@ Climate Informatics
: -4 Recent Advances and Challenge Problems for
Machine Learning in Climate Science

Claire Monteleoni

George Washington University



,—"’-’7

S s
- 'Augu$2005: Hurricane Katri?m\; Reuters

.
LI
v



»

October 2012: Hurricane Sandy — Reuters



August 2013: Rim Fire, California — Reuters



2% 4 .‘-.
ot o iy a
. -‘b .- ¥

.-3’_““.‘7.__\ -

e




Machine learning can shed light on climate change.



Despite the scientific consensus on climate change, drastic
uncertainties remain. For instance:

How does climate change affect extreme events?
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Uncertainty in extremes, especially regional

Warmer atmosphere can hold more water vapor
— heavier precipitation, storms, flooding

Global warming may increase surface evaporation
- heat waves, droughts

Possible changes in El Nino-Southern Oscillation

— changes in floods in some regions, droughts in others

World Climate Research Programme 2013, grand challenge:
understanding and improving predictions of extreme events
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Extreme events are rare by definition.

Climate change may affect their distribution.

=>» Past statistics are not sufficient for future prediction.
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Augment historical data with climate model simulations.

Massive, high-dimensional, big data.

That’s where machine learning comes in!
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Climate Informatics

2011 First International Workshop on Climate Informatics
New York Academy of Sciences
Climate Informatics Wiki launched
2013 “Climate Informatics” book chapter [M et al. 2013]

2015 Please join us in September as Climate Informatics turns 5!
National Center for Atmospheric Research, Boulder CO

In the first 4 years: participants from over 16 countries, 28 states
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Climate Data is Big Data

GCMs/ESMs (CMIP3/5) (Tb/day)
Satellite retrievals (Tb/day)
Next-gen reanalysis products (Tb/da
In-situ data *””/ / /
Paleo-data

Regional models
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Main types of climate data

Past: Historical data
— Limited amounts
— Very heterogeneous

Present: Observation data
— Increasingly measured. Large quantities for recent times.

— Can be unlabeled, sparse, measured at higher resolution than relevant
information

Past, Present, Future: Climate model simulations
— Vast, high-dimensional
— Encodes scientific domain knowledge
— Some information is lost in discretizations
— Future predictions cannot be validated
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Challenge problems in climate informatics

1. Past: Paleo-climate reconstruction
What was the climate before we had thermometers?

2. Local: Climate downscaling
What climate can | expect in my own backyard?
3. Spatiotemporal: Space and time
How to capture dependencies over space and time?
4. Future: Climate model ensembles
How to reduce uncertainty on future predictions?
5. Tails/impacts: Extreme events
What are extreme events and how will climate change affect them?
6. Other problems

Data-rich playground with many opportunities for ML to have an impact!
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Relevant ML tasks (among others)

* Graphical models
— MRF/CRF, topic models, inference, structure learning

* Hierarchical Bayesian models

* Matrix completion

* Sparse representations

e Causality

 Multitask learning

* Unsupervised learning

* Online learning

* Analysis of quantiles and extremes
e Spatial statistics

* Deep learning



Climate Model Ensembles

20



Climate models (GCMs)

Climate model: a complex e oot
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Intergovernmental Panel on Climate Change

* |[PCC: Intergovernmental Panel on Climate Change

— Nobel Peace Prize 2007 (shared with Al Gore).
— Interdisciplinary scientific body, formed by UN in 1988.

— Fourth Assessment Report, 2007, on global climate change
450 lead authors from 130 countries, 800 contributing authors,
over 2,500 reviewers.

— Fifth Assessment Report, September 2013. Over 830 authors.

Climate models contributing to IPCC reports include:

Bjerknes Center for Climate Research (Norway), Canadian Centre for Climate Modelling
and Analysis, Centre National de Recherches Météorologiques (France), Commonwealth
Scientific and Industrial Research Organisation (Australia), Geophysical Fluid Dynamics
Laboratory (Princeton University), Goddard Institute for Space Studies (NASA), Hadley
Centre for Climate Change (United Kingdom Meteorology Office), Institute of Atmospheric
Physics (Chinese Academy of Sciences), Institute of Numerical Mathematics Climate
Model (Russian Academy of Sciences), Istituto Nazionale di Geofisica e Vulcanologia
(Italy), Max Planck Institute (Germany), Meteorological Institute at the University of Bonn
(Germany), Meteorological Research Institute (Japan), Model for Interdisciplinary
Research on Climate (Japan), National Center for Atmospheric Research (Colorado),

among others. .



IPCC findings: human influence on climate

Black: true observations.
Orange/red: Climate model simulations with human-induced greenhouse gasses.
Blue: Climate model simulations without human-induced greenhouse gasses.
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Modeling future scenarios
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Global mean temperature anomalies
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Improving predictions of the IPCC ensemble

* Coupled Model Intercomparison Project (CMIP)
[Meehl et al., Bull. AMS, ‘00]

* No one model predicts best all the time, for all variables.

* Average prediction over all models is better predictor than any
single model. [Reichler & Kim, Bull. AMS ‘08], [Reifen & Toumi, GRL ’09]

* Bayesian approaches in climate science e.g. [Smith et al. JASA ’08]

* |IPCC held 2010 Expert Meeting on how to better combine model
predictions.

Can we do better, using Machine Learning?

Challenge: How should we predict future climates?

— While taking into account the multi-model ensemble predictions
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Contributions

* Tracking Climate Models (TCM) [M, Schmidt, Saroha, & Asplund,
SAM 2011; NASA CIDU 2010]: Online learning with expert advice.

* Neighborhood-Augmented TCM (NTCM) [McQuade & M, AAAI
2012]: Extend TCM to model geospatial neighborhood influence.

* MRF-based approach [McQuade & M, submitted 2014].

e Climate Prediction via Matrix Completion [Ghafarianzadeh & M,
Late-Breaking Paper, AAAI 2013]: use sparse matrix completion.
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Average prediction
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Adaptive, weighted average prediction
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Adaptive, weighted average prediction
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Adaptive, weighted average prediction
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Adaptive, weighted average prediction
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Tradeoff: explore vs. exploit

Tradeoff: Quickly finding current best predicting model vs.
being ready to quickly switch to other models.

Tradeoff hinges on how often the identity of the best model
switches.
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Online learning: non-stationary data

P (®
/ £ / :!‘ \ b S
a-experts1...m [ L&) [ 27 cee (040
pt;a(l) ‘,’l - .
B e e T
oy 2B
Expertsi=1...n| ) | .' cee | )
A g g @O

Learn-a Algorithm [M & Jaakkola, NIPS 2003]:
* Learns the switching rate: level of non-stationarity: a.

* Tracks a set of meta-experts, online learning algorithms, each with a
different value of the a parameter.
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Online learning: non-stationary data
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 [M & Jaakkola, 2003]: In a family of online learning algorithms, weight updates,
p,(i), equivalent to Bayesian updates of a generalized Hidden Markov Model.
— Hidden variable: identity of “best expert.”
— Transition dynamics, p(i [ j), model non-stationarity.

* [Herbster & Warmuth, 1998]: Fixed-Share algorithm models switching w.p. a.
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Incorporating neighborhood influence

[McQuade & M, AAAI 2012]
* Climate predictions are made at higher geospatial resolutions.

* Run instances of Learn-a (variant) on multiple sub-regions that
partition the globe.

 Model neighborhood influences among geospatial regions.
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Incorporating neighborhood influence

Neighborhood-augmented Learn-a.
Non-homogenous HMM transition dynamics:

(1 — ) if i=k
ko) = (1— 1)

P(i

2. Frs(i if i£k

Z ' sGS (1)

S(r) - neighborhood scheme: set of “neighbors” of region r
* P, (i) - probability of expert (climate model) i in region s

* [ -regulates geospatial influence

 Z-normalization factor
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MRF-based approach

Geospatial lattice

[McQuade & M, submitted]

Time t
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MRF-based approach
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MRF-based approach
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FIGURE 1.11: Cumulative mean regional loss of the hindcast.
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Climate Prediction via Matrix Completion

[Ghafarianzadeh & M, Late-Breaking Paper, AAAI 2013]

 Goal: combine/improve the predictions of the multi-model ensemble
of GCMs, using sparse matrix completion.

 Exploits past observations, and the predictions of the multi-model
ensemble of GCMs.

* Learning approach is batch, unsupervised.

 Create a sparse (incomplete) matrix from climate model predictions
and observed temperature data.

 Apply a matrix completion algorithm to recover it.

[Keshavan, Montanari & Oh, JMLR ’10] OptSpace algorithm: minimization
of nuclear norm; uses spectral techniques and manifold optimization

* Yields predictions of unobserved temperatures.
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Yalidation for years 2005-2012
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Yalidation for years 2000-2012
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Yalidation for years 1990-2012
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Yalidation for years 1980-2012
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Yalidation for years 1970-2012
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Outlook

These results suggest some low intrinsic dimensionality.

We induced some sparsity in the input matrix
— Need not ensure low intrinsic dimensionality

[Jia, DelSole & Tippett, J. Climate ‘13] also suggest low intrinsic
dimensionality:

— Only a small number (~2) climatological “predictive components” [DelSole &
Tippett, Rev. Geophys. ‘07] determine the predictive “skill” of climate models
(measured w.r.t. observations).

* General warming trend, and El Nifio-Southern Oscillation

GCM ensemble (or subsets) as lower dimensional subspace

— Can serve as a proxy for the high dimensional, complicated (dependencies,
redundancies) space of climatological components in each GCM.

Suggests future work on tracking a small subset of the ensemble.
— Subset can change over time and space



Climate Extremes
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How to define extremes?

@ Threshold in single variable [IPCC special report 2012, p.4]
@ Multiple degrees of severity

@ Related to multiple variables (complex extreme events)
@ Accumulation of non-extremes [IPCC 2012, p.6]

@ Subject to local climate characteristics [IPCC 2012, p.7]
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Topic modeling approach

[Tang & M, Climate Informatics 2014]

otels Mode
Models Statistical Models ode

Extreme and Non- I
extreme values Extreme values Data type

Single variable Multiple variables Variables
Single event type Multiple event types Events




Climate topic modeling
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Climate topic modeling using LDA

o \Multi(6) ‘ P(L,|t,, B)

-

* [:number of spatial regions

* N:number of observations in region

* t :climate topic

* [ climate descriptor: discretized observed climate variable

Dirichlet prior on 0




Qualitative evaluation: Sahel drought

1970 TOPIC_3 9.11299
uwndl 0.21946
vwndl 0.18948
shumd4 0.10672
shum2 0.088712
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uwnd2 0.03436
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1971 TOPIC_6 0.11236
shuml 0.29531
uwndl 0.16000
pr_wtrl 0.10355
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pr_wtr2 0.05688
pres3 9.05418
slp3 0.04164
uwnd2 9.063991
rhum2 9.03571
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Paleo-climate Reconstruction
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Paleo-climate reconstruction’

Problem:

— To understand climate change we need to understand past
climates.

— NOTE: climate has fluctuated at much greater scales in the
past than in the 20t Century.

— However the variance on measurements is higher in the past.

* We did not have a global grid of measurements
* Measurements corrupted or lost

Challenge: use paleo-proxies to reconstruct temperatures, CO,

E.g. tree rings, coral, ice cores, lake sediment cores, provide estimates.
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Paleo-climate reconstruction

Challenge: use paleo-proxies to reconstruct temperature, CO,
concentrations. E.g. tree rings, coral, ice cores, lake sediment cores.

Battle Ground
Lake,
Washington

4,500 years ago

Model
sediment
column

9,500 years ago

11,200 years ago

15,000 years ago

20,000 years ago




Data Matrix

Challenge: How how to best
harness paleo-proxies to reconstruct
past climates?

Possible ML approaches:

Reconstruction Period

Can sparse matrix completion techniques =
O
play a role? 8
Discover latent structure? P
S <
3 2
2 :
Related ML issues: = >
Data fusion (many small data sets!) g S
Multi-view learning ® | Instrumental Temperature Record | =
o (Calibration Period) s
«€<— Space ><—>
Number of
Proxies

[Smerdon & Kaplan, Journal of Climate, 2007]



Climate Informatics: take-home message

* Very impactful problems for society; climate change mitigation
and adaptation. Chance to affect IPCC.

* Data-rich “big data” playground, public data sets
* Largely open field for ML, with many low-hanging fruit

* Climate scientists are already extremely computationally
sophisticated, writing massive software, running HPC.
— Allows for fruitful collaborations focused on the ML value-add.
— Climate model simulations provide a vast wealth of data/knowledge.

* Physics provides some inertia, predictability!

* Funding opportunities
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Resources

Climate Informatics: wow.climateinformatics.org
— Links to resources, Climate Informatics workshops, online community

Climate Informatics Wiki

— Data sets here:
sites.google.com/site/lstclimateinformatics/materials

4t International Workshop on Climate Informatics, 2014
www2 .image.ucar.edu/event/ci2014

4th Workshop on Understanding Climate Change from Data, 2014
www2 .image.ucar.edu/event/fourth-climatechange

IPCC AR5 Report: www.ipcc.ch/report/ar5/

WCRP Grand Challenges:
www.wcrp-climate.org/grand-challenges
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