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Convex Optimization with Noisy Bandit Feedback

Observation

Query

Environment

(state)

Yt = f(Xt) + ⇠t

Xt

f

Agent

Goal
Assume f convex (smooth
etc).
Find a near-minimizer of f
using n > 0 queries!

Noisy Bandit Feedback ⌘
Noisy zeroth-order information

Main Question
How fast can/will/should the optimization error
�n = E [f (Xn)] � infx2K f (x) decrease with n?
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Example: Resource Allocation

Job 1

Job 2

Job 3

Job 4

Distribute memory in between
jobs

Maximize success: maxx2K f (x)

Linear constraints:
K =

�
x 2 [0,1)d :

P
i xi = 1

 

Concave objective f : Convex
combination of resources not
worse than what randomization
gives.

The only way to learn about f is by trying di↵erent configurations.
Feedback: f (x) + noise for x tried. “Bandit” feedback.
Goal is to find the best configuration quickly.
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Why Bandit Feedback?

No other choice

I Controlling an unknown system

I Simulation optimization:

f (x) = E [F (x , ⇠)] — ⇠: simulation noise

F (x , ⇠) is the output of a simulation;

Gradients are unavailable

By choice:

I Gradient is too expensive/complicated to compute

I (Can this be justified?)
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Subclasses of Convex Problems

Deviation from linearity, or
“curviness”:

Df (w ||v) .
=

f (w) � {f (v) + hrf (v),w � vi} .

Smoothness:
Df (x ||y)  L

2 kx � yk2 .

Strong convexity:
Df (x ||y) � µ

2 kx � yk2 .
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K ⇢ Rd convex,
closed, non-empty.
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Convex Optimization 101: Ellipsoid Method

Assumption
First-order information, (rf (·), f (·)), can be obtained at any point.

Ellipsoid Method (Shor, 1970)

�E,d
n = C exp(� n

d2 ) (Nemirovskii and

Yudin, 1983)

Matching lower bound when d small
and n large.

. . . but

Each update takes O(d2) MADDs
(prohibitive when d large).

Suboptimal for d/n2 � 1:
limd!1 �E,d

n = ⌦(1), while
�⇤

n = ⇥(1/
p
n).
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Convex Optimization 101: Gradient Methods

Think: “d large”. Update complexity is O(d).
Subgradient method: Optimal for convex problems:

�n = O(
p

1/n).

No dependence on d !

Gradient method + momentum term ⌘
accelerated gradient method (Nesterov, 2004).

I Optimal for smooth convex problems, FL,0:

�n = O(L/n2).

I Optimal for strongly convex, smooth problems, FL,µ:

�n = O

✓
exp(� np

L/µ
)

◆
.
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Results under Noisy Bandit Feedback

Recall: f (x) = E [F (x , ⇠)].

Assumptions

(A1) F (x , ⇠) can be obtained at any point. “Uncontrolled noise”

(A2) ⇠ can be kept fixed between queries. “Controlled noise”
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Controlled Noise – Smooth Case

Simple story!

Gradient method

�n  C
p
d2/n.

Nesterov (2011) , Duchi et al. (2015)

Optimal!
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Uncontrolled Noise: Big Gaps

Ellipsoid method and relatives (Nemirovskii and Yudin (1983), Section 9.4)

Agarwal et al. (2013) –
p

d33/n

Liang et al. (2014) –
p

d14/n

Gradient methods: (Nemirovskii and Yudin (1983), Section 9.3)

Convex: – (d2/n)1/4

(Nemirovskii and Yudin, 1983; Flaxman et al., 2005)

Smooth: – (d2/n)1/3

(Nemirovskii and Yudin, 1983; Saha and Tewari, 2011)

Smooth + SOC:
p
d2/n

(Hazan and Levy, 2014)

Lower bound:
p

d2/n (Shamir, 2012).

13 / 37

Can we do better? . . .
using a “clever”
gradient method
maybe?
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. . .
using a “clever”
gradient method
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Gradient Estimation – Noise-free Feedback

Finite-di↵erences (Kiefer and Wolfowitz, 1952):

gi =
1

�
(f (x + �ei) � f (x)) , i = 1, . . . , d .

Taylor-series expansion:

f (x + �ei) = f (x) + �rf (x)ei + �2 e>i r2f (x)ei + O(�3).

Accuracy: kg � rf (x)k2 = O(
p
d �).

Needs d + 1 queries.
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Two-sided Di↵erences

Improved estimate:

gi =
1

2�
(f (x + �ei) � f (x � �ei)) , i = 1, . . . , d .

Taylor-series expansions:

f (x + �ei) = f (x) + �rf (x)ei + �2 e>i r2f (x)ei + O(�3).

f (x � �ei) = f (x) � �rf (x)ei + �2 e>i r2f (x)ei + O(�3).

Accuracy: kg � rf (x)k2 = O(
p
d�2).

Needs 2d queries.
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Two-sided Di↵erences – Noisy Feedback

Improved estimate:

Gi =
1

2�

�
f (x + �ei) + ⇠+i � (f (x � �ei) + ⇠�i )

 
, i = 1, . . . , d .

Assumption: E [⇠±] = 0, E [(⇠±)]  �2 < +1.
Note: E [Gi ] = gi . Hence

kE [G ] � rf (x)k2 = O(
p
d�2) . bias

Second moment: E
h
kGk2

2

i
=?

Gi = gi +
⇠+i �⇠�i

2� , hence E [G 2
i ] = g 2

i + 2�2

4�2 = g 2
i + �2

2�2 and

E
h
kGk2

2

i
= kgk2

2 + O

✓
d

�2

◆
.
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Randomization (Noise-Free Bandit Feedback)

Can we reduce the number of queries?

Idea: Randomize! I ⇠ p(·) a positive pmf on {1, . . . , d}.
Choose

Gi =
1

p(i)

f (x + �eI ) � f (x � �eI )

2�
eI ,i

=

(
1

p(I )
f (x+�eI )�f (x��eI )

2� , I = i ;

0, otherwise .

Only 2-queries, regardless of d !
E [Gi ] = gi ! Hence, kE [G ] � rf (x)k2 = O(

p
d�2).

Second moment?
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Second Moment from Randomization

Gi =
1

p(i)

f (x + �eI ) � f (x � �eI )

2�
eI ,i

Taylor-series expansion:

f (x + �ei) = f (x) + �rf (x)ei + �2 e>i r2f (x)ei + O(�3),

f (x � �ei) = f (x) � �rf (x)ei + �2 e>i r2f (x)ei + O(�3).

G 2
i =

I{I=i}

p2(i)

(�f 0i (x) + c3(�))2

4�2
=

I{I=i}

p2(i)

(�2(f 0i (x))
2 + c4(�))

�2

=
I{I=i}

p2(i)

�
(f 0i (x))

2 + O(�2)
 

Hence, E [G 2
i ] = O(1/p(i)), so at best E

h
kGk2

2

i
= O(d2). Hmm..
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Noisy Bandit Feedback

G̃i =
1

p(i)

(f (x + �eI ) + ⇠+) � (f (x � �eI ) + ⇠�)

2�
eI ,i

Hence, G̃i =
I{I=i}
p(i)

⇠+�⇠�

2� + Gi and

E
h
G̃i

i
= E [Gi ] ,

E
h
G̃ 2
i

i
=

1

p(i)

E [(⇠+ � ⇠�)2]

4�2
+ E

⇥
G 2
i

⇤
,

so ���E
h
G̃
i

2
� rf (x)

���
2
= O(

p
d�2) ,

E
���G̃

���
2

2

�
= O(d2(1 + 1/�2)) . harsh!
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Summary

Noise-free observations (or controlled noise):

I Bias: O(�2)

I Second-moment: O(1)

Noisy observations (a.k.a. uncontrolled noise):

I Bias: O(�2)

I Second moment: O(��2)

This assumed f 2 C3. Holds also for f convex, smooth.
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Other Methods

General two-point estimate:

G =
(f (x + U) + ⇠+) � (f (x � U) + ⇠�)

2�
V .

Choose U ,V such that E
⇥
VU>⇤ = I , E [V ] = 0.

One-point estimate!

G =
(f (x + U) + ⇠+)

�
V .

Choose U ,V such that E
⇥
VU>⇤ = I , E [V ] = 0. Works??

E [G ] = E
h
G � f (x)

� V
i
= E

h
(f (x+U)+⇠+)�f (x)

� V
i
.
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“Zoo” of Gradient Estimation Methods

U ⇠ �N (0, I ), V = ��1 U

I Smoothed functional scheme by Katkovnik and Kulchitsky
(1972);

I Refined by Polyak and Tsybakov (1990);
I Further studied by Dippon (2003); Nesterov (2011).

U ⇠ �Unif(Sd), V = d��1 U

I RDSA by Kushner and Clark (1978);
I Rediscovered by Flaxman et al. (2005)

Ui ⇠ �Rademacher(±1), V = ��1 U

I SPSA by Spall (1992).

. . .

Does it matter which of these we select? Not really:
Bias: O(�2), second moment: O(1) or O(��2).
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Gradient Estimation Oracles

Algorithm Oracle Environment

x, �

G

f

1 Bias: kE [G ] � rf (x)k⇤  c1(�); and

2 Second moment: E
h
kGk2

⇤

i
 c2(�).

Controlled noise: c1(�) = C1�2, c2(�) = C2.
Uncontrolled noise: c1(�) = C1�2, c2(�) = C2��2.

Polynomial oracle: c1(�) = C1�p, c2(�) = C2��q, p, q > 0.
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Upper Bound: Algorithm

Mirror descent (Nemirovskii and Yudin, 1983)

Input: Closed convex set K, regularization function R : Rd ! R,
tolerance parameter �, learning rates {⌘t}n�1

t=1 .
Initialize X1 2 K arbitrarily.
for t = 1, 2, · · · , n � 1 do

Query the oracle at Xt .
Receive Gt .
Update

Xt+1 = argmin

x2K
[⌘thGt , xi + DR(x ,Xt)] .

end for

Return: X̂n =
1
n

Pn
t=1 Xt .
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Upper Bound

Theorem (Upper bound)
Consider MD with a (p, q)-order polynomial oracle, ↵ SOC
regularizer R. Then:

�n(FL,0,MD, c1, c2) = O(n�
p

2p+q )

�n(FL,µ,MD, c1, c2) = O(n�
p

p+q ) .
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Is This Any Good?

Recall: �n(FL,0,MD, c1, c2) = O(n�
p

2p+q )

�n(FL,µ,MD, c1, c2) = O(n�
p

p+q ) .

Can get an n�1/2 rate?
Yes, if p/(2p + q) � 1/2 vs. p/(p + q) � 1/2.
First holds i↵ q = 0. Second holds i↵ p � q.

Uncontrolled noise; under smoothness, p = q = 2.
For FL,µ we get O(n�1/2) as Hazan and Levy (2014).
For FL,0 we get O(n�1/3) as Saha and Tewari (2011).

Controlled noise: under smoothness, p = 2, q = 0.
For FL,µ we get O(n�1) as Nesterov (2011) .
For FL,0 we get O(n�1/2) as Duchi et al. (2015).
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Could We Have Done Better?

Theorem (Lower bound)

K ⇢ Rd convex, closed, with {+1,�1}d ⇢ K, n large enough. For
any algorithm A that observes n random elements from a (p, q)
polynomial oracle, we have

�n(FL,0,A, c1, c2) = ⌦(n�
p

2p+q ),

�n(FL,1,A, c1, c2) = ⌦(n�
2p

2p+q ) .

Compare with

�n(FL,0,MD, c1, c2) = O(n�
p

2p+q )

�n(FL,1,MD, c1, c2) = O(n�
p

p+q ) = O(n�
2p

2p+2q ) .

(The lower bound for FL,0 is tight, for FL,1 it is weak.)
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Lower Bound Idea

�

c1(�)

�
� = 2� � 2c1(�)

max
�

c2(�)

(2� � 2c1(�))2
< n
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Conclusion

Corollary

To get the optimal O(n�1/2) rate for FL,0 with uncontrolled noise,
with a low-complexity algorithm, one of the following must be done:

1 An oracle with q = 0 (constant second moment bound) must be
designed.

2 An algorithm that makes better use of the gradient estimates
must be designed.

3 Some extra properties of gradient estimates must be exploited
beyond bias/variance.

4 Design a non-gradient algorithm.
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Big Picture

Noisy Bandit Convex Optimization

Controlled noise: Pretty well understood

Linear case: Pretty well understood

Uncontrolled noise: Not much is known about low complexity,
optimal algorithms!

Fascinating results on regret minimization in the online setting
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Papers 2011001, Université catholique de Louvain, Center for Operations Research and
Econometrics (CORE).

Polyak, B. and Tsybakov, A. (1990). Optimal orders of accuracy for search algorithms of
stochastic optimization. Problems in Information Transmission, pages 126–133.

Saha, A. and Tewari, A. (2011). Improved regret guarantees for online smooth convex
optimization with bandit feedback. In International Conference on Artificial Intelligence and
Statistics, pages 636–642.

Shamir, O. (2012). On the complexity of bandit and derivative-free stochastic convex
optimization. In Proceedings of the Twenty Sixth Annual Conference on Computational
Learning Theory.

Shor, N. Z. (1970). Convergence rate of the gradient descent method with dilatation of the
space. Kibernetika, 6(2):102–108.

Spall, J. C. (1992). Multivariate stochastic approximation using a simultaneous perturbation
gradient approximation. Automatic Control, IEEE Transactions on, 37(3):332–341.

37 / 37


	Convex Bandit Optimization
	The State-of-the-Art for Noisy Bandit Convex Optimization
	How are Gradients Estimated?
	New Oracle Model: Noisy, Biased Oracles
	Results
	Conclusion

