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Want autonomous agents that act well
(make good sequences of decisions)
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Towards Faster Learning

* Transfer learning
e Building on offline data
e Leveraging expert input



Formalizing Sample Efficiency of
RL Algorithms

* One measure: is it Probably Approximately
Correct?

— Makes good decisions on all but the sample
complexity number of steps

— Sample complexity is polynomial function of problem
parameters

— E3 (Kearns & Singh), R-MAX (Brafman & Tennenholtz)



Sample complexity:

number of actions may choose whose value is
potentially far from optimal action’s value

(informally: # of mistakes made by algorithm)

Unfortunately, this can be a lot O{SAlog(&%}
1— 1) 2
E.g. (Azar et al. 2013) lower bound U
Reality check:
£=0.1,y=0.9: 10° samples per state
£=0.1,y=0.99: 10°® samples per state



Approach: Share Knowledge

* Leverage provided information

— Given input policy set (regret guarantees relative to
best input policy, ECML 2013)

— Given finite model sets (AAMAS 2012)
e Learn and transfer useful knowledge

— Transfer learning (lifelong / multitask learning) (UAI
2013, NIPS 2013, ICML 2014, AAAI 2015)



Transfer / Multitask / Lifelong Learning
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Each task involves sequence of decisions
Leverage related tasks to improve performance



Transfer: Fundamental Questions

* Can learning be sped up across multiple tasks?

* Can computational costs be reduced when
doing multiple tasks?

* |s different behavior optimal when an agent is
maximizing performance across a set of tasks?

* task = reinforcement learning in a MDP



Sample complexity:

number of actions may choose whose value is
potentially far from optimal action’s value

Can sample complexity get smaller by
leveraging prior tasks?
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Multi-Task Reinforcement Learning with a Finite
Set of Models
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Multi-Task Reinforcement Learning with a Finite
Set of Models
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Multi-Task Reinforcement Learning with a Finite

MDP R
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Series of tasks
Act in each task for H steps



If Knew ldentity of Each Task and the MDP
Parameters, No Learning Needed!
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Series of tasks
Act in each task for H steps



But Don’t Know the Identity of Each Task
(which MDP it is)
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And Don’t Know the MDP Model Parameters

MDP R
T=? R=?
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Two Key Questions
MDPY- 1) Is learning faster than
Tv Ry single-task RL algorithms
B if know models, but not
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Two Key Questions
MDP Y 1) Is learning faster than
single-task RL algorithms

B é if know models, but not
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ldea: Model Identification Can be Easier than
Learning Policy From Scratch

 Assume know task is 1 of M MDPs, where
parameters of each MDP is specified
* |dentify current task

— Track which of M models are most likely given
observed tuples (state, action, reward, next state)

* Proved sample complexity reduction from
[S|[A] — M dependence



Two Key Questions
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Learning Set of MDPs’ Models
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Learning Set of MABs’ Models
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ldentity of Each Task Unknown to the Learner:
Latent Variable Estimation
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Latent Variable Estimation

* Generally hard

e Standard techniques like expectation
maximization have no finite sample guarantees &
can converge to local optima



Assume Have (Sufficiently) Long Horizon Per

é

Task
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* If know all of the MDP parameters of each task perfectly,
cluster tasks with identical parameters

* Know different underlying MDPs have to differ in their model
parameters in at least one (s,a) pair by some difference d, so
use to inform how well need to estimate parameters



Assume Have (Sufficiently) Long Horizon Per

Task*
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* In other work on transfer across multi-armed bandits, we relax
this assumption, and use a Methods of Moments approach to
derive & use finite sample bounds on latent variable estimation
quality (see NIPS 2013)



Sequential Multi-Task PAC RL in a Finite
Set of Models

* For tasks i=1:T,
— Use single-task PAC RL algorithm E3 in task i
* Cluster tasks into set of C MDPs

* For all further tasks i
— Do model identification on i given C models




Key Result

e Can significantly speed learning if # MDPs << |S| |A]|

* First formal result, to our knowledge, that sequential
multi-task reinforcement learning can enable faster
learning (reduced sample complexity)

* No negative transfer in terms of sample complexity!

— Negative transfer is when transfer can lead to worse
results than if did non-transfer setting

— Here have no such issues, at least in terms of theoretical
analysis



Concurrent
Reinforcement Learning
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Class of Students

customers using Amazon, or
natients in a hospital, ...




Concurrent but Independent

One agent doing many Not multiple agents doing a
tasks at once single task

* Very little prior work on concurrent RL, except encouraging
empirical paper that might be very useful for customers
(Silver et al. 2013)



Concurrent RL

e Best could hope for: linear
Improvement
e Result is quite close to this!

e (0 (0 (oo (e




Concurrent RL in a Finite Set of
MDPs: Algorithm

* Fort=1:T
— Explore state-action space in each
MDP

e Cluster tasks
* Run concurrent MBIE

e Similar to sequential task, but now
doing clustering and sharing while
acting as act in a single task




Concurrent RL in a Finite Set of
MDPs: Intuition

* If time to cluster is small relative to
experience needed to learn a good
policy

* Then get approximately linear
speedup (in terms of sample
complexity) over not sharing
information




Building on Offline
Data
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Off Policy Reinforcement Learning
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Data gathered using previous
policy (could be stochastic
policy or multiple policies)

Want to output an optimal or
good policy for future use
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Increasing Amount of Decision Data,
Increasing Opportunity for Better

New Policies

* Electronic medical record systems

* Massive open online classes, tutoring systems
* Consumer marketing

* Home energy monitoring
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State Representation

Asked for a hint after 20s Got wrong after 15s
Got correct after 40s Got correct after 16s

e Vector of feature values

. <NumberHintsRequested=1, ProblemsSinceHintRequested=1, TotalElapsedTime=56s,
NumberTimesGotCorrectWithoutHint=1, TotalINumberOfProblemsDone=2, ...>

Mandel, Liu, Brunskill & Popovi¢, AAMAS 2014



State Representation
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Asked for a hint after 20s Got wrong after 15s
Got correct after 40s Got correct after 16s

 Vector of feature values

. <NumberHintsRequested=1, ProblemsSinceHintRequested=1, TotalElapsedTime=56s,
NumberTimesGotCorrectWithoutHint=1, TotalINumberOfProblemsDone=2, ...>

* Probability distribution over latent state

. Prob( GraphicalComparison & SymbolicComparison) = 0.27, Prob( GraphicalComparison & Not
SymbolicComparison) = .63, Prob( Not GraphicalComparison & SymbolicComparison) = 0.03,
Prob( not GraphicalComparison & Not SymbolicComparison) = .07

Mandel, Liu, Brunskill & Popovi¢, AAMAS 2014



State Representation

Asked for a hint after 20s Got wrong after 15s
Got correct after 40s Got correct after 16s

 Vector of feature values

. <NumberHintsRequested=1, ProblemsSinceHintRequested=1, TotalElapsedTime=56s,
NumberTimesGotCorrectWithoutHint=1, TotalINumberOfProblemsDone=2, ...>

* Probability distribution over latent state

. Prob( GraphicalComparison & SymbolicComparison) = 0.27, Prob( GraphicalComparison & Not
SymbolicComparison) = .63, Prob( Not GraphicalComparison & SymbolicComparison) = 0.03,
Prob( not GraphicalComparison & Not SymbolicComparison) = .07

* Prediction over responses to future activities
. Prob get next graphical activity right =0.9, Prob get next improper fraction activity right =0.4

Mandel, Liu, Brunskill & Popovi¢, AAMAS 2014



General Formulation:
Unbiased Offline Policy Evaluation Across
Representations for Short Horizons

Representation &
Algorithm to Compute
Policy

activity,, observatlonlz, rewardlz, activity_,, observatlonlg,

. ) o , Unbiased Estimate of
activity,,, observatlonzz, rewardzz, activity, , observatlonzs,... >

Policy Performance

Mandel, Liu, Brunskill & Popovi¢, AAMAS 2014



Guarantees

* Unbiased estimate of expected future
performance of input representation—policies

— Importance sampling to compare policies
generated from variety of representations

— Cross validation to predict generalization

Mandel, Liu, Brunskill & Popovi¢, AAMAS 2014



Deployment:
Refraction Game

* Find adaptive policy |
for concept to give
to a player to
maximize total
number of concepts
complete before
quit




Deployment:
Refraction Game Offline Data

e 180 features of game per level

e Collected 11,000 players’ data using random
level ordering



Used Offline Evaluation Method to
Compare Many Representation-Policies

* Best policy in offline evaluation

is adaptive policy using

L Ll | | PCA+neural network

"l H I H H H bl W W H H { { ! H i HH representation
G o Previously used expert ordering
o ~is estimated as being worse
than random!

N ol L od oM oL w W
NNNNNN

* Highlights non-trivial nature of
designing good policies



... and Best Scoring Offline Policy Improved
Concept Completion by 32%

| ¢ Tried 4 policies with
2000 new learners

| * Compared to random
| & expert

" Random Expert Best StaticAdaptive



Towards Faster Learning

* Transfer learning
e Building on offline data
¢ Leveraging expert input



Multi-Armed Bandits

Evaluate
Algorithms

Utilize
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Mandel, Liu, Brunskill & Popovi¢, AAAI 2015



Multi-Armed Bandits

Evaluate Incorporate
Algorithms Heuristics

Utilize
Prior Data

Mandel, Liu, Brunskill & Popovi¢, AAAI 2015



Multi-Armed Bandits

Overcome
Delay

Evaluate Queue Incorporate
Algorithms Method Heuristics

Utilize
Prior Data

Mandel, Liu, Brunskill & Popovi¢, AAAI 2015



Queue Method

 Store data (outcomes of pulling arms) in
gueues, one per arm

* Update a base algorithm (often which has
formal performance guarantees) only using
gueues

e Formal bounds
e Sampling distribution



Leveraging Heuristics While
Maintaining Guarantees

e Given

* Base algorithm (w/formal performance
guarantees)

e Heuristic algorithm

 Store data (outcomes of pulling arms) in
gueues, one per arm

e Update base algorithm only using queue data

e Sampling distribution: mixes heuristic and
base but bounds lengths of queues



Evaluate Algorithms Using Prior Data

e Store prior data (outcomes of pulling arms) in
gueues, one per arm

e Draw outcome from queue according to
action requested by algorithm to evaluate

e Update algorithm given queue outcome
e Halt when reach an empty queue



Evaluate Algorithms Using Prior Data

e Store prior data (outcomes of pulling arms) in
gueues, one per arm

e Draw outcome from queue according to
action requested by algorithm to evaluate

e Update algorithm given queue outcome
e Halt when reach an empty queue

e More efficient than rejection sampling
e Conditionally unbiased*



Regret Bounds

Theorem 1. For algorithm 1 with any choice of proce-
dure GETSAMPLINGDIST and any online bandit algorithm

BASE, £ [RT] <E [RI%ASE] 4 Zf\il JAVE D) [Sf,;,T] where S; T
is the number of elements pulled for arm i by time T', but not
yet shown to BASE.
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Offline Data EfflClency
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Algorithm Performance Evaluated
Using Offline Data

—  SDB-thom-1.0
—  SDB-thom-0.1
15F[ oo QPM-D-thom

Cumulative Reward (Difference from Uniform)

0 500 1000 1500 2000
Samples (in batches of size 100)



Evaluate
Algorithms

Multi-Armed Bandits

Overcome
Delay
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Expert Input

Queue
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Mandel, Liu, Brunskill & Popovi¢, AAAI 2015



Towards Faster Learning

* Transfer learning
e Building on offline data
¢ Leveraging expert input



Faster Learning With Policy Advice

* Online reinforcement learning

 Computational and speed of learning (sample
complexity, regret) tend to scale with size of
state/action space

* Policy advice: given finite set of policies
* Objective: perform as well as best policy

Azar, Lazaric, Brunskill, ECML 2013



RL with Policy Advice (RLPA)
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Azar, Lazaric, Brunskill, ECML 2013



RL with Policy Advice (RLPA)
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e Keep upper bound on avg. reward per policy

Azar, Lazaric, Brunskill, ECML 2013

e Use to optimistically select policy



RLPA Regret Bounds

ForanyT >T" = f~'(H™) the regret of RLPA is bounded as

A(s) < f(T)/Tm(log(T/6)) + f(T)m(logy(T*) + 2log,y(T)))

O(vVmT) (with f(T) = log(T), T+ = exp(H*))

* No dependence on size of state-action space
e Sgrt dependence on m, # of input policies
* Dependent only on span H+ of best policy

Azar, Lazaric, Brunskill, ECML 2013



Closing the Graveyard of Ambitions



Closing the Graveyard of Ambitions

Celtics | Nets Knicks 76ers Raptors | Bulls Cavaliers | Pistons
Rockets 9 5 8 9 14 2 0 -3
Magic 17 1 -0 -1 -5 7 -11 -17
Lakers -17 -12 -1 8 -12 22 8 2
Blazers -4 -3 -18 -1 8 13 9 1

[-20,-10] 3 Difference in Game Points: 2007 \ Ra ndom Iy

[-15,-11] 3 14+

[10,-6] 12 generated
[-5.-11 [7 10

[0.4] g5 tables

[5.9] s g 0

[10,14] [ 4

[15.19] |1 2 ~~— Dynamic
[20,24] | 0

-20

s 20 25 histograms

Score Difference

x . .
— Adaptive Hints

Hint: Check your answer for the range [-10, -6], and [5, 9].
* Remember that we are counting the number of times that the score difference in a game falls within

these ranges.



Sample Efficient Online RL

 State space size influences how quickly can
learn a good policy

e What representation should we use?

e One that enables us to represent good
policy



Abstract from Demonstration

 Cobo et al. (2011, 2014)
* Leverage expert input

* Without being bounded by expert
performance

e |dentify which features used by experts
e Do RL on that feature space



Learning the Student Features Used
to Decide How To Teach
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Towards Faster RL
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