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Want autonomous agents that act well 

(make good sequences of decisions)



3

Marketing

Machine 
repair

Inventory ordering

Server job
scheduling

Automated 
customer 
support

Renewable 
resource 
allocation



Most AI algorithms developed for robots



Want algorithms to enable:



Warner Brothers



Agents Making 
Decisions as Interact 

with People

MODELS

DECISION
POLICIES



Agents Making 
Decisions as Interact 

with People



Data = People



Towards Faster Learning

• Transfer learning
• Building on offline data
• Leveraging expert input



Formalizing Sample Efficiency of 
RL Algorithms

• One measure: is it Probably Approximately 
Correct?

– Makes good decisions on all but the sample 
complexity number of steps

– Sample complexity is polynomial function of problem 
parameters

– E3 (Kearns & Singh), R-MAX (Brafman & Tennenholtz)
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Sample complexity: 
number of actions may choose whose value is 

potentially far from optimal action’s value 
(informally: # of mistakes made by algorithm)

Unfortunately, this can be a lot

E.g. (Azar et al. 2013) lower bound                    d
Reality check: 

ε=0.1,γ=0.9: 105 samples per state 
ε=0.1,γ=0.99: 108 samples per state 
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Approach: Share Knowledge

• Leverage provided information
– Given input policy set (regret guarantees relative to 

best input policy, ECML 2013)

– Given finite model sets (AAMAS 2012)

• Learn and transfer useful knowledge
– Transfer learning (lifelong / multitask learning) (UAI 

2013, NIPS 2013, ICML 2014, AAAI 2015)



Transfer / Multitask / Lifelong Learning

Each task involves sequence of decisions
Leverage related tasks to improve performance 

Player 
1

Player 
2

Player 
3



Transfer: Fundamental Questions

• Can learning be sped up across multiple tasks?

• Can computational costs be reduced when 
doing multiple tasks?

• Is different behavior optimal when an agent is 
maximizing performance across a set of tasks?

* task = reinforcement learning in a MDP



Sample complexity: 

number of actions may choose whose value is 
potentially far from optimal action’s value 

Can sample complexity get smaller by 
leveraging prior tasks?
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Multi-Task Reinforcement Learning with a Finite 
Set of Models
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Multi-Task Reinforcement Learning with a Finite 
Set of Models

MDP Y

T
Y
, R

Y

MDP R

T
R
, R

R

MDP G

T
G
, R

G

Again sample a 
MDP…



Multi-Task Reinforcement Learning with a Finite 
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Multi-Task Reinforcement Learning with a Finite 
Set of Models

…

Series of tasks
Act in each task for H steps
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If Knew Identity of Each Task and the MDP 
Parameters, No Learning Needed!

…

Series of tasks
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But Don’t Know the Identity of Each Task 
(which MDP it is)

…
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And Don’t Know the MDP Model Parameters

…

MDP Y

T=? R=?

MDP R

T=? R=?

MDP G

T=? R=?



Two Key Questions
MDP Y

T
Y
, R

Y

MDP R

T
R
, R

R

1) Is learning faster than 
single-task RL algorithms 
if know models, but not 
identity of current task?MDP G

T
G
, R

G



Two Key Questions
1) Is learning faster than 
single-task RL algorithms 
if know models, but not 
identity of current task?

2) If yes, can we achieve 
similar results even if 

start off not knowing the 
MDP model parameters?
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Idea: Model Identification Can be Easier than 
Learning Policy From Scratch

• Assume know task is 1 of M MDPs, where 
parameters of each MDP is specified

• Identify current task
– Track which of M models are most likely given 

observed tuples (state, action, reward, next state) 

• Proved sample complexity reduction from          
|S||A| → M dependence



Two Key Questions
1) Is learning faster than 
single-task RL algorithms 
if know models, but not 
identity of current task?

2) If yes, can we achieve 
similar results even if 
start off not knowing 

the MDP model 
parameters?
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Learning Set of MDPs’ Models
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Learning Set of MABs’ Models
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Identity of Each Task Unknown to the Learner: 
Latent Variable Estimation

Observed

Latent variable:
Underlying MAB 
identity
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Latent Variable Estimation

• Generally hard

• Standard techniques like expectation 
maximization have no finite sample guarantees & 
can converge to local optima 

• Recent progress on LVM using spectral methods 
(Kakade, Anandkumar, Hsu, Gordon, Boots,…)
– Global optima



Assume Have (Sufficiently) Long Horizon Per 
Task

Observed
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• Know different underlying MDPs have to differ in their model 
parameters in at least one (s,a) pair by some difference d, so 
use to inform how well need to estimate parameters
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Assume Have (Sufficiently) Long Horizon Per 
Task*

Observed
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* In other work on transfer across multi-armed bandits, we relax 
this assumption, and use a Methods of Moments approach to 
derive & use finite sample bounds on latent variable estimation 
quality (see NIPS 2013)
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Sequential Multi-Task PAC RL in a Finite 
Set of Models

• For tasks i=1:T
1

– Use single-task PAC RL algorithm E3 in task i

• Cluster tasks into set of C MDPs

• For all further tasks i
– Do model identification on i given C models 



Key Result

• Can significantly speed learning if # MDPs << |S||A|
• First formal result, to our knowledge, that sequential 

multi-task reinforcement learning can enable faster 
learning (reduced sample complexity)

• No negative transfer in terms of sample complexity!
– Negative transfer is when transfer can lead to worse 

results than if did non-transfer setting
– Here have no such issues, at least in terms of theoretical 

analysis



Concurrent 
Reinforcement Learning

…

Guo and Brunskill, AAAI 2015



Class of Students

Or all customers using Amazon, or 
patients in a hospital, …



Concurrent but Independent

Not multiple agents doing a 
single task

One agent doing many 
tasks at once

• Very little prior work on concurrent RL, except encouraging 
empirical paper that might be very useful for customers 
(Silver et al. 2013)



Concurrent RL 

• Best could hope for: linear 
improvement

• Result is quite close to this!



Concurrent RL in a Finite Set of 
MDPs: Algorithm

• For t=1:T
– Explore state-action space in each 

MDP

• Cluster tasks

• Run concurrent MBIE

• Similar to sequential task, but now 
doing clustering and sharing while 
acting as act in a single task 



Concurrent RL in a Finite Set of 
MDPs: Intuition

• If time to cluster is small relative to 
experience needed to learn a good 
policy

• Then get approximately linear 
speedup (in terms of sample 
complexity) over not sharing 
information



Pol

MODELS

DECISION
POLICIES

Building on Offline 
Data



Off Policy Reinforcement Learning 

S
1

S
2

S
3

…

S
1

S
2

S
3

…

Data gathered using previous 
policy (could be stochastic 
policy or multiple policies)

Want to output an optimal or 
good policy for future use



Increasing Amount of Decision Data, 
Increasing Opportunity for Better 

New Policies

• Electronic medical record systems
• Massive open online classes, tutoring systems
• Consumer marketing
• Home energy monitoring



Want Good Estimates of 
Generalization 
Performance



Challenge: 
Use old data to 

figure out 
good policies to 

deploy   

Mandel, 
Liu, 
Brunskill 
& 
Popović, 
AAMAS 
2014



State Representation

                              
… 

Asked for a hint after 20s
Got correct after 40s

Got wrong after 15s
Got correct after 16s

• Vector of feature values
• <NumberHintsRequested=1, ProblemsSinceHintRequested=1, TotalElapsedTime=56s, 

NumberTimesGotCorrectWithoutHint=1, TotalNumberOfProblemsDone=2, …>

• Probability distribution over latent state
• Prob( GraphicalComparison & SymbolicComparison) = 0.27, Prob( GraphicalComparison & Not 

SymbolicComparison) = .63, Prob( Not GraphicalComparison & SymbolicComparison) = 0.03, 
Prob( not GraphicalComparison & Not SymbolicComparison) = .07

• Prediction over responses to future activities
• Prob get next graphical activity right =0.9, Prob get next improper fraction activity right =0.4 

…
Mandel, Liu, Brunskill & Popović, AAMAS 2014
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General Formulation: 
Unbiased Offline Policy Evaluation Across 

Representations for Short Horizons

Mandel, Liu, Brunskill & Popović, AAMAS 2014

activity
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, observation
12

, reward
12

, activity
12

, observation
13

, ...
activity

21
, observation

22
, reward

22
, activity

22
, observation

23
,... 

…

Representation & 
Algorithm to Compute 

Policy

Unbiased Estimate of 
Policy Performance



Guarantees

• Unbiased estimate of expected future 
performance of input representation—policies
– Importance sampling to compare policies 

generated from variety of representations

– Cross validation to predict generalization

Mandel, Liu, Brunskill & Popović, AAMAS 2014



Deployment: 
Refraction Game

• Find adaptive policy 
for concept to give 
to a player to 
maximize total 
number of concepts 
complete before 
quit 



Deployment: 
Refraction Game Offline Data

• 180 features of game per level

• Collected 11,000 players’ data using random 
level ordering



Used Offline Evaluation Method to 
Compare Many Representation-Policies

• Best policy in offline evaluation 
is adaptive policy using 
PCA+neural network 
representation

• Previously used expert ordering 
is estimated as being worse 
than random! 

• Highlights non-trivial nature of 
designing good policies



… and Best Scoring Offline Policy Improved 
Concept Completion by 32%

• Tried 4 policies with 
2000 new learners

• Compared to random 
& expert



Towards Faster Learning

• Transfer learning
• Building on offline data
• Leveraging expert input



     Mandel, Liu, Brunskill & Popović, AAAI 2015

Utilize 
Prior Data

Evaluate 
Algorithms

Multi-Armed Bandits
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Incorporate 
Heuristics

Utilize 
Prior Data

Evaluate 
Algorithms

Multi-Armed Bandits



     Mandel, Liu, Brunskill & Popović, AAAI 2015

Queue 
Method

Overcome 
Delay

Incorporate 
Heuristics

Utilize 
Prior Data

Evaluate 
Algorithms

Multi-Armed Bandits



Queue Method

• Store data (outcomes of pulling arms) in 
queues, one per arm

• Update a base algorithm (often which has 
formal performance guarantees) only using 
queues

• Formal bounds

• Sampling distribution



Leveraging Heuristics While 
Maintaining Guarantees

• Given

• Base algorithm (w/formal performance 
guarantees)

• Heuristic algorithm 

• Store data (outcomes of pulling arms) in 
queues, one per arm

• Update base algorithm only using queue data

• Sampling distribution: mixes heuristic and 
base but bounds lengths of queues



Evaluate Algorithms Using Prior Data

• Store prior data (outcomes of pulling arms) in 
queues, one per arm

• Draw outcome from queue according to 
action requested by algorithm to evaluate

• Update algorithm given queue outcome

• Halt when reach an empty queue



Evaluate Algorithms Using Prior Data

• Store prior data (outcomes of pulling arms) in 
queues, one per arm

• Draw outcome from queue according to 
action requested by algorithm to evaluate

• Update algorithm given queue outcome

• Halt when reach an empty queue

• More efficient than rejection sampling

• Conditionally unbiased*



Regret Bounds



Liu, Mandel,  Brunskill & Popović, EDM 2014

Music?

Representation 
of Fractions?

Symbolic 
target?

Additional 
Motivation?

Treefrog: Fractions Education Game
Factored Arm Multi-armed Bandit



Music?

Representation 
of Fractions?

Symbolic 
target?

Additional 
Motivation?



Offline Data Efficiency



Algorithm Performance Evaluated 
Using Offline Data



     Mandel, Liu, Brunskill & Popović, AAAI 2015

Queue 
Method

Overcome 
Delay

Incorporate 
Heuristics/

Expert Input

Utilize 
Prior Data

Evaluate 
Algorithms

Multi-Armed Bandits



Towards Faster Learning

• Transfer learning
• Building on offline data
• Leveraging expert input



Faster Learning With Policy Advice

• Online reinforcement learning

• Computational and speed of learning (sample 
complexity, regret) tend to scale with size of 
state/action space

• Policy advice: given finite set of policies

• Objective: perform as well as best policy 

    Azar, Lazaric, Brunskill, ECML 2013



RL with Policy Advice (RLPA)

    Azar, Lazaric, Brunskill, ECML 2013



RL with Policy Advice (RLPA)

    Azar, Lazaric, Brunskill, ECML 2013

• Keep upper bound on avg. reward per policy

• Use to optimistically select policy



RLPA Regret Bounds

• No dependence on size of state-action space

• Sqrt dependence on m, # of input policies

• Dependent only on span H+ of best policy 

    Azar, Lazaric, Brunskill, ECML 2013



Closing the Graveyard of Ambitions

w/Joe Runde, Dexter Lee, Warfa and Allison 



Closing the Graveyard of Ambitions

w/Joe Runde, Dexter Lee, Warfa and Allison 



Sample Efficient Online RL

• State space size influences how quickly can 
learn a good policy

• What representation should we use?

• One that enables us to represent good 
policy



Abstract from Demonstration 

• Cobo et al. (2011, 2014)

• Leverage expert input

• Without being bounded by expert 
performance

• Identify which features used by experts

• Do RL on that feature space



Learning the Student Features Used 
to Decide How To Teach 

current_lo
left_lo1
previous_done_lo1
correctness
left_lo2
previous_done_lo2
attempts
left_lo3
previous_done_lo3
time_spent
left_lo4
previous_done_lo4
time_spent_all
left_lo5
previous_done_lo5
right_first_try
left_lo6
previous_done_lo6
wrong_first_try
left_my_lo
previous_done_my_lo
pretest_score
right_lo1
previous_left_lo1
previous_left_lo5
previous_right_first_try
right_lo6
previous_left_lo6
previous_wrong_first_try
right_my_lo
previous_left_my_lo
done_lo1
pre_lo1

done_lo3
pre_lo3
previous_right_lo3
done_lo4
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previous_right_lo4
done_lo5
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previous_right_lo5
done_lo6
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previous_right_lo6
done_my_lo
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previous_right_my_lo
previous_time_before_last_problem_lo
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previous_time_spent_last_problem_lo
time_before_last_problem_lo
attempt_last_problem_lo
time_spent_last_problem_lo
previous_attempt_last_problem_lo
pretest_time_spent
right_lo2
previous_left_lo2
previous_correctness
right_lo3
previous_left_lo3
previous_attempts
right_lo4
previous_left_lo4
previous_time_spent
right_lo5

6 features of 
student learning 

process
better than 70
at predicting 

teacher’s 
decisions!

Lee, Runde, Jibril, Wang Brunskill, LAS 2015



Towards Faster RL 

Warner Brothers


