(Bandit) Convex Optimization with Biased Noisy Gradient Oracles

Csaba Szepesvári Joint work with Xiaowei Hu, L.A. Prashanth, and András György

Reinforcement Learning and Artificial Intelligence (RLAI) Group Department of Computing Science & AICML University of Alberta csaba.szepesvari@ualberta.ca

November 10, 2015

Gatsby Seminar

Outline

Convex Bandit Optimization

- 2 The State-of-the-Art for Noisy Bandit Convex Optimization
- Bow are Gradients Estimated?
- 4 New Oracle Model: Noisy, Biased Oracles
- 5 Results

Expectation Management

• 80% review (long history!)

Expectation Management

- 80% review (long history!)
- 20% new

Convex Optimization with Noisy Bandit Feedback

Goal

Assume f convex (smooth etc). Find a near-minimizer of f using n > 0 queries!

Noisy Bandit Feedback \equiv Noisy zeroth-order information

Convex Optimization with Noisy Bandit Feedback

Goal

Assume f convex (smooth etc). Find a near-minimizer of f using n > 0 queries!

Noisy Bandit Feedback \equiv Noisy zeroth-order information

Main Question

How fast can/will/should the optimization error $\Delta_n = \mathbb{E}[f(X_n)] - \inf_{x \in \mathcal{K}} f(x) \text{ decrease with } n?$

• Distribute memory in between jobs

- Distribute memory in between jobs
- Maximize success: $\max_{x \in \mathcal{K}} f(x)$

- Distribute memory in between jobs
- Maximize success: $\max_{x \in \mathcal{K}} f(x)$
- Linear constraints:
 - $\mathcal{K} = \left\{ x \in [0,\infty)^d \, : \, \sum_i x_i = 1 \right\}$

- Distribute memory in between jobs
- Maximize success: $\max_{x \in \mathcal{K}} f(x)$
- Linear constraints: $\mathcal{K} = \left\{ x \in [0, \infty)^d : \sum_i x_i = 1 \right\}$
- Concave objective f: Convex combination of resources not worse than what randomization gives.

- Distribute memory in between jobs
- Maximize success: $\max_{x \in \mathcal{K}} f(x)$
- Linear constraints:
 - $\mathcal{K} = \left\{ x \in [0,\infty)^d : \sum_i x_i = 1 \right\}$
- Concave objective *f*: Convex combination of resources not worse than what randomization gives.

The only way to learn about f is by trying different configurations.

- Distribute memory in between jobs
- Maximize success: $\max_{x \in \mathcal{K}} f(x)$
- Linear constraints:
 - $\mathcal{K} = \left\{ x \in [0,\infty)^d \, : \, \sum_i x_i = 1 \right\}$
- Concave objective *f*: Convex combination of resources not worse than what randomization gives.

The only way to learn about f is by trying different configurations. Feedback: f(x) + noise for x tried. "Bandit" feedback.

- Distribute memory in between jobs
- Maximize success: $\max_{x \in \mathcal{K}} f(x)$
- Linear constraints:
 - $\mathcal{K} = \left\{ x \in [0,\infty)^d \, : \, \sum_i x_i = 1 \right\}$
- Concave objective *f*: Convex combination of resources not worse than what randomization gives.

The only way to learn about f is by trying different configurations. Feedback: f(x) + noise for x tried. "Bandit" feedback. Goal is to find the best configuration quickly.

• No other choice

- No other choice
 - Controlling an unknown system

- No other choice
 - Controlling an unknown system
 - Simulation optimization:

- No other choice
 - Controlling an unknown system
 - Simulation optimization:
 - $f(x) = \mathbb{E}[F(x,\xi)] \xi$: simulation noise

- No other choice
 - Controlling an unknown system
 - Simulation optimization:
 - $f(x) = \mathbb{E}[F(x,\xi)] \xi$: simulation noise
 - $F(x,\xi)$ is the output of a simulation;

- No other choice
 - Controlling an unknown system
 - Simulation optimization:
 - $f(x) = \mathbb{E}[F(x,\xi)] \xi$: simulation noise
 - $F(x,\xi)$ is the output of a simulation;
 - Gradients are unavailable

- No other choice
 - Controlling an unknown system
 - Simulation optimization:
 - $f(x) = \mathbb{E}[F(x,\xi)] \xi$: simulation noise
 - $F(x,\xi)$ is the output of a simulation;
 - Gradients are unavailable
- By choice:

- No other choice
 - Controlling an unknown system
 - Simulation optimization:
 - $f(x) = \mathbb{E}[F(x,\xi)] \xi$: simulation noise
 - *F*(x, ξ) is the output of a simulation;
 - Gradients are unavailable
- By choice:
 - Gradient is too expensive/complicated to compute

- No other choice
 - Controlling an unknown system
 - Simulation optimization:
 - $f(x) = \mathbb{E}[F(x,\xi)] \xi$: simulation noise
 - *F*(x, ξ) is the output of a simulation;
 - Gradients are unavailable
- By choice:
 - Gradient is too expensive/complicated to compute
 - (Can this be justified?)

• Smoothness: $D_f(x||y) \leq \frac{L}{2} ||x - y||^2$.

• Smoothness:

$$D_f(x||y) \leq \frac{L}{2} ||x-y||^2$$
.

• Strong convexity: $D_f(x||y) \ge \frac{\mu}{2} ||x - y||^2$.

- Smoothness: $D_f(x||y) \le \frac{L}{2} ||x - y||^2$. • Strong convexity:
 - $D_f(x||y) \geq \frac{\mu}{2} ||x-y||^2$.

 $\mathcal{K} \subset \mathbb{R}^d$ convex, closed, non-empty.

- Smoothness: $D_f(x||y) \le \frac{L}{2} ||x - y||^2$.
- Strong convexity: $D_f(x||y) \ge \frac{\mu}{2} ||x - y||^2$.

Assumption

First-order information, $(\nabla f(\cdot), f(\cdot))$, can be obtained at any point.

Assumption

First-order information, $(\nabla f(\cdot), f(\cdot))$, can be obtained at any point.

Assumption

First-order information, $(\nabla f(\cdot), f(\cdot))$, can be obtained at any point.

Ellipsoid Method (Shor, 1970)

• $\Delta_n^{\mathcal{E},d} = C \exp(-\frac{n}{d^2})$ (Nemirovskii and Yudin, 1983)

Assumption

First-order information, $(\nabla f(\cdot), f(\cdot))$, can be obtained at any point.

- $\Delta_n^{\mathcal{E},d} = C \exp(-\frac{n}{d^2})$ (Nemirovskii and Yudin, 1983)
- Matching lower bound when *d* small and *n* large.

Assumption

First-order information, $(\nabla f(\cdot), f(\cdot))$, can be obtained at any point.

- $\Delta_n^{\mathcal{E},d} = C \exp(-\frac{n}{d^2})$ (Nemirovskii and Yudin, 1983)
- Matching lower bound when d small and n large.
 but

Assumption

First-order information, $(\nabla f(\cdot), f(\cdot))$, can be obtained at any point.

- $\Delta_n^{\mathcal{E},d} = C \exp(-\frac{n}{d^2})$ (Nemirovskii and Yudin, 1983)
- Matching lower bound when d small and n large.
 ... but
- Each update takes O(d²) MADDs (prohibitive when d large).

Assumption

First-order information, $(\nabla f(\cdot), f(\cdot))$, can be obtained at any point.

- $\Delta_n^{\mathcal{E},d} = C \exp(-\frac{n}{d^2})$ (Nemirovskii and Yudin, 1983)
- Matching lower bound when d small and n large.
 ... but
- Each update takes O(d²) MADDs (prohibitive when d large).
- Suboptimal for $d/n^2 \gg 1$: $\lim_{d\to\infty} \Delta_n^{\mathcal{E},d} = \Omega(1)$, while $\Delta_n^* = \Theta(1/\sqrt{n})$.

Convex Optimization 101: Gradient Methods

Think: "d large". Update complexity is O(d).

• Subgradient method: Optimal for convex problems:

$$\Delta_n = O(\sqrt{1/n}).$$

No dependence on d!

Convex Optimization 101: Gradient Methods

Think: "d large". Update complexity is O(d).

• Subgradient method: Optimal for convex problems:

 $\Delta_n = O(\sqrt{1/n}).$

No dependence on d!

 Gradient method + momentum term ≡ accelerated gradient method (Nesterov, 2004).
Convex Optimization 101: Gradient Methods

Think: "d large". Update complexity is O(d).

• Subgradient method: Optimal for convex problems:

 $\Delta_n = O(\sqrt{1/n}).$

No dependence on d!

- Gradient method + momentum term ≡ accelerated gradient method (Nesterov, 2004).
 - Optimal for smooth convex problems, $\mathcal{F}_{L,0}$:

 $\Delta_n = O(L/n^2).$

Convex Optimization 101: Gradient Methods

Think: "d large". Update complexity is O(d).

• Subgradient method: Optimal for convex problems:

 $\Delta_n = O(\sqrt{1/n}).$

No dependence on d!

- Gradient method + momentum term ≡ accelerated gradient method (Nesterov, 2004).
 - Optimal for smooth convex problems, $\mathcal{F}_{L,0}$:

$$\Delta_n = O(L/n^2).$$

• Optimal for strongly convex, smooth problems, $\mathcal{F}_{L,\mu}$:

$$\Delta_n = O\left(\exp(-\frac{n}{\sqrt{L/\mu}})\right).$$

Outline

1 Convex Bandit Optimization

2 The State-of-the-Art for Noisy Bandit Convex Optimization

- 3 How are Gradients Estimated?
- 4 New Oracle Model: Noisy, Biased Oracles
- 5 Results

6 Conclusion

Results under Noisy Bandit Feedback

Recall: $f(x) = \mathbb{E}[F(x,\xi)].$

Assumptions

(A1) $F(x,\xi)$ can be obtained at any point. "Uncontrolled noise"

Results under Noisy Bandit Feedback

Recall: $f(x) = \mathbb{E}[F(x,\xi)].$

Assumptions

(A1) $F(x,\xi)$ can be obtained at any point. "Uncontrolled noise" (A2) ξ can be kept fixed between queries. "Controlled noise"

Simple story!

Simple story!

Gradient method

Simple story!

Gradient method

 $\Delta_n \leq C\sqrt{d^2/n}.$

Simple story!

Gradient method

 $\Delta_n \leq C\sqrt{d^2/n}.$

Nesterov (2011), Duchi et al. (2015)

Simple story!

Gradient method

 $\Delta_n \leq C\sqrt{d^2/n}.$

Nesterov (2011), Duchi et al. (2015)

Optimal!

Ellipsoid method and relatives (Nemirovskii and Yudin (1983), Section 9.4)

Ellipsoid method and relatives (Nemirovskii and Yudin (1983), Section 9.4)

• Agarwal et al. (2013) – $\sqrt{d^{33}/n}$

Ellipsoid method and relatives (Nemirovskii and Yudin (1983), Section 9.4)

- Agarwal et al. (2013) $\sqrt{d^{33}/n}$
- Liang et al. $(2014) \sqrt{d^{14}/n}$

Ellipsoid method and relatives (Nemirovskii and Yudin (1983), Section 9.4)

• Agarwal et al. (2013) – $\sqrt{d^{33}/n}$

• Liang et al. (2014) –
$$\sqrt{d^{14}/n}$$

Gradient methods: (Nemirovskii and Yudin (1983), Section 9.3)

Ellipsoid method and relatives (Nemirovskii and Yudin (1983), Section 9.4)

• Agarwal et al. (2013) – $\sqrt{d^{33}/n}$

• Liang et al. (2014) –
$$\sqrt{d^{14}/n}$$

Gradient methods: (Nemirovskii and Yudin (1983), Section 9.3)

• Convex: $- (d^2/n)^{1/4}$

(Nemirovskii and Yudin, 1983; Flaxman et al., 2005)

Ellipsoid method and relatives (Nemirovskii and Yudin (1983), Section 9.4)

• Agarwal et al. (2013) – $\sqrt{d^{33}/n}$

• Liang et al. (2014) –
$$\sqrt{d^{14}/n}$$

Gradient methods: (Nemirovskii and Yudin (1983), Section 9.3)

• Convex: - $(d^2/n)^{1/4}$

(Nemirovskii and Yudin, 1983; Flaxman et al., 2005)

• Smooth: $- (d^2/n)^{1/3}$

(Nemirovskii and Yudin, 1983; Saha and Tewari, 2011)

Ellipsoid method and relatives (Nemirovskii and Yudin (1983), Section 9.4)

• Agarwal et al. (2013) – $\sqrt{d^{33}/n}$

• Liang et al. (2014) –
$$\sqrt{d^{14}/n}$$

Gradient methods: (Nemirovskii and Yudin (1983), Section 9.3)

• Convex: $- (d^2/n)^{1/4}$

(Nemirovskii and Yudin, 1983; Flaxman et al., 2005)

- Smooth: (d²/n)^{1/3} (Nemirovskii and Yudin, 1983; Saha and Tewari, 2011)
- Smooth + SOC: $\sqrt{d^2/n}$ (Hazan and Levy, 2014)

Ellipsoid method and relatives (Nemirovskii and Yudin (1983), Section 9.4)

• Agarwal et al. (2013) – $\sqrt{d^{33}/n}$

• Liang et al. (2014) –
$$\sqrt{d^{14}/n}$$

Gradient methods: (Nemirovskii and Yudin (1983), Section 9.3)

• Convex: $- (d^2/n)^{1/4}$

(Nemirovskii and Yudin, 1983; Flaxman et al., 2005)

- Smooth: (d²/n)^{1/3} (Nemirovskii and Yudin, 1983; Saha and Tewari, 2011)
- Smooth + SOC: $\sqrt{d^2/n}$ (Hazan and Levy, 2014)

Lower bound: $\sqrt{d^2/n}$ (Shamir, 2012).

Ellipsoid method and relatives (Nemirovskii and Yudin (1983), Section 9.4)

• Agarwal et al. (2013) – $\sqrt{d^{33}/n}$

• Liang et al. (2014) –
$$\sqrt{d^{14}/n}$$

Gradient methods: (Nemirovskii and Yudin (1983), Section 9.3)

• Convex: $- (d^2/n)^{1/4}$

(Nemirovskii and Yudin, 1983; Flaxman et al., 2005)

• Smooth: $- (d^2/n)^{1/3}$ (Nemirovskii and Yudin 1983: Saba and $\overline{}$

(Nemirovskii and Yudin, 1983; Saha and Tewari, 2011)

• Smooth + SOC: $\sqrt{d^2/n}$ (Hazan and Levy, 2014)

Can we do better?

Lower bound: $\sqrt{d^2/n}$ (Shamir, 2012).

Ellipsoid method and relatives (Nemirovskii and Yudin (1983), Section 9.4)

• Agarwal et al. (2013) – $\sqrt{d^{33}/n}$

• Liang et al. (2014) –
$$\sqrt{d^{14}/n}$$

Gradient methods: (Nemirovskii and Yudin (1983), Section 9.3)

• Convex: $- (d^2/n)^{1/4}$

(Nemirovskii and Yudin, 1983; Flaxman et al., 2005)

- Smooth: (d²/n)^{1/3} (Nemirovskii and Yudin, 1983; Saha and Tewari, 2011)
- Smooth + SOC: $\sqrt{d^2/n}$ (Hazan and Levy, 2014)

Lower bound: $\sqrt{d^2/n}$ (Shamir, 2012).

Can we do better? ... using a "clever" gradient method maybe?

Outline

Convex Bandit Optimization

2 The State-of-the-Art for Noisy Bandit Convex Optimization

Bow are Gradients Estimated?

4 New Oracle Model: Noisy, Biased Oracles

5 Results

6 Conclusion

Gradient Estimation – Noise-free Feedback

Finite-differences (Kiefer and Wolfowitz, 1952):

$$g_i = rac{1}{\delta} \left(f(x + \delta e_i) - f(x)
ight), \quad i = 1, \ldots, d$$

Taylor-series expansion:

 $f(x + \delta e_i) = f(x) + \delta \nabla f(x)e_i + \delta^2 e_i^\top \nabla^2 f(x)e_i + O(\delta^3).$

Accuracy: $\|g - \nabla f(x)\|_2 = O(\sqrt{d} \delta).$

Needs d + 1 queries.

Two-sided Differences

Improved estimate:

$$g_i = \frac{1}{2\delta} \left(f(x + \delta e_i) - f(x - \delta e_i) \right), \quad i = 1, \dots, d.$$

Taylor-series expansions:

$$f(x + \delta e_i) = f(x) + \delta \nabla f(x)e_i + \delta^2 e_i^\top \nabla^2 f(x)e_i + O(\delta^3).$$

$$f(x - \delta e_i) = f(x) - \delta \nabla f(x)e_i + \delta^2 e_i^\top \nabla^2 f(x)e_i + O(\delta^3).$$

Accuracy: $\|g - \nabla f(x)\|_2 = O(\sqrt{d}\delta^2).$

Needs 2d queries.

Improved estimate:

$$G_i = \frac{1}{2\delta} \left\{ f(x + \delta e_i) + \xi_i^+ - \left(f(x - \delta e_i) + \xi_i^- \right) \right\}, \quad i = 1, \ldots, d.$$

Improved estimate:

$$G_i = \frac{1}{2\delta} \left\{ f(x+\delta e_i) + \xi_i^+ - \left(f(x-\delta e_i) + \xi_i^- \right) \right\}, \quad i = 1, \ldots, d.$$

Assumption: $\mathbb{E}[\xi^{\pm}] = 0$, $\mathbb{E}[(\xi^{\pm})] \leq \sigma^2 < +\infty$.

Improved estimate:

$$G_i = \frac{1}{2\delta} \left\{ f(x+\delta e_i) + \xi_i^+ - \left(f(x-\delta e_i) + \xi_i^-\right) \right\}, \quad i = 1, \ldots, d.$$

Assumption: $\mathbb{E}[\xi^{\pm}] = 0$, $\mathbb{E}[(\xi^{\pm})] \le \sigma^2 < +\infty$. Note: $\mathbb{E}[G_i] = g_i$.

Improved estimate:

$$G_i = \frac{1}{2\delta} \left\{ f(x + \delta e_i) + \xi_i^+ - (f(x - \delta e_i) + \xi_i^-) \right\}, \quad i = 1, \dots, d.$$

Assumption: $\mathbb{E}[\xi^{\pm}] = 0$, $\mathbb{E}[(\xi^{\pm})] \le \sigma^2 < +\infty$. Note: $\mathbb{E}[G_i] = g_i$. Hence

 $\|\mathbb{E}[G] - \nabla f(x)\|_2 = O(\sqrt{d}\delta^2).$ bias

Improved estimate:

$$G_i = \frac{1}{2\delta} \left\{ f(x+\delta e_i) + \xi_i^+ - (f(x-\delta e_i) + \xi_i^-) \right\}, \quad i = 1, \ldots, d.$$

Assumption: $\mathbb{E}[\xi^{\pm}] = 0$, $\mathbb{E}[(\xi^{\pm})] \le \sigma^2 < +\infty$. Note: $\mathbb{E}[G_i] = g_i$. Hence

 $\|\mathbb{E}[G] - \nabla f(x)\|_2 = O(\sqrt{d}\delta^2).$ bias

Second moment: $\mathbb{E}\left[\left\|G\right\|_{2}^{2}\right] = ?$

Improved estimate:

$$G_i = \frac{1}{2\delta} \left\{ f(x + \delta e_i) + \xi_i^+ - (f(x - \delta e_i) + \xi_i^-) \right\}, \quad i = 1, \dots, d.$$

Assumption: $\mathbb{E}[\xi^{\pm}] = 0$, $\mathbb{E}[(\xi^{\pm})] \le \sigma^2 < +\infty$. Note: $\mathbb{E}[G_i] = g_i$. Hence

$$\|\mathbb{E}[G] - \nabla f(x)\|_2 = O(\sqrt{d}\delta^2).$$
 bias

Second moment: $\mathbb{E}\left[\|G\|_{2}^{2}\right] = ?$ $G_{i} = g_{i} + \frac{\xi_{i}^{+} - \xi_{i}^{-}}{2\delta}$

Improved estimate:

$$G_i = \frac{1}{2\delta} \left\{ f(x+\delta e_i) + \xi_i^+ - (f(x-\delta e_i) + \xi_i^-) \right\}, \quad i = 1, \ldots, d.$$

Assumption: $\mathbb{E}[\xi^{\pm}] = 0$, $\mathbb{E}[(\xi^{\pm})] \le \sigma^2 < +\infty$. Note: $\mathbb{E}[G_i] = g_i$. Hence

$$\|\mathbb{E}[G] - \nabla f(x)\|_2 = O(\sqrt{d}\delta^2).$$
 bias

Second moment: $\mathbb{E}\left[\|G\|_{2}^{2}\right] = ?$ $G_{i} = g_{i} + \frac{\xi_{i}^{+} - \xi_{i}^{-}}{2\delta}$, hence $\mathbb{E}\left[G_{i}^{2}\right] = g_{i}^{2} + \frac{2\sigma^{2}}{4\delta^{2}} = g_{i}^{2} + \frac{\sigma^{2}}{2\delta^{2}}$

Improved estimate:

$$G_i = \frac{1}{2\delta} \left\{ f(x + \delta e_i) + \xi_i^+ - (f(x - \delta e_i) + \xi_i^-) \right\}, \quad i = 1, \ldots, d.$$

Assumption: $\mathbb{E}[\xi^{\pm}] = 0$, $\mathbb{E}[(\xi^{\pm})] \le \sigma^2 < +\infty$. Note: $\mathbb{E}[G_i] = g_i$. Hence

$$\|\mathbb{E}[G] - \nabla f(x)\|_2 = O(\sqrt{d}\delta^2).$$
 bias

Second moment: $\mathbb{E}\left[\|G\|_2^2\right] = ?$ $G_i = g_i + \frac{\xi_i^+ - \xi_i^-}{2\delta}$, hence $\mathbb{E}\left[G_i^2\right] = g_i^2 + \frac{2\sigma^2}{4\delta^2} = g_i^2 + \frac{\sigma^2}{2\delta^2}$ and $\mathbb{E}\left[\|G\|_2^2\right] = \|g\|_2^2 + O\left(\frac{d}{\delta^2}\right)$.

Can we reduce the number of queries?

Can we reduce the number of queries? Idea: Randomize! $l \sim p(\cdot)$ a positive pmf on $\{1, \ldots, d\}$.

Can we reduce the number of queries? Idea: Randomize! $I \sim p(\cdot)$ a positive pmf on $\{1, \ldots, d\}$. Choose

$$G_{i} = \frac{1}{p(i)} \frac{f(x + \delta e_{l}) - f(x - \delta e_{l})}{2\delta} e_{l,i}$$
$$= \begin{cases} \frac{1}{p(l)} \frac{f(x + \delta e_{l}) - f(x - \delta e_{l})}{2\delta}, & l = i; \\ 0, & \text{otherwise}. \end{cases}$$

Can we reduce the number of queries? Idea: Randomize! $I \sim p(\cdot)$ a positive pmf on $\{1, \ldots, d\}$. Choose

$$G_{i} = \frac{1}{p(i)} \frac{f(x + \delta e_{l}) - f(x - \delta e_{l})}{2\delta} e_{l,i}$$
$$= \begin{cases} \frac{1}{p(l)} \frac{f(x + \delta e_{l}) - f(x - \delta e_{l})}{2\delta}, & l = i; \\ 0, & \text{otherwise}. \end{cases}$$

Only 2-queries, regardless of d!

Can we reduce the number of queries? Idea: Randomize! $I \sim p(\cdot)$ a positive pmf on $\{1, \ldots, d\}$. Choose

$$G_{i} = \frac{1}{p(i)} \frac{f(x + \delta e_{l}) - f(x - \delta e_{l})}{2\delta} e_{l,i}$$
$$= \begin{cases} \frac{1}{p(l)} \frac{f(x + \delta e_{l}) - f(x - \delta e_{l})}{2\delta}, & l = i; \\ 0, & \text{otherwise}. \end{cases}$$

Only 2-queries, regardless of d! $\mathbb{E}[G_i] = g_i!$
Randomization (Noise-Free Bandit Feedback)

Can we reduce the number of queries? Idea: Randomize! $I \sim p(\cdot)$ a positive pmf on $\{1, \ldots, d\}$. Choose

$$G_{i} = \frac{1}{p(i)} \frac{f(x + \delta e_{l}) - f(x - \delta e_{l})}{2\delta} e_{l,i}$$
$$= \begin{cases} \frac{1}{p(l)} \frac{f(x + \delta e_{l}) - f(x - \delta e_{l})}{2\delta}, & l = i; \\ 0, & \text{otherwise}. \end{cases}$$

Only 2-queries, regardless of d! $\mathbb{E}[G_i] = g_i!$ Hence, $\|\mathbb{E}[G] - \nabla f(x)\|_2 = O(\sqrt{d}\delta^2)$.

Randomization (Noise-Free Bandit Feedback)

Can we reduce the number of queries? Idea: Randomize! $I \sim p(\cdot)$ a positive pmf on $\{1, \ldots, d\}$. Choose

$$G_{i} = \frac{1}{p(i)} \frac{f(x + \delta e_{l}) - f(x - \delta e_{l})}{2\delta} e_{l,i}$$
$$= \begin{cases} \frac{1}{p(l)} \frac{f(x + \delta e_{l}) - f(x - \delta e_{l})}{2\delta}, & l = i; \\ 0, & \text{otherwise}. \end{cases}$$

Only 2-queries, regardless of d! $\mathbb{E}[G_i] = g_i!$ Hence, $\|\mathbb{E}[G] - \nabla f(x)\|_2 = O(\sqrt{d}\delta^2)$.

Second moment?

$$G_i = \frac{1}{p(i)} \frac{f(x + \delta e_l) - f(x - \delta e_l)}{2\delta} e_{l,i}$$

$$G_i = \frac{1}{p(i)} \frac{f(x + \delta e_l) - f(x - \delta e_l)}{2\delta} e_{l,i}$$

Taylor-series expansion:

 $f(x + \delta e_i) = f(x) + \delta \nabla f(x)e_i + \delta^2 e_i^\top \nabla^2 f(x)e_i + O(\delta^3),$ $f(x - \delta e_i) = f(x) - \delta \nabla f(x)e_i + \delta^2 e_i^\top \nabla^2 f(x)e_i + O(\delta^3).$

$$G_i = \frac{1}{p(i)} \frac{f(x + \delta e_l) - f(x - \delta e_l)}{2\delta} e_{l,i}$$

Taylor-series expansion:

$$f(x + \delta e_i) = f(x) + \delta \nabla f(x) e_i + \delta^2 e_i^\top \nabla^2 f(x) e_i + O(\delta^3),$$

$$f(x - \delta e_i) = f(x) - \delta \nabla f(x) e_i + \delta^2 e_i^\top \nabla^2 f(x) e_i + O(\delta^3).$$

$$G_i^2 = \frac{\mathbb{I}_{\{I=i\}}}{p^2(i)} \frac{(\delta f_i'(x) + c_3(\delta))^2}{4\delta^2} = \frac{\mathbb{I}_{\{I=i\}}}{p^2(i)} \frac{(\delta^2(f_i'(x))^2 + c_4(\delta))}{\delta^2}$$

$$= \frac{\mathbb{I}_{\{I=i\}}}{p^2(i)} \left\{ (f_i'(x))^2 + O(\delta^2) \right\}$$

$$G_i = \frac{1}{p(i)} \frac{f(x + \delta e_l) - f(x - \delta e_l)}{2\delta} e_{l,i}$$

Taylor-series expansion:

$$f(x + \delta e_i) = f(x) + \delta \nabla f(x)e_i + \delta^2 e_i^\top \nabla^2 f(x)e_i + O(\delta^3),$$

$$f(x - \delta e_i) = f(x) - \delta \nabla f(x)e_i + \delta^2 e_i^\top \nabla^2 f(x)e_i + O(\delta^3).$$

$$G_{i}^{2} = \frac{\mathbb{I}_{\{I=i\}}}{p^{2}(i)} \frac{(\delta f_{i}'(x) + c_{3}(\delta))^{2}}{4\delta^{2}} = \frac{\mathbb{I}_{\{I=i\}}}{p^{2}(i)} \frac{(\delta^{2}(f_{i}'(x))^{2} + c_{4}(\delta))}{\delta^{2}}$$
$$= \frac{\mathbb{I}_{\{I=i\}}}{p^{2}(i)} \left\{ (f_{i}'(x))^{2} + O(\delta^{2}) \right\}$$

Hence, $\mathbb{E}[G_i^2] = O(1/p(i))$, so at best $\mathbb{E}\left[\|G\|_2^2\right] = O(d^2)$. Hmm..

$$\tilde{G}_i = \frac{1}{\rho(i)} \frac{(f(x+\delta e_l) + \xi^+) - (f(x-\delta e_l) + \xi^-)}{2\delta} e_{l,i}$$

$$\tilde{G}_i = \frac{1}{p(i)} \frac{\left(f(x+\delta e_l)+\xi^+\right)-\left(f(x-\delta e_l)+\xi^-\right)}{2\delta} e_{l,i}$$

Hence, $\tilde{G}_i = rac{\mathbb{I}_{\{I=i\}}}{p(i)} rac{\xi^+ - \xi^-}{2\delta} + G_i$

$$\begin{split} \tilde{G}_{i} &= \frac{1}{p(i)} \frac{\left(f(x+\delta e_{I})+\xi^{+}\right)-\left(f(x-\delta e_{I})+\xi^{-}\right)}{2\delta} e_{I,i} \\ \text{Hence, } \tilde{G}_{i} &= \frac{\mathbb{I}_{\left\{I=i\right\}} \xi^{+}-\xi^{-}}{2\delta} + G_{i} \text{ and} \\ & \mathbb{E}\left[\tilde{G}_{i}\right] = \mathbb{E}\left[G_{i}\right], \\ & \mathbb{E}\left[\tilde{G}_{i}^{2}\right] = \frac{1}{p(i)} \frac{\mathbb{E}\left[\left(\xi^{+}-\xi^{-}\right)^{2}\right]}{4\delta^{2}} + \mathbb{E}\left[G_{i}^{2}\right], \end{split}$$

$$\begin{split} \tilde{G}_i &= \frac{1}{p(i)} \frac{\left(f(x+\delta e_l)+\xi^+\right) - \left(f(x-\delta e_l)+\xi^-\right)}{2\delta} e_{l,i} \\ \text{Hence, } \tilde{G}_i &= \frac{\mathbb{I}_{\{l=i\}} \xi^+ - \xi^-}{2\delta} + G_i \text{ and} \\ & \mathbb{E}\left[\tilde{G}_i\right] = \mathbb{E}\left[G_i\right] , \\ & \mathbb{E}\left[\tilde{G}_i^2\right] = \frac{1}{p(i)} \frac{\mathbb{E}\left[(\xi^+ - \xi^-)^2\right]}{4\delta^2} + \mathbb{E}\left[G_i^2\right] , \end{split}$$

SO

$$\begin{split} \left\| \mathbb{E} \left[\tilde{G} \right]_2 - \nabla f(x) \right\|_2 &= O(\sqrt{d}\delta^2) \,, \\ \mathbb{E} \left[\left\| \tilde{G} \right\|_2^2 \right] &= O(d^2(1 + 1/\delta^2)) \,. \end{split}$$
 harsh!

• Noise-free observations (or controlled noise):

- Noise-free observations (or controlled noise):
 - Bias: $O(\delta^2)$

- Noise-free observations (or controlled noise):
 - ► Bias: O(δ²)
 - Second-moment: O(1)

- Noise-free observations (or controlled noise):
 - Bias: $O(\delta^2)$
 - Second-moment: O(1)
- Noisy observations (a.k.a. uncontrolled noise):

- Noise-free observations (or controlled noise):
 - Bias: $O(\delta^2)$
 - Second-moment: O(1)
- Noisy observations (a.k.a. uncontrolled noise):
 - Bias: $O(\delta^2)$

- Noise-free observations (or controlled noise):
 - Bias: $O(\delta^2)$
 - Second-moment: O(1)
- Noisy observations (a.k.a. uncontrolled noise):
 - Bias: $O(\delta^2)$
 - Second moment: $O(\delta^{-2})$

- Noise-free observations (or controlled noise):
 - Bias: $O(\delta^2)$
 - Second-moment: O(1)
- Noisy observations (a.k.a. uncontrolled noise):
 - Bias: $O(\delta^2)$
 - Second moment: $O(\delta^{-2})$

This assumed $f \in C^3$. Holds also for f convex, smooth.

General two-point estimate:

$$G=\frac{(f(x+U)+\xi^+)-(f(x-U)+\xi^-)}{2\delta}V.$$

General two-point estimate:

$$G=\frac{(f(x+U)+\xi^+)-(f(x-U)+\xi^-)}{2\delta}V.$$

Choose U, V such that $\mathbb{E}\left[VU^{\top}\right] = I$, $\mathbb{E}\left[V\right] = 0$.

General two-point estimate:

$$G=\frac{(f(x+U)+\xi^+)-(f(x-U)+\xi^-)}{2\delta}V.$$

Choose U, V such that $\mathbb{E}\left[VU^{\top}\right] = I$, $\mathbb{E}\left[V\right] = 0$. One-point estimate!

$$G=rac{(f(x+U)+\xi^+)}{\delta}V$$
.

General two-point estimate:

$$G=\frac{(f(x+U)+\xi^+)-(f(x-U)+\xi^-)}{2\delta}V.$$

Choose U, V such that $\mathbb{E}\left[VU^{\top}\right] = I$, $\mathbb{E}\left[V\right] = 0$. One-point estimate!

$$G=rac{(f(x+U)+\xi^+)}{\delta}V$$
.

Choose U, V such that $\mathbb{E}\left[VU^{\top}\right] = I$, $\mathbb{E}\left[V\right] = 0$.

General two-point estimate:

$$G=\frac{(f(x+U)+\xi^+)-(f(x-U)+\xi^-)}{2\delta}V.$$

Choose U, V such that $\mathbb{E} [VU^{\top}] = I$, $\mathbb{E} [V] = 0$. One-point estimate!

$$G=rac{(f(x+U)+\xi^+)}{\delta}V$$
.

Choose U, V such that $\mathbb{E}\left[VU^{\top}\right] = I$, $\mathbb{E}\left[V\right] = 0$. Works??

General two-point estimate:

$$G=\frac{(f(x+U)+\xi^+)-(f(x-U)+\xi^-)}{2\delta}V.$$

Choose U, V such that $\mathbb{E} [VU^{\top}] = I$, $\mathbb{E} [V] = 0$. One-point estimate!

$$G=rac{(f(x+U)+\xi^+)}{\delta}V$$
.

Choose U, V such that $\mathbb{E}\left[VU^{\top}\right] = I, \mathbb{E}\left[V\right] = 0$. Works?? $\mathbb{E}[G] = \mathbb{E}\left[G - \frac{f(x)}{\delta}V\right] = \mathbb{E}\left[\frac{(f(x+U)+\xi^+)-f(x)}{\delta}V\right].$

• $U \sim \delta \mathcal{N}(0, I)$, $V = \delta^{-1} U$

- $U \sim \delta \mathcal{N}(0, I)$, $V = \delta^{-1} U$
 - Smoothed functional scheme by Katkovnik and Kulchitsky (1972);

- $U \sim \delta \mathcal{N}(0, I)$, $V = \delta^{-1} U$
 - Smoothed functional scheme by Katkovnik and Kulchitsky (1972);
 - ▶ Refined by Polyak and Tsybakov (1990);

• $U \sim \delta \mathcal{N}(0, I)$, $V = \delta^{-1} U$

- Smoothed functional scheme by Katkovnik and Kulchitsky (1972);
- Refined by Polyak and Tsybakov (1990);
- ▶ Further studied by Dippon (2003); Nesterov (2011).

- $U \sim \delta \mathcal{N}(0, I)$, $V = \delta^{-1} U$
 - Smoothed functional scheme by Katkovnik and Kulchitsky (1972);
 - Refined by Polyak and Tsybakov (1990);
 - ▶ Further studied by Dippon (2003); Nesterov (2011).
- $U \sim \delta \operatorname{Unif}(\mathbb{S}_d)$, $V = d\delta^{-1} U$

- $U \sim \delta \mathcal{N}(0, I)$, $V = \delta^{-1} U$
 - Smoothed functional scheme by Katkovnik and Kulchitsky (1972);
 - Refined by Polyak and Tsybakov (1990);
 - ▶ Further studied by Dippon (2003); Nesterov (2011).
- $U \sim \delta \operatorname{Unif}(\mathbb{S}_d), \ V = d\delta^{-1} U$
 - RDSA by Kushner and Clark (1978);

- $U \sim \delta \mathcal{N}(0, I)$, $V = \delta^{-1} U$
 - Smoothed functional scheme by Katkovnik and Kulchitsky (1972);
 - Refined by Polyak and Tsybakov (1990);
 - ▶ Further studied by Dippon (2003); Nesterov (2011).
- $U \sim \delta \operatorname{Unif}(\mathbb{S}_d)$, $V = d\delta^{-1} U$
 - RDSA by Kushner and Clark (1978);
 - Rediscovered by Flaxman et al. (2005)

- $U \sim \delta \mathcal{N}(0, I)$, $V = \delta^{-1} U$
 - Smoothed functional scheme by Katkovnik and Kulchitsky (1972);
 - Refined by Polyak and Tsybakov (1990);
 - ▶ Further studied by Dippon (2003); Nesterov (2011).
- $U \sim \delta \operatorname{Unif}(\mathbb{S}_d)$, $V = d\delta^{-1} U$
 - RDSA by Kushner and Clark (1978);
 - ▶ Rediscovered by Flaxman et al. (2005)
- $U_i \sim \delta \operatorname{Rademacher}(\pm 1)$, $V = \delta^{-1} U$

- $U \sim \delta \mathcal{N}(0, I)$, $V = \delta^{-1} U$
 - Smoothed functional scheme by Katkovnik and Kulchitsky (1972);
 - Refined by Polyak and Tsybakov (1990);
 - ▶ Further studied by Dippon (2003); Nesterov (2011).
- $U \sim \delta \operatorname{Unif}(\mathbb{S}_d)$, $V = d\delta^{-1} U$
 - RDSA by Kushner and Clark (1978);
 - Rediscovered by Flaxman et al. (2005)
- $U_i \sim \delta \operatorname{Rademacher}(\pm 1)$, $V = \delta^{-1} U$
 - SPSA by Spall (1992).

- $U \sim \delta \mathcal{N}(0, I)$, $V = \delta^{-1} U$
 - Smoothed functional scheme by Katkovnik and Kulchitsky (1972);
 - Refined by Polyak and Tsybakov (1990);
 - ▶ Further studied by Dippon (2003); Nesterov (2011).
- $U \sim \delta \operatorname{Unif}(\mathbb{S}_d)$, $V = d\delta^{-1} U$
 - RDSA by Kushner and Clark (1978);
 - Rediscovered by Flaxman et al. (2005)
- $U_i \sim \delta \operatorname{Rademacher}(\pm 1), \ V = \delta^{-1} U$
 - SPSA by Spall (1992).

• . . .

- $U \sim \delta \mathcal{N}(0, I)$, $V = \delta^{-1} U$
 - Smoothed functional scheme by Katkovnik and Kulchitsky (1972);
 - Refined by Polyak and Tsybakov (1990);
 - ▶ Further studied by Dippon (2003); Nesterov (2011).
- $U \sim \delta \operatorname{Unif}(\mathbb{S}_d)$, $V = d\delta^{-1} U$
 - RDSA by Kushner and Clark (1978);
 - ▶ Rediscovered by Flaxman et al. (2005)
- $U_i \sim \delta \operatorname{Rademacher}(\pm 1), \ V = \delta^{-1} U$
 - SPSA by Spall (1992).

• . . .

Does it matter which of these we select? Not really: Bias: $O(\delta^2)$, second moment: O(1) or $O(\delta^{-2})$.

Outline

Convex Bandit Optimization

- 2 The State-of-the-Art for Noisy Bandit Convex Optimization
- 3 How are Gradients Estimated?
- 4 New Oracle Model: Noisy, Biased Oracles

5 Results

6 Conclusion

Gradient Estimation Oracles

1 Bias: $\|\mathbb{E}[G] - \nabla f(x)\|_* \le c_1(\delta)$; and

Bias: ||E[G] - \nabla f(x)||_* \le c_1(\delta); and
Second moment: E [||G||_*²] \le c_2(\delta).

Bias: ||E[G] - \nabla f(x)||_* \le c_1(\delta); and
Second moment: E [||G||_*^2] \le c_2(\delta).

Controlled noise: $c_1(\delta) = C_1 \delta^2$, $c_2(\delta) = C_2$.

Bias: ||E[G] - \nabla f(x)||_* \le c_1(\delta); and
Second moment: E [||G||_*^2] \le c_2(\delta).

Controlled noise: $c_1(\delta) = C_1 \delta^2$, $c_2(\delta) = C_2$. Uncontrolled noise: $c_1(\delta) = C_1 \delta^2$, $c_2(\delta) = C_2 \delta^{-2}$.

Bias: ||E[G] - \nabla f(x)||_* \le c_1(\delta); and
Second moment: E [||G||_*^2] \le c_2(\delta).

Controlled noise: $c_1(\delta) = C_1\delta^2$, $c_2(\delta) = C_2$. Uncontrolled noise: $c_1(\delta) = C_1\delta^2$, $c_2(\delta) = C_2\delta^{-2}$.

Polynomial oracle: $c_1(\delta) = C_1 \delta^p$, $c_2(\delta) = C_2 \delta^{-q}$, p, q > 0.

Outline

Convex Bandit Optimization

- 2 The State-of-the-Art for Noisy Bandit Convex Optimization
- 3 How are Gradients Estimated?
- 4 New Oracle Model: Noisy, Biased Oracles

5 Results

6 Conclusion

Upper Bound: Algorithm

Mirror descent (Nemirovskii and Yudin, 1983)

Input: Closed convex set \mathcal{K} , regularization function $\mathcal{R} : \mathbb{R}^d \to \mathbb{R}$, tolerance parameter δ , learning rates $\{\eta_t\}_{t=1}^{n-1}$. Initialize $X_1 \in \mathcal{K}$ arbitrarily. **for** $t = 1, 2, \cdots, n-1$ **do** Query the oracle at X_t . Receive G_t . Update

$$X_{t+1} = \operatorname*{argmin}_{x \in \mathcal{K}} \left[\eta_t \langle G_t, x \rangle + \mathcal{D}_{\mathcal{R}}(x, X_t)
ight] \,.$$

end for Return: $\hat{X}_n = \frac{1}{n} \sum_{t=1}^n X_t$.

Theorem (**Upper bound**)

Consider MD with a (p, q)-order polynomial oracle, α SOC regularizer \mathcal{R} . Then:

$$\begin{split} &\Delta_n(\mathcal{F}_{L,0}, \mathrm{MD}, c_1, c_2) = O(n^{-\frac{p}{2p+q}}) \\ &\Delta_n(\mathcal{F}_{L,\mu}, \mathrm{MD}, c_1, c_2) = O(n^{-\frac{p}{p+q}}) \,. \end{split}$$

Recall:

$$\Delta_n(\mathcal{F}_{L,0}, \mathrm{MD}, c_1, c_2) = O(n^{-rac{p}{2p+q}})$$

 $\Delta_n(\mathcal{F}_{L,\mu}, \mathrm{MD}, c_1, c_2) = O(n^{-rac{p}{p+q}}).$

Recall:

$$\Delta_n(\mathcal{F}_{L,0}, \mathrm{MD}, c_1, c_2) = O(n^{-\frac{p}{2p+q}})$$
$$\Delta_n(\mathcal{F}_{L,\mu}, \mathrm{MD}, c_1, c_2) = O(n^{-\frac{p}{p+q}}).$$

Can get an $n^{-1/2}$ rate?

Recall:

$$\Delta_n(\mathcal{F}_{L,0}, \mathrm{MD}, c_1, c_2) = O(n^{-\frac{p}{2p+q}})$$
$$\Delta_n(\mathcal{F}_{L,\mu}, \mathrm{MD}, c_1, c_2) = O(n^{-\frac{p}{p+q}}).$$

Can get an $n^{-1/2}$ rate? Yes, if $p/(2p+q) \ge 1/2$ vs. $p/(p+q) \ge 1/2$.

Recall:

$$egin{aligned} &\Delta_n(\mathcal{F}_{L,0},\mathrm{MD},c_1,c_2)=\mathit{O}(n^{-rac{p}{2p+q}})\ &\Delta_n(\mathcal{F}_{L,\mu},\mathrm{MD},c_1,c_2)=\mathit{O}(n^{-rac{p}{p+q}})\,. \end{aligned}$$

Can get an $n^{-1/2}$ rate? Yes, if $p/(2p+q) \ge 1/2$ vs. $p/(p+q) \ge 1/2$. First holds iff q = 0. Second holds iff $p \ge q$.

Recall:

$$egin{aligned} &\Delta_n(\mathcal{F}_{L,0},\mathrm{MD},c_1,c_2)=\mathit{O}(n^{-rac{p}{2p+q}})\ &\Delta_n(\mathcal{F}_{L,\mu},\mathrm{MD},c_1,c_2)=\mathit{O}(n^{-rac{p}{p+q}})\,. \end{aligned}$$

Can get an $n^{-1/2}$ rate? Yes, if $p/(2p+q) \ge 1/2$ vs. $p/(p+q) \ge 1/2$. First holds iff q = 0. Second holds iff $p \ge q$.

Uncontrolled noise; under smoothness, p = q = 2.

Recall:

$$egin{aligned} &\Delta_n(\mathcal{F}_{L,0},\mathrm{MD},c_1,c_2)=\mathit{O}(n^{-rac{p}{2p+q}})\ &\Delta_n(\mathcal{F}_{L,\mu},\mathrm{MD},c_1,c_2)=\mathit{O}(n^{-rac{p}{p+q}})\,. \end{aligned}$$

Can get an $n^{-1/2}$ rate? Yes, if $p/(2p+q) \ge 1/2$ vs. $p/(p+q) \ge 1/2$. First holds iff q = 0. Second holds iff $p \ge q$.

Uncontrolled noise; under smoothness, p = q = 2. For $\mathcal{F}_{L,\mu}$ we get $O(n^{-1/2})$ as Hazan and Levy (2014).

Recall:

$$\Delta_n(\mathcal{F}_{L,0}, \mathrm{MD}, c_1, c_2) = O(n^{-rac{p}{2p+q}})$$

 $\Delta_n(\mathcal{F}_{L,\mu}, \mathrm{MD}, c_1, c_2) = O(n^{-rac{p}{p+q}}).$

Can get an $n^{-1/2}$ rate? Yes, if $p/(2p+q) \ge 1/2$ vs. $p/(p+q) \ge 1/2$. First holds iff q = 0. Second holds iff $p \ge q$.

Uncontrolled noise; under smoothness, p = q = 2. For $\mathcal{F}_{L,\mu}$ we get $O(n^{-1/2})$ as Hazan and Levy (2014). For $\mathcal{F}_{L,0}$ we get $O(n^{-1/3})$ as Saha and Tewari (2011).

Recall:

$$\Delta_n(\mathcal{F}_{L,0}, \mathrm{MD}, c_1, c_2) = O(n^{-rac{p}{2p+q}})$$

 $\Delta_n(\mathcal{F}_{L,\mu}, \mathrm{MD}, c_1, c_2) = O(n^{-rac{p}{p+q}}).$

Can get an $n^{-1/2}$ rate? Yes, if $p/(2p+q) \ge 1/2$ vs. $p/(p+q) \ge 1/2$. First holds iff q = 0. Second holds iff $p \ge q$.

Uncontrolled noise; under smoothness, p = q = 2. For $\mathcal{F}_{L,\mu}$ we get $O(n^{-1/2})$ as Hazan and Levy (2014). For $\mathcal{F}_{L,0}$ we get $O(n^{-1/3})$ as Saha and Tewari (2011).

Controlled noise: under smoothness, p = 2, q = 0.

Recall:

$$\Delta_n(\mathcal{F}_{L,0}, \mathrm{MD}, c_1, c_2) = O(n^{-rac{p}{2p+q}})$$

 $\Delta_n(\mathcal{F}_{L,\mu}, \mathrm{MD}, c_1, c_2) = O(n^{-rac{p}{p+q}}).$

Can get an $n^{-1/2}$ rate? Yes, if $p/(2p+q) \ge 1/2$ vs. $p/(p+q) \ge 1/2$. First holds iff q = 0. Second holds iff $p \ge q$.

Uncontrolled noise; under smoothness, p = q = 2. For $\mathcal{F}_{L,\mu}$ we get $O(n^{-1/2})$ as Hazan and Levy (2014). For $\mathcal{F}_{L,0}$ we get $O(n^{-1/3})$ as Saha and Tewari (2011).

Controlled noise: under smoothness, p = 2, q = 0. For $\mathcal{F}_{L,\mu}$ we get $O(n^{-1})$ as Nesterov (2011).

Recall:

$$\Delta_n(\mathcal{F}_{L,0}, \mathrm{MD}, c_1, c_2) = O(n^{-rac{p}{2p+q}})$$

 $\Delta_n(\mathcal{F}_{L,\mu}, \mathrm{MD}, c_1, c_2) = O(n^{-rac{p}{p+q}}).$

Can get an $n^{-1/2}$ rate? Yes, if $p/(2p+q) \ge 1/2$ vs. $p/(p+q) \ge 1/2$. First holds iff q = 0. Second holds iff $p \ge q$.

Uncontrolled noise; under smoothness, p = q = 2. For $\mathcal{F}_{L,\mu}$ we get $O(n^{-1/2})$ as Hazan and Levy (2014). For $\mathcal{F}_{L,0}$ we get $O(n^{-1/3})$ as Saha and Tewari (2011).

Controlled noise: under smoothness, p = 2, q = 0. For $\mathcal{F}_{L,\mu}$ we get $O(n^{-1})$ as Nesterov (2011) . For $\mathcal{F}_{L,0}$ we get $O(n^{-1/2})$ as Duchi et al. (2015).

Could We Have Done Better?

Theorem (Lower bound)

 $\mathcal{K} \subset \mathbb{R}^d$ convex, closed, with $\{+1, -1\}^d \subset \mathcal{K}$, n large enough. For any algorithm A that observes n random elements from a (p, q)polynomial oracle, we have

$$\begin{split} \Delta_n(\mathcal{F}_{L,0},\mathbf{A},c_1,c_2) &= \Omega(n^{-\frac{\nu}{2p+q}}), \\ \Delta_n(\mathcal{F}_{L,1},\mathbf{A},c_1,c_2) &= \Omega(n^{-\frac{2p}{2p+q}}). \end{split}$$

Could We Have Done Better?

Theorem (Lower bound)

 $\mathcal{K} \subset \mathbb{R}^d$ convex, closed, with $\{+1, -1\}^d \subset \mathcal{K}$, n large enough. For any algorithm A that observes n random elements from a (p, q)polynomial oracle, we have

$$\Delta_n(\mathcal{F}_{L,0}, \mathbf{A}, c_1, c_2) = \Omega(n^{-\frac{\nu}{2p+q}}),$$

$$\Delta_n(\mathcal{F}_{L,1}, \mathbf{A}, c_1, c_2) = \Omega(n^{-\frac{2p}{2p+q}}).$$

Compare with

$$\begin{split} &\Delta_n(\mathcal{F}_{L,0}, \mathrm{MD}, c_1, c_2) = O(n^{-\frac{p}{2p+q}}) \\ &\Delta_n(\mathcal{F}_{L,1}, \mathrm{MD}, c_1, c_2) = O(n^{-\frac{p}{p+q}}) = O(n^{-\frac{2p}{2p+2q}}) \,. \end{split}$$

(The lower bound for $\mathcal{F}_{L,0}$ is tight, for $\mathcal{F}_{L,1}$ it is weak.)

Lower Bound Idea

31 / 37

Outline

Convex Bandit Optimization

- 2 The State-of-the-Art for Noisy Bandit Convex Optimization
- 3 How are Gradients Estimated?
- 4 New Oracle Model: Noisy, Biased Oracles
- 5 Results

Conclusion

Corollary

To get the optimal $O(n^{-1/2})$ rate for $\mathcal{F}_{L,0}$ with uncontrolled noise, with a low-complexity algorithm, one of the following must be done:

- An oracle with q = 0 (constant second moment bound) must be designed.
- An algorithm that makes better use of the gradient estimates must be designed.
- Some extra properties of gradient estimates must be exploited beyond bias/variance.
- Oesign a non-gradient algorithm.

• Noisy Bandit Convex Optimization

- Noisy Bandit Convex Optimization
- Controlled noise: Pretty well understood

- Noisy Bandit Convex Optimization
- Controlled noise: Pretty well understood
- Linear case: Pretty well understood

- Noisy Bandit Convex Optimization
- Controlled noise: Pretty well understood
- Linear case: Pretty well understood
- Uncontrolled noise: Not much is known about low complexity, optimal algorithms!

- Noisy Bandit Convex Optimization
- Controlled noise: Pretty well understood
- Linear case: Pretty well understood
- Uncontrolled noise: Not much is known about low complexity, optimal algorithms!
- Fascinating results on regret minimization in the online setting

Thanks! Questions?

References I

- Agarwal, A., Foster, D. P., Hsu, D., Kakade, S. M., and Rakhlin, A. (2013). Stochastic convex optimization with bandit feedback. *SIAM Journal on Optimization*, 23(1):213–240.
- Dippon, J. (2003). Accelerated randomized stochastic optimization. The Annals of Statistics, 31(4):1260–1281.
- Duchi, J. C., Jordan, M., Wainwright, M. J., and Wibisono, A. (2015). Optimal rates for zero-order convex optimization: The power of two function evaluations. *IEEE Transactions* on Information Theory, 61(5):2788–2806.
- Flaxman, A. D., Kalai, A. T., and McMahan, H. B. (2005). Online convex optimization in the bandit setting: gradient descent without a gradient. In *Proceedings of the sixteenth annual* ACM-SIAM symposium on Discrete algorithms, pages 385–394. Society for Industrial and Applied Mathematics.
- Hazan, E. and Levy, K. (2014). Bandit convex optimization: Towards tight bounds. In *NIPS*, pages 784–792.
- Katkovnik, V. Y. and Kulchitsky, Y. (1972). Convergence of a class of random search algorithms. *Automation Remote Control*, 8:1321–1326.
- Kiefer, J. and Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression function. *The Annals of Mathematical Statistics*, 23(3):462–466.
- Kushner, H. J. and Clark, D. S. (1978). Stochastic Approximation Methods for Constrained and Unconstrained Systems. Springer Verlag, New York.

References II

- Liang, T., Narayanan, H., and Rakhlin, A. (2014). On zeroth-order stochastic convex optimization via random walks. *arXiv preprint arXiv:1402.2667*.
- Nemirovskii, A. and Yudin, D. B. (1983). Problem complexity and method efficiency in optimization. Wiley-Interscience series in discrete mathematics. Wiley.
- Nesterov, Y. (2004). Introductory lectures on convex optimization, volume 87. Springer Science & Business Media.
- Nesterov, Y. (2011). Random gradient-free minimization of convex functions. CORE Discussion Papers 2011001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Polyak, B. and Tsybakov, A. (1990). Optimal orders of accuracy for search algorithms of stochastic optimization. *Problems in Information Transmission*, pages 126–133.
- Saha, A. and Tewari, A. (2011). Improved regret guarantees for online smooth convex optimization with bandit feedback. In *International Conference on Artificial Intelligence and Statistics*, pages 636–642.
- Shamir, O. (2012). On the complexity of bandit and derivative-free stochastic convex optimization. In *Proceedings of the Twenty Sixth Annual Conference on Computational Learning Theory.*
- Shor, N. Z. (1970). Convergence rate of the gradient descent method with dilatation of the space. *Kibernetika*, 6(2):102–108.
- Spall, J. C. (1992). Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. *Automatic Control, IEEE Transactions on*, 37(3):332–341.