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Nuclear Nonproliferation

• Radioactive sources are 

characterized by distribution of 

neutron energies

• Organic scintillation detectors: 

prominent technology for 

neutron detection



Organic Scintillation Detector

Source 

material

• Detects both neutrons 

and gamma rays

• Need to classify neutrons 

and gamma rays



Nuclear Particle Classification

Source 

material

• X ∈ Rd, d = signal length

• Training data:

X1, . . . , Xm
iid
∼ P0 (from gamma ray source, e.g. Na-22)

Xm+1, . . . , Xm+n
iid
∼ P1 (from neutron source, e.g. Cf-252)

• P0, P1 = class-conditional distributions; don’t want to model



Reality: No Pure Neutron Sources

• Contamination model for training data:

X1, . . . , Xm
iid
∼ P0

Xm+1, . . . , Xm+n
iid
∼ P̃1 = (1− π)P1 + πP0

• π unknown

• P0, P1 may have overlapping supports (nonseparable problem)

• Nonparametric approach desired

• Problem known as “learning with positive and unlabeled examples”
(LPUE)



Measuring Performance
• Classifier:

f : Rd → {0, 1}

• False positive/negative rates:

R0(f) := P0(f(X) = 1)

R1(f) := P1(f(X) = 0)

R̃1(f) := P̃1(f(X) = 0)

• Estimating false negative rate:

P̃1 = (1− π)P1 + πP0
⇓

R̃1(f) = (1− π)R1(f) + π(1−R0(f))
⇓

R1(f) = R̃1(f)−π(1−R0(f))
1−π

• Suffices to estimate π
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Mixture Proportion Estimation

• Need consistent estimate of κ

• Note: κ not identifiable in general

• Consider

Z1, . . . , Zm
iid
∼ H

Zm+1, . . . , Zm+n
iid
∼ F = (1− κ)G+ κH

H

H

F

GH G

F = 1
3G+ 2

3H F = 2
3G+ 1

3H
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Mixture Proportion Estimation

• Given two distributions F,H , define

κ∗(F |H) = max{α ∈ [0, 1] : ∃G′ s.t. F = (1− α)G′ + αH}

• κ∗ can be estimated — stay tuned

• When is κ = κ∗(F |H)?

H

F



Identifiability Condition
• If

F = (1− κ)G+ κH

then
κ = κ∗(F |H) ⇐⇒ κ∗(G |H) = 0

• Apply to LPUE

X1, . . . , Xm
iid
∼ P0

Xm+1, . . . , Xm+n
iid
∼ P̃1 = (1− π)P1 + πP0

• Need
κ∗(P1 |P0) = 0

In words: Can’t write P1 as a (nontrivial) mixture of
P0 and some other distribution



Classification with Label Noise

• Contaminated training data:

X1, . . . , Xm
iid
∼ P̃0 = (1− π0)P0 + π0P1

Xm+1, . . . , Xm+n
iid
∼ P̃1 = (1− π1)P1 + π1P0

• P0, P1 unknown

• P0, P1, may have overlapping supports

• π0, π1 unknown

• Asymmetric label noise: π0 
= π1

• Random label noise, as opposed to adversarial, or feature-dependent



Understanding Label Noise

• Assume P0, P1 have densities p0(x), p1(x)

• Then P̃0, P̃1 have densities

p̃0(x) = (1− π0)p0(x) + π0p1(x)

p̃1(x) = (1− π1)p1(x) + π1p0(x)
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False positive rate

• Simple algebra:

p1(x)

p0(x)
> γ ⇐⇒

p̃1(x)

p̃0(x)
> λ,

where

λ =
π1 + γ(1− π1)

1− π0 + γπ0
.



Modified Contamination Model

• Recall contaminaton model:

X1, . . . , Xm
iid
∼ P̃0 = (1− π0)P0 + π0P1

Xm+1, . . . , Xm+n
iid
∼ P̃1 = (1− π1)P1 + π1P0

• Proposition: If π0 + π1 < 1 and P0 
= P1, then

P̃0 = (1− π̃0)P0 + π̃0P̃1

P̃1 = (1− π̃1)P1 + π̃1P̃0

where
π̃0 =

π0

1− π1
, π̃1 =

π1

1− π0



MPE for Label Noise

• Modified contamination model

X1, . . . , Xm
iid
∼ P̃0 = (1− π̃0)P0 + π̃0P̃1

Xm+1, . . . , Xm+n
iid
∼ P̃1 = (1− π̃1)P1 + π̃1P̃0

• Need consistent estimates of π̃0, π̃1 MPE

• Identifiability: Need

κ∗(P0 | P̃1) = 0 and κ∗(P1 | P̃0) = 0

or equivalently (it can be shown)

κ∗(P0 |P1) = 0 and κ∗(P1 |P0) = 0



Identifiability Condition

κ∗(P0 |P1) = 0 and κ∗(P1 |P0) = 0
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P0 P1

satisfied

not satisfied
κ∗(P0 |P1) = 0

but
κ∗(P1 |P0) > 0

satisfied

not satisfied



Weakly Supervised Learning Problems

That can be reduced to MPE and its extensions

• Learning with positive and unlabeled examples (JMLR ’10)

• Classification with label noise (COLT ’13)

• Multiclass label noise (AISTATS ’14a)

• Various forms of domain adaptation (AISTATS ’14b)

• Co-training (Electronic J. Stat, ’16)

• Classification with partial labels (arxiv ’16)

• Estimating mixed membership models (arxiv ’16)

• Two-sample problem?

Common theme: contamination models: Observations described by

P̃j =
∑

i

πijPi

P0

P1

P2

P̃0

P̃1

P̃2



Some Related Work

LPUE/MPE: Liu et al. (2002), Denis et al. (2005), Elkan and Noto (2008), 

Ward et al. (2009), Smola et al. (2009), Goernitz et al. (2013), du Plessis 

and Sugiyama (2013, 2015),  Jain et al. (2016)

Label noise: Long and Servido (2010), Natarajan et al. (2013), Menon et 

al. (2015), Liu and Tao (2016), van Rooyen et al. (2015), Patrini et al. 

(2016)

Multiple hypothesis testing: Genovese and Wasserman (2004)



Approaches to Mixture Prop. Est.

• Plug-in

• ROC slope

• Class probability estimation

• Kernel mean embedding



MPE: Density Ratio Formulation

• Key observation: For any F,H

κ∗(F |H) = inf
A:H(A)>0

F (A)

H(A)

• Proof: κ∗ is the largest κ such that

G =
F − κH

1− κ

is a distribution.

• Similarly, if F and H have
densities f and h, then

κ∗(F |H) = ess inf
x:h(x)>0

f(x)

h(x)

• Universally consistent estimator established by Blanchard et al. (2010)



ROC Method
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• Rewrite previous identity as (substi-

tuting A→ Ac)

κ∗(F |H) = inf
A:H(A)<1

1− F (A)

1−H(A)

• Slope of ROC at its right endpoint

• Sanderson and Scott (2014), Scott
(2015): implementations based on
kernel logistic regression



Class Probability Estimation

• Assume joint distribution on (X,Y ), Y = 0, 1, where

X |Y = 1 ∼ F

X |Y = 0 ∼ H

• Prior / posterior class probabilities

θ := Pr(Y = 1)

η(x) := Pr(Y = 1 |X = x)

• By a simple application of Bayes rule,

ηmax := sup
x

η(x) =
1

1 + 1−θ
θ
κ∗(F |H)

• Menon et al. (2015), Liu and Tao (2016).



Kernel Mean Embedding Approach

• Assume κ∗(G |H) = 0

• Consider

x1, . . . , xm
iid
∼ H

xm+1, . . . , xm+n
iid
∼ F = (1− κ)G+ κH

• Letting λ = 1
1−κ , we have



• Recall

κ∗ = max{α ∈ [0, 1] | ∃G′ s.t. F = (1− α)G′ + αH}

• Define

λ∗ = sup{λ ≥ 1 |λF + (1− λ)H is a valid distribution}

• Then λ∗ = 1
1−κ∗ , and we have

Kernel Mean Embedding Approach



Kernel Mean Embedding

• Let H denote a reproducing kernel Hilbert space (RKHS)
with reproducing kernel k.

• The kernel mean embedding of a distribution P is

φ(P ) = EX∼P k(·, X) ∈ H

• If x1, . . . , x� ∼ P , an estimate of φ(P ) is

φ(P̂ ) =
1

�

�∑

i=1

k(·, xi)

where P̂ is the empirical distribution.

• If φ is injective, then ‖φ(P )−φ(P ′)‖H is a notion of distance
between P and P ′.



Distance to Set of Distributions

• Define

C = {w ∈ H : w = φ(P ), for some distribution P},

Ĉ = {w ∈ H : w =

n+m∑

i=1

αiφ(xi), for some α ∈ ∆n+m}.

• For each λ ≥ 0, define

d(λ) = inf
w∈C

‖λφ(F ) + (1− λ)φ(H)− w‖H

d̂(λ) = inf
w∈Ĉ

‖λφ(F̂ ) + (1− λ)φ(Ĥ)− w‖H .

• Clearly d(λ) = 0 for λ ≤ λ∗.

• Ideally d(λ) > 0 for λ > λ∗.



Properties of Distance Function

Theorem: If

• k is universal, e.g, Gaussian kernel

• there exists a compact set A such that A ⊆ supp(H)\ supp(G)
and H(A) > 0.

then
d(λ) > 0

for all λ > λ∗.

Other useful properties:

• d, d̂ are nondecreasing, convex

• Computing d̂(λ) entails solving a quadratic program



Thresholding Estimators

• For τ > 0, define

λ̂τ = inf{λ | d̂(λ) ≥ τ}

• Since d is convex and nondecreasing, we can also consider

λ̂gradν = inf{λ | ∇d̂(λ) ≥ ν}

• For appropriately chosen τ and ν, and under the previous
assumptions, both estimators converge to λ∗ at a rate of

1√
min(m,n)

.



Illustration 1



Illustration 2



Experimental results



Multiclass Label Noise

• Training distributions:

P̃0 = (1− π01 − π02)P0 + π01P1 + π02P2

P̃1 = π10P0 + (1− π10 − π12)P1 + π12P2

P̃2 = π20P0 + π21P1 + (1− π20 − π21)P2

P0

P1

P2

P̃0

P̃1

P̃2



Maximum Mixture Proportions

• Given distributions F and H1, . . . , HM , define

κ∗(F |H1, . . . ,HM ) = max
{ M∑

i=1

νi

∣∣∣ νi ≥ 0,

M∑

i=1

νi ≤ 1, and

∃ a distribution G s.t.

F =

(
1−

M∑

i=1

νi

)
G+

M∑

i=1

νiHi

}
.

F

G

H2

H1

• A universally consistent estimator κ̂(F̂ | Ĥ1, . . . , ĤM ) exists (AISTATS
2014), but practical estimators are needed.

• Arises in other multiclass settings,
e.g., topic modelling, learning with
partial labels



Classification with Unknown Class Skew

• Binary classification training data

X1, . . . ,Xm
iid
∼ P0

Xm+1, . . . , Xm+n
iid
∼ P1

• Test data:

Z1, . . . , Zk
iid
∼ Ptest = πP0 + (1− π)P1

• π unknown

• π needs to be known for several performance mea-
sures (probability of error, precision)

• MPE: If κ∗(P1, P0) = 0 then π = κ∗(Ptest, P0)

π̂ = κ̂({Xi}
m
i=1, {Zi}

k
i=1)



Classification with Reject Option
• Binary classification training data

X1, . . . , Xm
iid
∼ P0

Xm+1, . . . , Xm+n
iid
∼ P1

• Test data:

Z1, . . . , Zk
iid
∼ Ptest = π0P0 + π1P1 + (1− π0 − π1)P2

• P2 = distribution of everything else (reject)

• π0, π1 unknown

• Use MPE (twice) to estimate π0, π1
=⇒ estimate probability of class 2 error
=⇒ design a classifier



• Gilles Blanchard

• Gregory Handy, Tyler Sanderson

• Marek Flaska, Sara Pozzi

• Harish Ramaswamy, Ambuj Tewari

Collaborators



Conclusion

Mixture proportion estimation can be used to solve

◦ Learning with positive and unlabeled examples

◦ Classification with label noise

◦ Multiclass label noise

◦ Classification with unknown class skew

◦ Classification with reject option

◦ Co-training

◦ Classification with partial labels

◦ Mixed membership models

◦ ???


