
Interactive machine learning
via reductions to supervised learning

Daniel Hsu
Columbia University

July 27, 2016

1

Non-interactive machine learning

“Cartoon” of (non-interactive) machine learning
(a.k.a. supervised learning)

1. Get labeled data {(inputi , outputi)}ni=1.

2. Learn prediction function f̂ (e.g., classifier, regressor, policy)
such that

f̂ (inputi) ≈ outputi

for most i = 1, 2, . . . , n.

Goal: f̂ (input) ≈ output for future (input, output) pairs.
Many applications supported by mature technologies and
explained/motivated by mathematical theories.

2

Non-interactive machine learning

“Cartoon” of (non-interactive) machine learning
(a.k.a. supervised learning)

1. Get labeled data {(inputi , outputi)}ni=1.

2. Learn prediction function f̂ (e.g., classifier, regressor, policy)
such that

f̂ (inputi) ≈ outputi

for most i = 1, 2, . . . , n.

Goal: f̂ (input) ≈ output for future (input, output) pairs.
Many applications supported by mature technologies and
explained/motivated by mathematical theories.

2

Non-interactive machine learning

“Cartoon” of (non-interactive) machine learning
(a.k.a. supervised learning)

1. Get labeled data {(inputi , outputi)}ni=1.

2. Learn prediction function f̂ (e.g., classifier, regressor, policy)
such that

f̂ (inputi) ≈ outputi

for most i = 1, 2, . . . , n.

Goal: f̂ (input) ≈ output for future (input, output) pairs.
Many applications supported by mature technologies and
explained/motivated by mathematical theories.

2

Non-interactive machine learning

“Cartoon” of (non-interactive) machine learning
(a.k.a. supervised learning)

1. Get labeled data {(inputi , outputi)}ni=1.

2. Learn prediction function f̂ (e.g., classifier, regressor, policy)
such that

f̂ (inputi) ≈ outputi

for most i = 1, 2, . . . , n.

Goal: f̂ (input) ≈ output for future (input, output) pairs.

Many applications supported by mature technologies and
explained/motivated by mathematical theories.

2

Non-interactive machine learning

“Cartoon” of (non-interactive) machine learning
(a.k.a. supervised learning)

1. Get labeled data {(inputi , outputi)}ni=1.

2. Learn prediction function f̂ (e.g., classifier, regressor, policy)
such that

f̂ (inputi) ≈ outputi

for most i = 1, 2, . . . , n.

Goal: f̂ (input) ≈ output for future (input, output) pairs.
Many applications supported by mature technologies and
explained/motivated by mathematical theories.

2

Interactive machine learning: example #1

Practicing physician

Loop:
1. Patient arrives with symptoms, medical history, genome . . .
2. Prescribe treatment.
3. Observe impact on patient’s health (e.g., improves, worsens).

Goal: prescribe treatments that yield good health outcomes.

3

Interactive machine learning: example #1

Practicing physician
Loop:
1. Patient arrives with symptoms, medical history, genome . . .

2. Prescribe treatment.
3. Observe impact on patient’s health (e.g., improves, worsens).

Goal: prescribe treatments that yield good health outcomes.

3

Interactive machine learning: example #1

Practicing physician
Loop:
1. Patient arrives with symptoms, medical history, genome . . .
2. Prescribe treatment.

3. Observe impact on patient’s health (e.g., improves, worsens).

Goal: prescribe treatments that yield good health outcomes.

3

Interactive machine learning: example #1

Practicing physician
Loop:
1. Patient arrives with symptoms, medical history, genome . . .
2. Prescribe treatment.
3. Observe impact on patient’s health (e.g., improves, worsens).

Goal: prescribe treatments that yield good health outcomes.

3

Interactive machine learning: example #1

Practicing physician
Loop:
1. Patient arrives with symptoms, medical history, genome . . .
2. Prescribe treatment.
3. Observe impact on patient’s health (e.g., improves, worsens).

Goal: prescribe treatments that yield good health outcomes.

3

Interactive machine learning: example #2

Website operator

Loop:
1. User visits website with profile, browsing history . . .
2. Choose content to display on website.
3. Observe user reaction to content (e.g., click, “like”).

Goal: choose content that yield desired user behavior.

4

Interactive machine learning: example #2

Website operator
Loop:
1. User visits website with profile, browsing history . . .

2. Choose content to display on website.
3. Observe user reaction to content (e.g., click, “like”).

Goal: choose content that yield desired user behavior.

4

Interactive machine learning: example #2

Website operator
Loop:
1. User visits website with profile, browsing history . . .
2. Choose content to display on website.

3. Observe user reaction to content (e.g., click, “like”).

Goal: choose content that yield desired user behavior.

4

Interactive machine learning: example #2

Website operator
Loop:
1. User visits website with profile, browsing history . . .
2. Choose content to display on website.
3. Observe user reaction to content (e.g., click, “like”).

Goal: choose content that yield desired user behavior.

4

Interactive machine learning: example #2

Website operator
Loop:
1. User visits website with profile, browsing history . . .
2. Choose content to display on website.
3. Observe user reaction to content (e.g., click, “like”).

Goal: choose content that yield desired user behavior.

4

Interactive machine learning: example #3

E-mail service provider

Loop:
1. Receive e-mail messages for users (spam or not).
2. Ask users to provide labels for some borderline cases.
3. Improve spam filter using newly labeled messages.

Goal: maximize accuracy of spam filter, minimize queries to users.

5

Interactive machine learning: example #3

E-mail service provider
Loop:
1. Receive e-mail messages for users (spam or not).

2. Ask users to provide labels for some borderline cases.
3. Improve spam filter using newly labeled messages.

Goal: maximize accuracy of spam filter, minimize queries to users.

5

Interactive machine learning: example #3

E-mail service provider
Loop:
1. Receive e-mail messages for users (spam or not).
2. Ask users to provide labels for some borderline cases.

3. Improve spam filter using newly labeled messages.

Goal: maximize accuracy of spam filter, minimize queries to users.

5

Interactive machine learning: example #3

E-mail service provider
Loop:
1. Receive e-mail messages for users (spam or not).
2. Ask users to provide labels for some borderline cases.
3. Improve spam filter using newly labeled messages.

Goal: maximize accuracy of spam filter, minimize queries to users.

5

Interactive machine learning: example #3

E-mail service provider
Loop:
1. Receive e-mail messages for users (spam or not).
2. Ask users to provide labels for some borderline cases.
3. Improve spam filter using newly labeled messages.

Goal: maximize accuracy of spam filter, minimize queries to users.

5

Characteristics of interactive machine learning problems

1. Learning agent (a.k.a. “learner”) interacts with the world
(e.g., patients, users) to gather data.

2. Learner’s performance based on learner’s decisions.
3. Data available to learner depends on learner’s decisions.
4.

This talk: two interactive machine learning problems
1. contextual bandit learning (≈ 80% of rest-of-talk)

2. active learning (≈ 20% of rest-of-talk)

+ how to solve them using existing methods for non-interactive ML.

(Our models for these problems have all but the last of above characteristics.)

6

Characteristics of interactive machine learning problems

1. Learning agent (a.k.a. “learner”) interacts with the world
(e.g., patients, users) to gather data.

2. Learner’s performance based on learner’s decisions.
3. Data available to learner depends on learner’s decisions.
4.

This talk: two interactive machine learning problems
1. contextual bandit learning (≈ 80% of rest-of-talk)

2. active learning (≈ 20% of rest-of-talk)

+ how to solve them using existing methods for non-interactive ML.

(Our models for these problems have all but the last of above characteristics.)

6

Characteristics of interactive machine learning problems

1. Learning agent (a.k.a. “learner”) interacts with the world
(e.g., patients, users) to gather data.

2. Learner’s performance based on learner’s decisions.

3. Data available to learner depends on learner’s decisions.
4.

This talk: two interactive machine learning problems
1. contextual bandit learning (≈ 80% of rest-of-talk)

2. active learning (≈ 20% of rest-of-talk)

+ how to solve them using existing methods for non-interactive ML.

(Our models for these problems have all but the last of above characteristics.)

6

Characteristics of interactive machine learning problems

1. Learning agent (a.k.a. “learner”) interacts with the world
(e.g., patients, users) to gather data.

2. Learner’s performance based on learner’s decisions.
3. Data available to learner depends on learner’s decisions.

4.

This talk: two interactive machine learning problems
1. contextual bandit learning (≈ 80% of rest-of-talk)

2. active learning (≈ 20% of rest-of-talk)

+ how to solve them using existing methods for non-interactive ML.

(Our models for these problems have all but the last of above characteristics.)

6

Characteristics of interactive machine learning problems

1. Learning agent (a.k.a. “learner”) interacts with the world
(e.g., patients, users) to gather data.

2. Learner’s performance based on learner’s decisions.
3. Data available to learner depends on learner’s decisions.
4. State of the world depends on learner’s decisions.

This talk: two interactive machine learning problems
1. contextual bandit learning (≈ 80% of rest-of-talk)

2. active learning (≈ 20% of rest-of-talk)

+ how to solve them using existing methods for non-interactive ML.

(Our models for these problems have all but the last of above characteristics.)

6

Characteristics of interactive machine learning problems

1. Learning agent (a.k.a. “learner”) interacts with the world
(e.g., patients, users) to gather data.

2. Learner’s performance based on learner’s decisions.
3. Data available to learner depends on learner’s decisions.
4. State of the world depends on learner’s decisions.

This talk: two interactive machine learning problems
1. contextual bandit learning (≈ 80% of rest-of-talk)

2. active learning (≈ 20% of rest-of-talk)

+ how to solve them using existing methods for non-interactive ML.

(Our models for these problems have all but the last of above characteristics.)

6

1. Contextual bandit learning

7

Contextual bandit problem

For t = 1, 2, . . . ,T :

0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .
Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)

8

Contextual bandit problem

For t = 1, 2, . . . ,T :

0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.

1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .
Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)

8

Contextual bandit problem

For t = 1, 2, . . . ,T :

0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.

1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .
Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)

8

Contextual bandit problem

For t = 1, 2, . . . ,T :

0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.

1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .
Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)

8

Contextual bandit problem

For t = 1, 2, . . . ,T :
0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .
Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)

8

Contextual bandit problem

For t = 1, 2, . . . ,T :
0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .
Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)

8

Contextual bandit problem

For t = 1, 2, . . . ,T :
0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .

Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)

8

Contextual bandit problem

For t = 1, 2, . . . ,T :
0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .
Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)

8

Challenges

1. Exploration vs. exploitation.
I Use what you’ve already learned (exploit), but also

learn about actions that could be good (explore).
I Must balance to get good statistical performance.

2. Must use context.
I Want to do as well as the best policy (i.e., decision rule)

π : context x 7→ action a

from some policy class Π (a set of decision rules).
I Computationally constrained w/ large Π (e.g., all decision trees).

3. Selection bias, especially while exploiting.

9

Challenges

1. Exploration vs. exploitation.
I Use what you’ve already learned (exploit), but also

learn about actions that could be good (explore).
I Must balance to get good statistical performance.

2. Must use context.
I Want to do as well as the best policy (i.e., decision rule)

π : context x 7→ action a

from some policy class Π (a set of decision rules).
I Computationally constrained w/ large Π (e.g., all decision trees).

3. Selection bias, especially while exploiting.

9

Challenges

1. Exploration vs. exploitation.
I Use what you’ve already learned (exploit), but also

learn about actions that could be good (explore).
I Must balance to get good statistical performance.

2. Must use context.
I Want to do as well as the best policy (i.e., decision rule)

π : context x 7→ action a

from some policy class Π (a set of decision rules).
I Computationally constrained w/ large Π (e.g., all decision trees).

3. Selection bias, especially while exploiting.

9

Challenges

1. Exploration vs. exploitation.
I Use what you’ve already learned (exploit), but also

learn about actions that could be good (explore).
I Must balance to get good statistical performance.

2. Must use context.
I Want to do as well as the best policy (i.e., decision rule)

π : context x 7→ action a

from some policy class Π (a set of decision rules).
I Computationally constrained w/ large Π (e.g., all decision trees).

3. Selection bias, especially while exploiting.

9

Learning objective

Regret (i.e., relative performance) to a policy class Π:

max
π∈Π

1
T

T∑
t=1

rt(π(xt))︸ ︷︷ ︸
average reward of best policy

− 1
T

T∑
t=1

rt(at)︸ ︷︷ ︸
average reward of learner

Strong benchmark when Π has a policy w/ high expected reward.

Goal: regret → 0 as fast as possible as T →∞.

10

Our result (informally)

New fast and simple algorithm for contextual bandits
(Agarwal, Hsu, Kale, Langford, Li, & Schapire, ICML 2014).

I Operates via reduction to supervised learning
(with computationally-efficient reduction).

I Statistically (near) optimal regret bound.

11

Our result (informally)

New fast and simple algorithm for contextual bandits
(Agarwal, Hsu, Kale, Langford, Li, & Schapire, ICML 2014).

I Operates via reduction to supervised learning
(with computationally-efficient reduction).

I Statistically (near) optimal regret bound.

11

Our result (informally)

New fast and simple algorithm for contextual bandits
(Agarwal, Hsu, Kale, Langford, Li, & Schapire, ICML 2014).

I Operates via reduction to supervised learning
(with computationally-efficient reduction).

I Statistically (near) optimal regret bound.

11

Dealing with policies

Feedback in round t: reward of chosen action rt(at).

I Tells us about policies π ∈ Π s.t. π(xt) = at .
I Not informative about other policies!

Possible approach: track average reward of each π ∈ Π.

I Exp4 (Auer, Cesa-Bianchi, Freund, & Schapire, FOCS 1995).

I Statistically optimal regret bound O

(√
K logN

T

)
for K := |A| actions and N := |Π| policies after T rounds.

I Explicit bookkeeping is computationally intractable
for large N.

But perhaps policy class Π has some structure . . .

12

Dealing with policies

Feedback in round t: reward of chosen action rt(at).

I Tells us about policies π ∈ Π s.t. π(xt) = at .
I Not informative about other policies!

Possible approach: track average reward of each π ∈ Π.

I Exp4 (Auer, Cesa-Bianchi, Freund, & Schapire, FOCS 1995).

I Statistically optimal regret bound O

(√
K logN

T

)
for K := |A| actions and N := |Π| policies after T rounds.

I Explicit bookkeeping is computationally intractable
for large N.

But perhaps policy class Π has some structure . . .

12

Dealing with policies

Feedback in round t: reward of chosen action rt(at).

I Tells us about policies π ∈ Π s.t. π(xt) = at .
I Not informative about other policies!

Possible approach: track average reward of each π ∈ Π.

I Exp4 (Auer, Cesa-Bianchi, Freund, & Schapire, FOCS 1995).

I Statistically optimal regret bound O

(√
K logN

T

)
for K := |A| actions and N := |Π| policies after T rounds.

I Explicit bookkeeping is computationally intractable
for large N.

But perhaps policy class Π has some structure . . .

12

Dealing with policies

Feedback in round t: reward of chosen action rt(at).

I Tells us about policies π ∈ Π s.t. π(xt) = at .
I Not informative about other policies!

Possible approach: track average reward of each π ∈ Π.

I Exp4 (Auer, Cesa-Bianchi, Freund, & Schapire, FOCS 1995).

I Statistically optimal regret bound O

(√
K logN

T

)
for K := |A| actions and N := |Π| policies after T rounds.

I Explicit bookkeeping is computationally intractable
for large N.

But perhaps policy class Π has some structure . . .

12

Dealing with policies

Feedback in round t: reward of chosen action rt(at).

I Tells us about policies π ∈ Π s.t. π(xt) = at .
I Not informative about other policies!

Possible approach: track average reward of each π ∈ Π.

I Exp4 (Auer, Cesa-Bianchi, Freund, & Schapire, FOCS 1995).

I Statistically optimal regret bound O

(√
K logN

T

)
for K := |A| actions and N := |Π| policies after T rounds.

I Explicit bookkeeping is computationally intractable
for large N.

But perhaps policy class Π has some structure . . .

12

Hypothetical “full-information” setting
If we observed rewards for all actions . . .

I Like supervised learning, have labeled data after t rounds:

(x1,ρ1), . . . , (xt ,ρt) ∈ X × RA .

context −→ features
actions −→ classes
rewards −→ −costs
policy −→ classifier

I Can often exploit structure of Π to get tractable algorithms.
Abstraction: argmax oracle (AMO)

AMO
(
{(xi ,ρi)}

t
i=1
)

:= argmax
π∈Π

t∑
i=1

ρi (π(xi)) .

Can’t directly use this in bandit setting.

13

Hypothetical “full-information” setting
If we observed rewards for all actions . . .

I Like supervised learning, have labeled data after t rounds:

(x1,ρ1), . . . , (xt ,ρt) ∈ X × RA .

context −→ features
actions −→ classes
rewards −→ −costs
policy −→ classifier

I Can often exploit structure of Π to get tractable algorithms.
Abstraction: argmax oracle (AMO)

AMO
(
{(xi ,ρi)}

t
i=1
)

:= argmax
π∈Π

t∑
i=1

ρi (π(xi)) .

Can’t directly use this in bandit setting.

13

Hypothetical “full-information” setting
If we observed rewards for all actions . . .

I Like supervised learning, have labeled data after t rounds:

(x1,ρ1), . . . , (xt ,ρt) ∈ X × RA .

context −→ features
actions −→ classes
rewards −→ −costs
policy −→ classifier

I Can often exploit structure of Π to get tractable algorithms.
Abstraction: argmax oracle (AMO)

AMO
(
{(xi ,ρi)}

t
i=1
)

:= argmax
π∈Π

t∑
i=1

ρi (π(xi)) .

Can’t directly use this in bandit setting.

13

Hypothetical “full-information” setting
If we observed rewards for all actions . . .

I Like supervised learning, have labeled data after t rounds:

(x1,ρ1), . . . , (xt ,ρt) ∈ X × RA .

context −→ features
actions −→ classes
rewards −→ −costs
policy −→ classifier

I Can often exploit structure of Π to get tractable algorithms.
Abstraction: argmax oracle (AMO)

AMO
(
{(xi ,ρi)}

t
i=1
)

:= argmax
π∈Π

t∑
i=1

ρi (π(xi)) .

Can’t directly use this in bandit setting.

13

Hypothetical “full-information” setting
If we observed rewards for all actions . . .

I Like supervised learning, have labeled data after t rounds:

(x1,ρ1), . . . , (xt ,ρt) ∈ X × RA .

context −→ features
actions −→ classes
rewards −→ −costs
policy −→ classifier

I Can often exploit structure of Π to get tractable algorithms.
Abstraction: argmax oracle (AMO)

AMO
(
{(xi ,ρi)}

t
i=1
)

:= argmax
π∈Π

t∑
i=1

ρi (π(xi)) .

Can’t directly use this in bandit setting.
13

Our result (formally)

Let K := |A| and N := |Π|.

Our result: a new, fast and simple algorithm
(Agarwal, Hsu, Kale, Langford, Li, & Schapire, ICML 2014).

I Regret bound: Õ
(√

K logN
T

)
.

Near optimal statistical performance.

I # calls to AMO: Õ
(√

TK
logN

)
.

Uses oracle less than once per round!

14

Coming up

Components of the new contextual bandits algorithm:
1. “Classical” tricks: randomization, inverse propensity weighting.
2. Efficient algorithm for balancing exploration/exploitation.

15

2. Classical tricks for contextual bandits

16

What would’ve happened if I had done X?

For t = 1, 2, . . . ,T :
0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Q: How do I learn about rt(a) for actions a I don’t actually take?

A: Randomize. Draw at ∼ pt for some pre-specified prob. dist. pt .

17

What would’ve happened if I had done X?

For t = 1, 2, . . . ,T :
0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Q: How do I learn about rt(a) for actions a I don’t actually take?

A: Randomize. Draw at ∼ pt for some pre-specified prob. dist. pt .

17

What would’ve happened if I had done X?

For t = 1, 2, . . . ,T :
0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Q: How do I learn about rt(a) for actions a I don’t actually take?

A: Randomize. Draw at ∼ pt for some pre-specified prob. dist. pt .

17

Inverse propensity weighting (Horvitz & Thompson, JASA 1952)

Importance-weighted estimate of reward from round t:

∀a ∈ A � r̂t(a) :=
rt(at) · 1{a = at}

pt(at)

=


rt(at)

pt(at)
if a = at ,

0 otherwise .

Unbiasedness:

Eat∼pt
[r̂t(a)] =

∑
a′∈A

pt(a
′) · rt(a

′) · 1{a = a′}
pt(a′)

= rt(a) .

Range and variance: upper-bounded by 1
pt(a) .

Estimate avg. reward of policy: R̂ewt(π) := 1
t

∑t
i=1 r̂i (π(xi)).

How should we choose the pt?

18

Inverse propensity weighting (Horvitz & Thompson, JASA 1952)

Importance-weighted estimate of reward from round t:

∀a ∈ A � r̂t(a) :=
rt(at) · 1{a = at}

pt(at)
=


rt(at)

pt(at)
if a = at ,

0 otherwise .

Unbiasedness:

Eat∼pt
[r̂t(a)] =

∑
a′∈A

pt(a
′) · rt(a

′) · 1{a = a′}
pt(a′)

= rt(a) .

Range and variance: upper-bounded by 1
pt(a) .

Estimate avg. reward of policy: R̂ewt(π) := 1
t

∑t
i=1 r̂i (π(xi)).

How should we choose the pt?

18

Inverse propensity weighting (Horvitz & Thompson, JASA 1952)

Importance-weighted estimate of reward from round t:

∀a ∈ A � r̂t(a) :=
rt(at) · 1{a = at}

pt(at)
=


rt(at)

pt(at)
if a = at ,

0 otherwise .

Unbiasedness:

Eat∼pt
[r̂t(a)] =

∑
a′∈A

pt(a
′) · rt(a

′) · 1{a = a′}
pt(a′)

= rt(a) .

Range and variance: upper-bounded by 1
pt(a) .

Estimate avg. reward of policy: R̂ewt(π) := 1
t

∑t
i=1 r̂i (π(xi)).

How should we choose the pt?

18

Inverse propensity weighting (Horvitz & Thompson, JASA 1952)

Importance-weighted estimate of reward from round t:

∀a ∈ A � r̂t(a) :=
rt(at) · 1{a = at}

pt(at)
=


rt(at)

pt(at)
if a = at ,

0 otherwise .

Unbiasedness:

Eat∼pt
[r̂t(a)] =

∑
a′∈A

pt(a
′) · rt(a

′) · 1{a = a′}
pt(a′)

= rt(a) .

Range and variance: upper-bounded by 1
pt(a) .

Estimate avg. reward of policy: R̂ewt(π) := 1
t

∑t
i=1 r̂i (π(xi)).

How should we choose the pt?

18

Inverse propensity weighting (Horvitz & Thompson, JASA 1952)

Importance-weighted estimate of reward from round t:

∀a ∈ A � r̂t(a) :=
rt(at) · 1{a = at}

pt(at)
=


rt(at)

pt(at)
if a = at ,

0 otherwise .

Unbiasedness:

Eat∼pt
[r̂t(a)] =

∑
a′∈A

pt(a
′) · rt(a

′) · 1{a = a′}
pt(a′)

= rt(a) .

Range and variance: upper-bounded by 1
pt(a) .

Estimate avg. reward of policy: R̂ewt(π) := 1
t

∑t
i=1 r̂i (π(xi)).

How should we choose the pt?

18

Inverse propensity weighting (Horvitz & Thompson, JASA 1952)

Importance-weighted estimate of reward from round t:

∀a ∈ A � r̂t(a) :=
rt(at) · 1{a = at}

pt(at)
=


rt(at)

pt(at)
if a = at ,

0 otherwise .

Unbiasedness:

Eat∼pt
[r̂t(a)] =

∑
a′∈A

pt(a
′) · rt(a

′) · 1{a = a′}
pt(a′)

= rt(a) .

Range and variance: upper-bounded by 1
pt(a) .

Estimate avg. reward of policy: R̂ewt(π) := 1
t

∑t
i=1 r̂i (π(xi)).

How should we choose the pt?

18

Hedging over policies

Get action distributions via policy distributions.

(Q, x)︸ ︷︷ ︸
(policy distribution, context)

7−→ p︸ ︷︷ ︸
action distribution

19

Hedging over policies

Get action distributions via policy distributions.

(Q, x)︸ ︷︷ ︸
(policy distribution, context)

7−→ p︸ ︷︷ ︸
action distribution

Policy distribution: Q = (Q(π) : π ∈ Π)
probability dist. over policies π in the policy class Π

19

Hedging over policies

Get action distributions via policy distributions.

(Q, x)︸ ︷︷ ︸
(policy distribution, context)

7−→ p︸ ︷︷ ︸
action distribution

1: Pick initial distribution Q1 over policies Π.
2: for round t = 1, 2, . . . do
3: Nature draws (xt , r t) from dist. D over X × [0, 1]A.
4: Observe context xt .
5: Compute distribution pt over A (using Qt and xt).
6: Pick action at ∼ pt .
7: Collect reward rt(at).
8: Compute new distribution Qt+1 over policies Π.
9: end for

19

3. Algorithm for constructing policy distributions

20

Our approach

Q: How do we choose Qt for good exploration/exploitation?

Caveat: Qt must be efficiently computable + representable!

Our approach:

1. Define convex feasibility problem (over distributions Q on Π)
such that solutions yield (near) optimal regret bounds.

2. Design algorithm that finds a sparse solution Q.

Algorithm only accesses Π via calls to AMO
=⇒ nnz(Q) = O(# AMO calls)

21

Our approach

Q: How do we choose Qt for good exploration/exploitation?

Caveat: Qt must be efficiently computable + representable!

Our approach:

1. Define convex feasibility problem (over distributions Q on Π)
such that solutions yield (near) optimal regret bounds.

2. Design algorithm that finds a sparse solution Q.

Algorithm only accesses Π via calls to AMO
=⇒ nnz(Q) = O(# AMO calls)

21

Our approach

Q: How do we choose Qt for good exploration/exploitation?

Caveat: Qt must be efficiently computable + representable!

Our approach:
1. Define convex feasibility problem (over distributions Q on Π)

such that solutions yield (near) optimal regret bounds.

2. Design algorithm that finds a sparse solution Q.

Algorithm only accesses Π via calls to AMO
=⇒ nnz(Q) = O(# AMO calls)

21

Our approach

Q: How do we choose Qt for good exploration/exploitation?

Caveat: Qt must be efficiently computable + representable!

Our approach:
1. Define convex feasibility problem (over distributions Q on Π)

such that solutions yield (near) optimal regret bounds.

2. Design algorithm that finds a sparse solution Q.

Algorithm only accesses Π via calls to AMO
=⇒ nnz(Q) = O(# AMO calls)

21

Our approach

Q: How do we choose Qt for good exploration/exploitation?

Caveat: Qt must be efficiently computable + representable!

Our approach:
1. Define convex feasibility problem (over distributions Q on Π)

such that solutions yield (near) optimal regret bounds.

2. Design algorithm that finds a sparse solution Q.

Algorithm only accesses Π via calls to AMO
=⇒ nnz(Q) = O(# AMO calls)

21

The “good policy distribution” problem

Convex feasibility problem for policy distribution Q

∑
π∈Π

Q(π) · R̂egt(π) ≤
√

K logN
t

(Low regret)

v̂arQ
(
R̂ewt(π)

)
≤ b(π) ∀π ∈ Π (Low variance)

Using feasible Qt in round t gives near-optimal regret.

But N variables and N + 1 constraints, . . .

22

The “good policy distribution” problem

Convex feasibility problem for policy distribution Q

∑
π∈Π

Q(π) · R̂egt(π) ≤
√

K logN
t

(Low regret)

v̂arQ
(
R̂ewt(π)

)
≤ b(π) ∀π ∈ Π (Low variance)

Using feasible Qt in round t gives near-optimal regret.

But N variables and N + 1 constraints, . . .

22

The “good policy distribution” problem

Convex feasibility problem for policy distribution Q

∑
π∈Π

Q(π) · R̂egt(π) ≤
√

K logN
t

(Low regret)

v̂arQ
(
R̂ewt(π)

)
≤ b(π) ∀π ∈ Π (Low variance)

Using feasible Qt in round t gives near-optimal regret.

But N variables and N + 1 constraints, . . .

22

The “good policy distribution” problem

Convex feasibility problem for policy distribution Q

∑
π∈Π

Q(π) · R̂egt(π) ≤
√

K logN
t

(Low regret)

v̂arQ
(
R̂ewt(π)

)
≤ b(π) ∀π ∈ Π (Low variance)

Using feasible Qt in round t gives near-optimal regret.

But N variables and N + 1 constraints, . . .

22

The “good policy distribution” problem

Convex feasibility problem for policy distribution Q

∑
π∈Π

Q(π) · R̂egt(π) ≤
√

K logN
t

(Low regret)

v̂arQ
(
R̂ewt(π)

)
≤ b(π) ∀π ∈ Π (Low variance)

Using feasible Qt in round t gives near-optimal regret.

But N variables and N + 1 constraints, . . .

22

Solving the convex feasibility problem

Solver for “good policy distribution” problem

Start with some Q (e.g., Q := 0), then repeat:
1. If “low regret” constraint violated, then fix by rescaling:

Q := cQ

for some c < 1.
2. Find most violated “low variance” constraint—say,

corresponding to policy π̃—and update

Q(π̃) := Q(π̃) + α .

(If no such violated constraint, stop and return Q.)

(c < 1 and α > 0 have closed-form formulae.)

(Technical detail: Q can be a sub-distribution that sums to less than one.)
23

Solving the convex feasibility problem

Solver for “good policy distribution” problem
Start with some Q (e.g., Q := 0), then repeat:

1. If “low regret” constraint violated, then fix by rescaling:

Q := cQ

for some c < 1.
2. Find most violated “low variance” constraint—say,

corresponding to policy π̃—and update

Q(π̃) := Q(π̃) + α .

(If no such violated constraint, stop and return Q.)

(c < 1 and α > 0 have closed-form formulae.)

(Technical detail: Q can be a sub-distribution that sums to less than one.)
23

Solving the convex feasibility problem

Solver for “good policy distribution” problem
Start with some Q (e.g., Q := 0), then repeat:
1. If “low regret” constraint violated, then fix by rescaling:

Q := cQ

for some c < 1.

2. Find most violated “low variance” constraint—say,
corresponding to policy π̃—and update

Q(π̃) := Q(π̃) + α .

(If no such violated constraint, stop and return Q.)

(c < 1 and α > 0 have closed-form formulae.)

(Technical detail: Q can be a sub-distribution that sums to less than one.)
23

Solving the convex feasibility problem

Solver for “good policy distribution” problem
Start with some Q (e.g., Q := 0), then repeat:
1. If “low regret” constraint violated, then fix by rescaling:

Q := cQ

for some c < 1.
2. Find most violated “low variance” constraint—say,

corresponding to policy π̃—and update

Q(π̃) := Q(π̃) + α .

(If no such violated constraint, stop and return Q.)

(c < 1 and α > 0 have closed-form formulae.)

(Technical detail: Q can be a sub-distribution that sums to less than one.)
23

Solving the convex feasibility problem

Solver for “good policy distribution” problem
Start with some Q (e.g., Q := 0), then repeat:
1. If “low regret” constraint violated, then fix by rescaling:

Q := cQ

for some c < 1.
2. Find most violated “low variance” constraint—say,

corresponding to policy π̃—and update

Q(π̃) := Q(π̃) + α .

(If no such violated constraint, stop and return Q.)

(c < 1 and α > 0 have closed-form formulae.)

(Technical detail: Q can be a sub-distribution that sums to less than one.)
23

Implementation via AMO

Finding “low variance” constraint violation:

1. Create fictitious rewards for each i = 1, 2, . . . , t:

r̃i (a) := r̂i (a) +
µ

Q(a|xi)
∀a ∈ A ,

where µ ≈
√

(logN)/(Kt).

2. Obtain π̃ := AMO
(
{(xi , r̃ i)}ti=1

)
.

3. R̃ewt(π̃) > threshold iff π̃’s “low variance” constraint is
violated.

24

Iteration bound

Solver is coordinate descent for minimizing potential function

Φ(Q) := c1 · Êx [RE(uniform‖Q(·|x))] + c2 ·
∑
π∈Π

Q(π)R̂egt(π) .

(Partial derivative w.r.t. Q(π) is “low variance” constraint for π.)
Returns a feasible solution after

Õ

(√
Kt

logN

)
steps .

(Actually use (1− ε) · Q + ε · uniform inside RE expression.)

25

Iteration bound

Solver is coordinate descent for minimizing potential function

Φ(Q) := c1 · Êx [RE(uniform‖Q(·|x))] + c2 ·
∑
π∈Π

Q(π)R̂egt(π) .

(Partial derivative w.r.t. Q(π) is “low variance” constraint for π.)

Returns a feasible solution after

Õ

(√
Kt

logN

)
steps .

(Actually use (1− ε) · Q + ε · uniform inside RE expression.)

25

Iteration bound

Solver is coordinate descent for minimizing potential function

Φ(Q) := c1 · Êx [RE(uniform‖Q(·|x))] + c2 ·
∑
π∈Π

Q(π)R̂egt(π) .

(Partial derivative w.r.t. Q(π) is “low variance” constraint for π.)
Returns a feasible solution after

Õ

(√
Kt

logN

)
steps .

(Actually use (1− ε) · Q + ε · uniform inside RE expression.)

25

Algorithm

1: Pick initial distribution Q1 over policies Π.
2: for round t = 1, 2, . . . do
3: Nature draws (xt , r t) from dist. D over X × [0, 1]A.
4: Observe context xt .
5: Compute action distribution pt := Qt(· |xt).
6: Pick action at ∼ pt .
7: Collect reward rt(at).
8: Compute new policy distribution Qt+1 using coordinate

descent + AMO.
9: end for

26

Recap

Feasible solution to “good policy distribution problem” gives
near optimal regret bound.

New coordinate descent algorithm:
repeatedly find a violated constraint and adjust Q to satisfy it.
Our analysis shows that, in round t,

nnz(Qt+1) = O(# AMO calls) = Õ

(√
Kt

logN

)
.

With a few additional tricks:

Total # calls to AMO over all T rounds = Õ

(√
KT

logN

)
,

i.e., only about once every
√
T rounds.

27

Recap
Feasible solution to “good policy distribution problem” gives
near optimal regret bound.

New coordinate descent algorithm:
repeatedly find a violated constraint and adjust Q to satisfy it.
Our analysis shows that, in round t,

nnz(Qt+1) = O(# AMO calls) = Õ

(√
Kt

logN

)
.

With a few additional tricks:

Total # calls to AMO over all T rounds = Õ

(√
KT

logN

)
,

i.e., only about once every
√
T rounds.

27

Recap
Feasible solution to “good policy distribution problem” gives
near optimal regret bound.

New coordinate descent algorithm:
repeatedly find a violated constraint and adjust Q to satisfy it.

Our analysis shows that, in round t,

nnz(Qt+1) = O(# AMO calls) = Õ

(√
Kt

logN

)
.

With a few additional tricks:

Total # calls to AMO over all T rounds = Õ

(√
KT

logN

)
,

i.e., only about once every
√
T rounds.

27

Recap
Feasible solution to “good policy distribution problem” gives
near optimal regret bound.

New coordinate descent algorithm:
repeatedly find a violated constraint and adjust Q to satisfy it.
Our analysis shows that, in round t,

nnz(Qt+1) = O(# AMO calls) = Õ

(√
Kt

logN

)
.

With a few additional tricks:

Total # calls to AMO over all T rounds = Õ

(√
KT

logN

)
,

i.e., only about once every
√
T rounds.

27

Recap
Feasible solution to “good policy distribution problem” gives
near optimal regret bound.

New coordinate descent algorithm:
repeatedly find a violated constraint and adjust Q to satisfy it.
Our analysis shows that, in round t,

nnz(Qt+1) = O(# AMO calls) = Õ

(√
Kt

logN

)
.

With a few additional tricks:

Total # calls to AMO over all T rounds = Õ

(√
KT

logN

)
,

i.e., only about once every
√
T rounds.

27

Summary

1. New statistically optimal algorithm for contextual bandits.

2. Accesses policy class Π only via AMO (i.e., supervised learner).

3. Algorithm uses AMO (sparingly!) to solve convex feasibility
problem over policy distributions that balances exploration and
exploitation.

28

Summary

1. New statistically optimal algorithm for contextual bandits.

2. Accesses policy class Π only via AMO (i.e., supervised learner).

3. Algorithm uses AMO (sparingly!) to solve convex feasibility
problem over policy distributions that balances exploration and
exploitation.

28

Summary

1. New statistically optimal algorithm for contextual bandits.

2. Accesses policy class Π only via AMO (i.e., supervised learner).

3. Algorithm uses AMO (sparingly!) to solve convex feasibility
problem over policy distributions that balances exploration and
exploitation.

28

Summary

1. New statistically optimal algorithm for contextual bandits.

2. Accesses policy class Π only via AMO (i.e., supervised learner).

3. Algorithm uses AMO (sparingly!) to solve convex feasibility
problem over policy distributions that balances exploration and
exploitation.

28

4. Wrap-up

29

Wrap-up

I Interactive machine learning (e.g., contextual bandits, active
learning) confronts challenges in how machine learning is used
in real applications.

I Sampling bias is a pervasive issue:
direct application of non-interactive ML methods fail.

I Future directions:
I Richer forms of interaction / more powerful queries
I Interactive algorithms for solving other data analysis tasks

(e.g., clustering, error profiling, debugging)

Thanks!

References:

Contextual bandits: http://arxiv.org/abs/1402.0555
Active learning http://arxiv.org/abs/1506.08669

30

http://arxiv.org/abs/1402.0555
http://arxiv.org/abs/1506.08669

Wrap-up

I Interactive machine learning (e.g., contextual bandits, active
learning) confronts challenges in how machine learning is used
in real applications.

I Sampling bias is a pervasive issue:
direct application of non-interactive ML methods fail.

I Future directions:
I Richer forms of interaction / more powerful queries
I Interactive algorithms for solving other data analysis tasks

(e.g., clustering, error profiling, debugging)

Thanks!

References:

Contextual bandits: http://arxiv.org/abs/1402.0555
Active learning http://arxiv.org/abs/1506.08669

30

http://arxiv.org/abs/1402.0555
http://arxiv.org/abs/1506.08669

Wrap-up

I Interactive machine learning (e.g., contextual bandits, active
learning) confronts challenges in how machine learning is used
in real applications.

I Sampling bias is a pervasive issue:
direct application of non-interactive ML methods fail.

I Future directions:
I Richer forms of interaction / more powerful queries
I Interactive algorithms for solving other data analysis tasks

(e.g., clustering, error profiling, debugging)

Thanks!

References:

Contextual bandits: http://arxiv.org/abs/1402.0555
Active learning http://arxiv.org/abs/1506.08669

30

http://arxiv.org/abs/1402.0555
http://arxiv.org/abs/1506.08669

Wrap-up

I Interactive machine learning (e.g., contextual bandits, active
learning) confronts challenges in how machine learning is used
in real applications.

I Sampling bias is a pervasive issue:
direct application of non-interactive ML methods fail.

I Future directions:
I Richer forms of interaction / more powerful queries
I Interactive algorithms for solving other data analysis tasks

(e.g., clustering, error profiling, debugging)

Thanks!

References:

Contextual bandits: http://arxiv.org/abs/1402.0555
Active learning http://arxiv.org/abs/1506.08669

30

http://arxiv.org/abs/1402.0555
http://arxiv.org/abs/1506.08669

Wrap-up

I Interactive machine learning (e.g., contextual bandits, active
learning) confronts challenges in how machine learning is used
in real applications.

I Sampling bias is a pervasive issue:
direct application of non-interactive ML methods fail.

I Future directions:
I Richer forms of interaction / more powerful queries
I Interactive algorithms for solving other data analysis tasks

(e.g., clustering, error profiling, debugging)

Thanks!
References:
Contextual bandits: http://arxiv.org/abs/1402.0555
Active learning http://arxiv.org/abs/1506.08669

30

http://arxiv.org/abs/1402.0555
http://arxiv.org/abs/1506.08669

	Introduction
	Contextual bandit learning
	Classical tricks for contextual bandits
	Algorithm for constructing policy distributions
	Wrap-up

