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Introduction

Sampling distribution over high-dimensional state-space has recently
attracted a lot of research efforts in computational statistics and
machine learning community...

Applications (non-exhaustive)

1 Bayesian inference for high-dimensional models and Bayesian non
parametrics

2 Bayesian linear inverse problems (typically function space problems
converted to high-dimensional problem by Galerkin method)

3 Aggregation of estimators and experts

Most of the sampling techniques known so far do not scale to
high-dimension... Challenges are numerous in this area...
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Logistic regression

Likelihood: Binary regression set-up in which the binary observations
(responses) (Y1, . . . , Yn) are conditionally independent Bernoulli
random variables with success probability F (βββTXi), where

1 Xi is a d dimensional vector of known covariates,
2 βββ is a d dimensional vector of unknown regression coefficient
3 F is a distribution function.

logistic regression: F is the standard logistic distribution function,

F (t) = et/(1 + et)

.
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New challenges

Problem the number of predictor variables d is large (104 and up).
Examples

- text categorization,

- genomics and proteomics (gene expression analysis), ,

- other data mining tasks (recommendations, longitudinal clinical
trials, ..).
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Bayes 101

Bayesian analysis requires a prior distribution for the unknown
regression parameter

π(βββ) = N(0,Σβββ)

.

The posterior of βββ is up to a proportionality constant given by

π(βββ|(Y,X)) ∝
n∏
i=1

FYi(β′Xi)(1− F (β′Xi))
1−Yiπ(βββ)

For probit and logistic link, the posterior density is intractable.
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Data Augmentation

The most popular algorithms for Bayesian inference in binary
regression models are based on data augmentation:

1 probit link: Albert and Chib (1993).
2 logistic link: Polya-Gamma sampler, Polsson and Scott (2012)... !

These two algorithms have been shown to be uniformly
geometrically ergodic, BUT

- The geometric rate of convergence is exponentially small with the
dimension (show that the state space is a small set)

- do not allow to construct honest confidence intervals, credible regions

The algorithms are very demanding in terms of computational
ressources...

- applicable only when is d small 10 to moderate 100 but certainly not
when d is large (104 or more).

- convergence time prohibitive as soon as d ≥ 102.
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A daunting problem ?

The posterior density distribution of βββ is given by Bayes’ rule, up to
a proportionality constant by

π(βββ|(Y,X)) ∝ exp(−U(βββ)) .

where the potential U(βββ) is given by

U(βββ) = −
p∑
i=1

{Yi logF (βββTXi) + (1− Yi) log(1− F (βββTXi))}

+ (1/2)βββTΣ−1
βββ βββ

The potential βββ 7→ U(βββ) is smooth, strongly convex...
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Framework

Denote by π a target density w.r.t. the Lebesgue measure on Rd,
known up to a normalisation factor

x 7→ e−U(x)/

∫
Rd

e−U(y)dy ,

Implicitly, d� 1.

Assumption: U is L-smooth : twice continuously differentiable and
there exists a constant L such that for all x, y ∈ Rd,

‖∇U(x)−∇U(y)‖ ≤ L‖x− y‖ .
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Langevin diffusion

Langevin SDE:

dYt = −∇U(Yt)dt+
√

2dBt ,

where (Bt)t≥0 is a d-dimensional Brownian Motion.

π ∝ e−U is reversible ; the unique invariant probability measure.

The convergence to the stationary distribution takes place at
geometrical rate.

- Precise estimates of the convergence rate (TV, relative entropy) can
be obtained using:

Functional inequalities: Poincaré or Log-Sobolev inequalities
Coupling techniques: synchronous or reflection coupling, depending
upon the assumptions (Eberle, 2015)
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Discretized Langevin diffusion

Idea: Sample the diffusion paths, using for example the
Euler-Maruyama (EM) scheme:

Xk+1 = Xk − γk+1∇U(Xk) +
√

2γk+1Zk+1

where

- (Zk)k≥1 is i.i.d. N (0, Id)
- (γk)k≥1 is a sequence of stepsizes, which can either be held constant

or be chosen to decrease to 0 at a certain rate.

Closely related to the gradient algorithm.
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Discretized Langevin diffusion: constant stepzize

When γk = γ, then (Xk)k≥1 is an homogeneous Markov chain with
Markov kernel Rγ

Under some appropriate conditions, this Markov chain is irreducible,
positive recurrent ; unique invariant distribution πγ .

Problem: πγ 6= π.
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Metropolis-Adjusted Langevin Algorithm

To correct the target distribution, a Metropolis-Hastings step can be
included ; Metropolis Adjusted Langevin Agorithm (MALA).

- Key references Roberts and Tweedie, 1996

Algorithm:

1 Propose Yk+1 ∼ Xk − γ∇U(Xk) +
√

2γZk+1, Zk+1 ∼ N (0, Id)
2 Compute the acceptance ratio αγ(Xk, Yk+1)

αγ(x, y) = 1 ∧ π(y)rγ(y, x)

π(x)rγ(x, y)
, rγ(x, y) ∝ e−‖y−x−γ∇U(x)‖2/(4γ)

3 Accept / Reject the proposal.
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MALA: pros and cons

Require to compute 2 gradients at each iteration and to evaluate
two times the objective function

Geometric convergence is established under the condition that in the
tail the acceptance region is inwards in q,

lim
‖x‖→∞

∫
Aγ(x)∆I(x)

rγ(x, y)dy = 0 .

where I(x) = {y, ‖y‖ ≤ ‖x‖} and Aγ(x) is the acceptance region

Aγ(x) = {y, π(x)rγ(x, y) ≤ π(y)rγ(y, x)}
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Level-0: Ergodicity

If the initial distribution µ0 satisfies
∫
‖x‖2µ0(dx) <∞ then there

exists a unique strong solution (Yt)t≥0 to

dYt = −∇U(Yt)dt+
√

2dBt

with Y0 distributed according to µ0.

The semi-group (Pt)t≥0 is

- aperiodic, strong Feller (all compact sets are small).
- reversible w.r.t. to π (admits π as its unique invariant distribution).

For all initial distribution,

lim
t→+∞

‖µ0Pt − π‖TV = 0 .
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Foster-Lyapunov condition

A function V ∈ C2(Rd) is a Lyapunov function if V ≥ 1 and if there
exists θ > 0, b ≥ 0 and R > 0 such that,

A V ≤ −θV + b1B(0,R) ,

where A f = −〈∇U,∇f〉+ ∆f is the generator of the diffusion

Example: If there exist α > 1, ρ > 0 and Mρ ≥ 0 such that for all
y ∈ Rd, ‖y‖ ≥Mρ:

〈∇U(y), y〉 ≥ ρ ‖y‖α .

then V (x) = exp(U(x)/2) is a Lyapunov function (constants are
quantitative but may blow exponentially fast with the dimension of
the state-space).
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Geometric convergence

If there exists a Lyapunov function then convergence to the
stationary distribution can be shown to occur at an exponential rate.

More precisely, there exists κ ∈ [0, 1) such that for any initial
distribution µ0 and t > 0,

‖µ0Pt − π‖TV ≤ C(µ0)κt ,

for some explicit function of the initial probability C(µ0).

Explicit expressions of the constant (the way dimension impacts
theses constants critically depends on the assumptions on the
potential U)
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Let (γk)k≥1 be a sequence of positive and non-increasing step sizes

Euler discretization:

Xk+1 = Xk − γk+1∇U(Xk) +
√

2γk+1Zk+1 ,

where (Zk)k≥1 is i.i.d. N (0, Id), independent of X0.

Markov kernel Rγ and x ∈ Rd by

Rγ(x,A) =

∫
A

1

(4πγ)d/2
exp

(
−(4γ)−1 ‖y − x+ γ∇U(x)‖2

)
dy .

The sequence (Xn)n≥0 is a (possibly) time-nonhomogeneous
Markov chain whose distribution is specified by the Markov kernels
(Rγn)n≥1.
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Level-0 results

The Markov kernel Rγ is strongly Feller, irreducible, and hence all
the compact sets are therefore small.

Typically, the Rγ satisfies a Foster-Lyapunov drift condition of a
particular form, i.e. there exists κ ∈ [0, 1), b > 0 such that for all
γ > 0

RγV ≤ κγV + γb .

It is well-known that under such assumption, Rγ admits a unique
stationary distribution πγ and that the Markov kernel is V -uniformly
geometrically ergodic, in the sense that, for some constant C <∞
and κ ∈ [0, 1), such that for all x ∈ Rd,∥∥Rkγ(x, ·)− πγ

∥∥
V
≤ C(γ)κγkV (x) .
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Example: A drift condition for Rγ

Theorem

Assume U is L-smooth and there exist ρ > 0, α > 1 and Mρ ≥ 0 such
that :

〈∇U(y), y〉 ≥ ρ ‖y‖α , for all y ∈ Rd, ‖y‖ ≥Mρ

Then for all γ̄ ∈
(
0, L−1

)
, there exists b ≥ 0 and s > 0 such that

RγV (x) ≤ κγV (x) + γb , for all γ ∈ (0, γ̄] and x ∈ Rd,

where
V (x) = exp(U(x)/2).
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Control of moments

By a straightforward induction, we get for all n ≥ 0 and x ∈ Rd,

QnγV ≤ κΓ1,nV + b

n∑
i=1

γiκ
Γi+1,n .

Note that for all n ≥ 1, we have

n∑
i=1

γiκ
Γi+1,n ≤ γ1(1− κΓ1,n)/(1− κγ1) .
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Error decomposition

For n ≤ p set Qn,pγ = Rγn · · ·Rγp ,

Error decomposition

‖µ0Q
p
γ − π‖TV ≤ ‖µ0Q

n
γQ

n+1,p
γ − µ0Q

n
γPΓn+1,p

‖TV

+ ‖µ0Q
n
γPΓn+1,p − π‖TV .

where

Γn,p
def
=

p∑
k=n

γk , Γn = Γ1,n .

- Second term on the RHS: contraction of the markov semi-group.
- Problem: Find a way to compare the total variation distance between

the diffusion and its discretization started at time Γn from the same
distribution.

A. Durmus, Eric Moulines Gatsby Seminar-2016



Motivation
Framework

Langevin diffusions and Euler discretization
Ergodicity of the time-inhomogeneous Euler discretization

Mixing rate for Langevin diffusion using functional inequalities
Deviation inequalities

Conclusion

Coupling

For all x ∈ Rd, denote by µxn,p and µ̄xn,p the laws on C([Γn,Γp] ,Rd)
of the Langevin diffusion (Yt)Γn≤t≤Γp and of the Euler discretisation
(Ȳt)Γn≤t≤Γp both started at x at time Γn.

For any ζ0 ∈ P2(Rd × Rd), consider the diffusion (Yt, Y t)t≥0 with
initial distribution equals to ζ0, and defined for t ≥ 0 by{

dYt = −∇U(Yt)dt+
√

2dBt

dȲt = −∇U(Ȳt, t)dt+
√

2dBt

and

∇U(y, t) =

∞∑
k=0

∇U(yΓk)1[Γk,Γk+1)(t)

A. Durmus, Eric Moulines Gatsby Seminar-2016
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Change of measure

The Girsanov theorem shows that µxn,p ∼ µ̄xn,p with density

dµxn,p
dµ̄xn,p

= exp
(1

2

∫ Γp

Γn

〈
∇U(Ȳs)−∇U(Ȳs), s,dȲs

〉
− 1

4

∫ Γp

Γn

{∥∥∇U(Ȳs)
∥∥2 −

∥∥∇U(Ȳs, s)
∥∥2
}

ds
)
.

The Pinsker inequality implies that for all x ∈ Rd

‖δxQn+1,p
γ − δxPΓn+1,p‖TV ≤ 2−1

(
Entµ̄xn,p

(
dµxn,p
dµ̄xn,p

))1/2

≤ 4−1

(∫ Γp

Γn

Ex
[∥∥∇U(Ȳs)−∇U(Ȳs, s)

∥∥2
]

ds

)1/2

.
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Change of measure

Pinsker inequality: for all x ∈ Rd

‖δxQn+1,p
γ − δxPΓn+1,p‖TV

≤ 4−1

(∫ Γp

Γn

Ex
[∥∥∇U(Ȳs)−∇U(Ȳs, s)

∥∥2
]

ds

)1/2

.

If U is L-smooth,

‖δxQn+1,p
γ − δxPΓn+1,p

‖TV

≤ 4−1L

(
p∑

k=n+1

{
(γ3
k/3)Ex

[
‖∇U(Xk)‖2

]
+ dγ2

k

})1/2

.
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Back to the decomposition of the error

‖µ0Q
p
γ − π‖TV ≤ ‖µ0Q

p
γ − µ0Q

n
γPΓn+1,p

‖TV + ‖µ0Q
n
γPΓn+1,p

− π‖TV .

Main result: For all n, p ≥ 1, n ≤ p, and x ∈ Rd

‖µ0Q
p
γ−π‖TV ≤ C(µ0Q

n
γ )V (x)λΓn+1,p+

(
D(d, γ)V (x)

p∑
k=n+1

γ2
k

)1/2

If
∑
k γk =∞, then

‖µ0Q
p
γ − π‖TV → 0 , p→∞ .

A. Durmus, Eric Moulines Gatsby Seminar-2016



Motivation
Framework

Langevin diffusions and Euler discretization
Ergodicity of the time-inhomogeneous Euler discretization

Mixing rate for Langevin diffusion using functional inequalities
Deviation inequalities

Conclusion

Controlling πγ

How far πγ is from π ?

Under the stated conditions, there exists an explicit constant C(d)
such that for all γ ∈ [0, γ̄),

‖π − πγ‖V ≤ C(d)γ1/2 .
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Pinsker inequalities

Lemma (Generalized Pinsker inequality)

Let ψ : R+ → R be a C2 convex function such that

1 ψ is uniformly convex on all bounded intervals,

2 ψ(1) = 0 and limu→∞ ψ(u)/u = +∞.

Then, for all (µ, ν) on (Rd,B(Rd)) such that µ� ν,

‖µ− ν‖TV ≤ cψI1/2
ψ (µ|ν) , where Iψ(µ, ν) =

∫
ψ

(
dµ

dν

)
dµ ,

where dµ/dν is the Radom-Nykodim derivative and cψ is a universal
constant.
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Poincaré and Log-Sobolev inequalities

Poincaré inequality: If ψ(u) = (u− 1)2, then Iψ(µ, ν) is the
chi-square distance, cψ = 1 and

‖µ− ν‖TV ≤ Var1/2
ν {dµ/dν} .

Log-Sobolev inequality: If ψ(u) = u ln(u), then Iψ(µ, ν) is the
Kullback-Leibler divergence and cψ = 2 and

‖µ− ν‖TV ≤ (2 KL(µ|ν))
1/2

,
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”Carré du champ” inequalities

Theorem

Assume that there exists a constant Cψ such that for any density
function h ∈ D(A ) satisfying

∫
ψ(h)dπ <∞,∫

ψ (h) dπ ≤ Cψ
∫
ψ′′ (h) ‖∇h‖2dπ .

Then, for all t ≥ 0, and any initial distribution µ0 such that µ0 � π,

‖µ0Pt − π‖TV ≤ cψe−t/CψI
1/2
ψ

(
dµ0

dπ
· π, π

)
.

A. Durmus, Eric Moulines Gatsby Seminar-2016



Motivation
Framework

Langevin diffusions and Euler discretization
Ergodicity of the time-inhomogeneous Euler discretization

Mixing rate for Langevin diffusion using functional inequalities
Deviation inequalities

Conclusion

Poincaré inequality under Lyapunov condition

Theorem (after Barthe, Cattiaux, Guillin, 2009)

Assume that U is L-smooth and that

A V ≤ −θV + b1B(0,R) .

Then π satisfies a Poincaré inequality with constant

Clyap = −θ−1
{

1 + b4R2/π2 eoscR(U)
}

where
oscR(U) = sup

B(0,R)

(U)− inf
B(0,R)

(U) .
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Poincaré inequality under convexity

Theorem (Bobkov, 1999)

Assume that U is L-smooth and convex. Then, π satisfies a Poincaré
inequality with constant CP given by

Ccvx = 432

∫
Rd

{
x−

∫
Rd
ydπ(y)

}2

dπ(x) .

If π(x) = (2π)−d/2 exp(−(1/2)xTΣ−1x) where Σ is a definite positive
matrix, then Ccvx is proportional to Tr(Σ) (which typically scales linearly
with the dimension).
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Log-Sobolev inequalities

If we apply the ”carré du champ” inequality with ψ(u) = u ln(u), we
obtain the log-Sobolev inequality.

If there exists some constant CLS such that, for any density
h ∈ D(A ) satisfying Entπ (h) <∞ we have

Entπ (h) ≤ CLS

∫
h−1‖∇h‖2dπ ,

then for all t ≥ 0,

‖µ0Pt − π‖TV ≤ exp(−t/CLS) (2Entπ (dµ0/dπ))
1/2

.
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Strong convexity

Strong convexity There exists m > 0 such that for all x, y ∈ Rd,

U(y) ≥ U(x) + 〈∇U(x), y − x〉+ (m/2) ‖x− y‖2 .

If U is strongly convex and L-smooth then, for all x, y ∈ Rd:

〈∇U(y)−∇U(x), y − x〉 ≥ (κ/2) ‖y − x‖2 +
1

m+ L
‖∇U(y)−∇U(x)‖2 ,

〈∇U(y)−∇U(x), y − x〉 ≥ m ‖y − x‖2 ,

where

κ =
2mL

m+ L
.
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Log-Sobolev inequalities

Theorem

Assume that U is twice continuously differentiable, L-smooth and
strongly convex. Then, for all probability measure µ0 � π such that
(dµ0/dπ) log(dµ0/dπ) ∈ L1(π), we have

‖µ0Pt − π‖TV ≤ e−mt
(

2Entπ

(
dµ0

dπ

))1/2

.

In such case, the ergodicity constant does not depend on the dimension.
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The strongly convex case

In the strongly convex case, a direct proof (with more explicit
constants) can be obtained in Wasserstein distance...

Idea: Bound with explicit constants, the Wasserstein distance
between the diffusion and its discretized version by constructing a
coupling between these two probabilities measures.

Obvious candidate: synchronous coupling !{
dYt = −∇U(Yt)dt+

√
2dBt

dȲt = −∇U(Ȳt)dt+
√

2dBt
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Theorem

Assume U is L-smooth and strongly convex. Let (γk)k≥1 be a
nonincreasing sequence with γ1 ≤ 1/(m+ L). Then for all µ0 ∈ P2(Rd)
and n ≥ 1,

W 2
2 (µ0Q

n
γ , π) ≤ u(1)

n (γ)W 2
2 (µ0, π) + u(2)

n (γ) ,

where

u(1)
n (γ)

def
=

n∏
k=1

(1− κγk/2) κ = 2mL/(m+ L)

and

u(2)
n (γ)

def
= L2

n∑
i=1

γ2
i

{
κ−1 + γi

}
(2d+dL2γi/m+dL2γ2

i /6)

n∏
k=i+1

(1−κγk/2) ,
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Bounds for functionals

Let f : Rd → R be a Lipshitz function and (Xk)k≥0 the Euler
discretization of the Langevin diffusion. We approximate∫
Rd f(x)π(dx) by the weighted average estimator

π̂Nn (f) =

N+n∑
k=N+1

ωNk,nf(Xk) , ωNk,n = γk+1Γ−1
N+2,N+n+1 .

where N ≥ 0 is the length of the burn-in period, n ≥ 1 is the
number of effective samples.

Objective: compute an explicit bounds for the Mean Square Error
(MSE) of this estimator defined by:

MSEf (N,n) = Ex
[∣∣π̂Nn (f)− π(f)

∣∣2] .
A. Durmus, Eric Moulines Gatsby Seminar-2016
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The MSE can be decomposed into the sum of the squared bias and
the variance

MSEf (N,n) =
{
Ex[π̂Nn (f)]− π(f)

}2
+ Varx

{
π̂Nn (f)

}
,

Denote by ξk the optimal transference plan between δxQ
k
γ and π for

W2. Then by the Jensen inequality,

Bias2 =

(
N+n∑
k=N+1

ωNk,n

∫
Rd×Rd

{f(z)− f(y)}ξk(dz,dy)

)2

≤ ‖f‖2Lip

N+n∑
k=N+1

ωNk,nW
2
2 (δxQ

k
γ , π) .

and

W 2
2 (δxQ

k
γ , π) ≤ 2(‖x− x?‖2 + d/m)u

(1)
k (γ) + u

(2)
k (γ) .
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Gaussian Poincaré inequality

If Z = (Z1, . . . , Zd) ∼ N (µ, Id), then

Var {g(Z)} ≤ ‖g‖2Lip .

Idea: Apply to Rγ !... For any Lipshitz function g : Rd → R, γ > 0
and y ∈ Rd, we get

0 ≤ Rγ {g(·)−Rγg(y)}2 (y)

=

∫
Rγ(y,dz) {g(z)−Rγg(y)}2 ≤ 2γ ‖g‖2Lip .
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A martingale decomposition

Idea Decompose π̂Nn (f)− Ex[π̂Nn (f)] as the sum of martingale
increments,

π̂Nn (f)− Ex[π̂Nn (f)] =

N+n−1∑
k=N

{
EGk+1
x

[
π̂Nn (f)

]
− EGkx

[
π̂Nn (f)

]}
+ EGNx

[
π̂Nn (f)

]
− Ex[π̂Nn (f)] ,

where (Gk)k≥0 is the natural filtration of (Xk)k≥0.
Variance:

Varx
{
π̂Nn (f)

}
=

N+n−1∑
k=N

Ex
[(
EGk+1
x

[
π̂Nn (f)

]
− EGkx

[
π̂Nn (f)

])2]
+ Ex

[(
EGNx

[
π̂Nn (f)

]
− Ex[π̂Nn (f)]

)2]
.
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Martingale decomposition

Since π̂Nn (f) is a sum, computing EGk+1
x

[
π̂Nn (f)

]
− EGkx

[
π̂Nn (f)

]
is

easy.

Set SNn,N+n(xN+n) = ωNN+n,nf(xN+n) and define backward in time

SNn,k : xk 7→ ωNk,nf(xk) +Rγk+1
SNn,k+1(xk) .

Variance: Varx
{
π̂Nn (f)

}
=
∑N
k=1 Vk +WN where

Vk = Ex
[
Rγk+1

{
SNn,k+1(·)−Rγk+1

SNn,k+1(Xk)
}2

(Xk)
]
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Bound of the incremental variance

Idea: Prove that SNn,k+1 is Lipshitz and use recursively, backward in
time, the Gaussian Poincaré inequality;

Step 1:∣∣SNn,k+1(y)− SNn,k+1(z)
∣∣ =

∣∣∣ωNk+1,n {f(y)− f(z)}

+

N+n∑
i=k+2

ωNi,n
{
Qk+2,i
γ f(y)−Qk+2,i

γ f(z)
} ∣∣∣ .

Step 2: (Monge-Kantorovitch duality)

W1(δyQ
n,p
γ , δzQ

n,p
γ ) ≤

p∏
k=n

(1− κγk)1/2 ‖y − z‖ ;
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Elements of proof

Let ζ0 be an OT plan of µ0 and ν0 and (Zk)k≥n−1 be
i.i.d. N (0, Id). Consider the processes (X1

n−1,k, X
2
n−1,k)k≥n−1 with

initial distribution ζ0 and defined for k ≥ n− 1 by

Xj
n−1,k+1 = Xj

n−1,k−γk+1∇U(Xj
n−1,k)+

√
2γk+1Zk+1 j = 1, 2 .

For any p ≥ n ≥ 0, W 2
2 (µ0Q

n,p
γ , ν0Q

n,p
γ ) ≤ E

[
‖∆n−1,p‖2

]
with ∆n−1,k = X1

n−1,k −X2
n−1,k.

The strong convexity implies for k ≥ n− 1,

‖∆n−1,k+1‖2 = ‖∆n−1,k‖2+γ2
k+1

∥∥∇U(X1
n−1,k)−∇U(X2

n−1,k)
∥∥2

−2γk+1

〈
∆n−1,k,∇U(X1

n−1,k)−∇U(X2
n−1,k)

〉
≤ (1− κγk+1) ‖∆n−1,k‖2 .
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MSE

Theorem

Assume that U is L-smooth and strongly convex. Let (γk)k≥1 be a
nonincreasing sequence with γ1 ≤ 2/(m+ L). Then for all N ≥ 0, n ≥ 1
and Lipschitz functions f : Rd → R, we get

Varx
{
π̂Nn (f)

}
≤ 8κ−2 ‖f‖2Lip Γ−1

N+2,N+n+1u
(3)
N,n(γ)

where

u
(3)
N,n(γ)

def
=
{

1 + Γ−1
N+2,N+n+1(κ−1 + 2/(m+ L))

}
.

The upper bound is independent of the dimension and allow to
construct honest confidence bounds.
The optimal rate for the variance is obtained for fixed stepsizes
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MSE

Bound for the MSE
α = 0 γ1 + (γ1n)−1 exp(−κγ1N/2)

α ∈ (0, 1/2) γ1n
−α + (γ1n

1−α)−1 exp(−κγ1N
1−α/(2(1− α)))

α = 1/2 γ1 log(n)n−1/2 + (γ1n
1/2)−1 exp(−κγ1N

1/2/4)

α ∈ (1/2, 1) nα−1
{
γ1 + γ−1

1 exp(−κγ1N
1−α/(2(1− α)))

}
α = 1 log(n)−1

{
γ1 + γ−1

1 N−γ1κ/2
}

Table: Bound for the MSE for γk = γ1k
−α as a function of γ1, n and N
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What’s next ?

A simple algorithm which scale easily in the dimension of the
problem

Computable bounds for convergence in TV, MSE, and deviation
inequalities with constants which make sense !

Future works

- partial updates (coordinate descent)
- sparsity inducing priors
- detailed comparison with MALA
- bias reduction (”exact estimation” à la Glynn and Rhee ?)
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