ(P1), θ(P2)) ≥ 2δ > 0;

I KL(Pn
1‖Pn

2) ≤ α <∞.

Then

Mn(θ(P)) ≥ δmax

(
e−α

4
,

1−
√
α/2

2

)
.

Strategy: Choose δ and guess two elements P1 and P2 so that the
conditions are satisfied with α independent of n.



Main Results



Gaussian Kernel
Let k(x , y) = exp

(
−‖x−y‖

2

2η2
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I KL(Pn
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2) ≤ n(p1−p2)2

p2(1−p2) .

I Choose p2 = 1
2 and p1 such that (p1 − p2)2 = 1

9n ; y , z such that
‖y−z‖2

2η2 ≥ β > 0.

δ =
√

β
9n
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Gaussian Kernel

In words:

I If P is the set of all discrete distributions, then

Mn(µ(P)) ≥ 1

12

√
β

n
.

I For any estimator θ̂, there always exists a discrete distribution, P
such that µP cannot be estimated at a rate faster than n−1/2.

Is such a result true if P is a class of distributions with smooth density?
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General Result

Theorem
Suppose P is the set of all discrete distributions on Rd . Let k be
shift-invariant, i.e., k(x , y) = ψ(x − y) with ψ ∈ Cb(Rd) and
characteristic. Assume there exists x0 ∈ Rd and β > 0 such that

ψ(0)− ψ(x0) ≥ β.

Then

Mn(µ(P)) ≥ 1

24

√
2β

n
.



General Result

Theorem
Suppose P is the set of all distributions with infinitely differentiable
densities on Rd . Let k be shift-invariant, i.e., k(x , y) = ψ(x − y) with
ψ ∈ Cb(Rd) and characteristic. Then there exists constants cψ, εψ > 0
depending only on ψ such that for any n ≥ 1

εψ
:

Mn(µ(P)) ≥ 1

8

√
cψ
2n
.

Idea: Exactly same as that of the Gaussian kernel. But the crucial work
is in showing that there exists constants εψ,σ2 and cψ,σ2 such that if

‖µ1 − µ2‖2 ≤ εψ,σ2

then
‖µ(N(µ1, σ

2I ))− µ(N(µ2, σ
2I ))‖Hk

≥ cψ,σ2‖µ1 − µ2‖.



Summary

I Mean embedding of distributions is popular in various applications.

I Various estimators of kernel mean are available.

I We provide a theoretical justification for using these estimators,
particularly the empirical estimator.

I The empirical estimator of the mean embedding is minimax rate
optimal with rate n−1/2.
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