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DETERMINISTIC AND STATISTICAL INVERSE

PROBLEMS

I Let A be a bounded operator between Hilbert spaces H1 → H2
(assumed known)

I Classical (deterministic) inverse problem: observe

yσ = Af ∗ + ση , (IP)

under the assumption ‖η‖ ≤ 1.
I Note: the H2-norm measures the observation error; the H1-norm

measures the reconstruction error.
I Classical deterministic theory: see Engl, Hanke and Neubauer

(2000).
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DETERMINISTIC AND STATISTICAL INVERSE

PROBLEMS

I Inverse problem
yσ = Af ∗ + ση . (IP)

I What if noise is random? Classical statistical inverse problem model:
η is a Gaussian white noise process on H2.

I Note: in this case (IP) is not an equation between elements in H2,
but is to be interpreted as process on H2.

I Under Hölder source condition of order r and polynomial
ill-posedness (eigenvalue decay) of order 1/s, sharp minimax rates
are known in this setting:∥∥∥(A∗A)θ (̂f − f ∗)

∥∥∥
H1

� O
(
σ

2(r+θ)
2r+1+s

)
� O

(
σ

2(ν+bθ)
2ν+b+1

)
,

for θ ∈ [0, 1
2 ] (θ = 0: inverse problem; θ = 1

2 : direct problem.)
(Alternate parametrization: b := 1/s, ν := rb “intrinsic regularity”.)
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LINEAR SPECTRAL REGULARIZATION METHODS

I Inverse problem (deterministic or statistical) where A is known.
I First consider the so-called “normal equation”:

A∗yσ = (A∗A)f ∗ + σ(A∗η) .

I Linear spectral methods: let ζλ(x) : R+ → R+ be a real function of 1
real variable which is an “approximation of 1/x” and λ > 0 a tunig
parameter.

I Define
f̂λ = ζλ(A∗A)A∗yσ

I Examples: Tikhonov ζλ(x) = (x + λ)−1, spectral cut-off
ζλ(x) = x−11{x ≥ λ}, Landweber iteration polynomials, ν-methods
. . .

I Under general conditions on ζλ, optimal/mimimax rates can be
attained by such methods (Deterministic: Engl et al. , 2000;
Stochastic noise: Bissantz et al, 2007)
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STATISTICAL LEARNING

I “Learning” usually refers to the following setting:

(Xi ,Yi)i=1,...,n i.i.d. ∼ PXY on X × Y

where Y ⊂ R,
I Goal: estimate some functional related to the dependency between

X and Y ,
I for instance (nonparametric) least squares regression: estimate

f ∗(x) := E [Y |X = x ] ,

and measure the quality of an estimator f̂ via∥∥∥f ∗ − f̂
∥∥∥2

L2(PX )
= EX∼PX

[(
f̂ (X )− f ∗(X )

)2
]
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SETTING: “INVERSE LEARNING” PROBLEM

I We refer to “inverse learning” for an inverse problem where we have
noisy observations at random design points:

(Xi ,Yi)i=1,...,n i.i.d. : Yi = (Af ∗)(Xi) + εi . (ILP)

I the goal is to recover f ∗ ∈ H1.
I early works on closely related subjects: from the splines literature in

the 80’s (e.g. O’Sullivan ’90)

G. Blanchard Rates for statistical inverse learning 8 / 39



MAIN ASSUMPTION FOR INVERSE LEARNING

Model: Yi = (Af ∗)(Xi) + εi , i = 1, . . . ,n, where A : H1 → H2. (ILP)

Observe:
I H2 should be a space of real-values functions on X .
I the geometrical structure of the “measurement errors” will be

dictated by the statistical properties of the sampling scheme – we do
not need to assume or consider any a priori Hilbert structure on H2

I the crucial stuctural assumption we make is the following:

Assumption

The family of evaluation functionals (Sx), x ∈ X , defined by

Sx : H1 −→ R
f 7−→ (Sx)(f ) := (Af )(x)

is uniformly bounded, i.e., there exists κ <∞ such that for any x ∈ X

|Sx(f )| ≤ κ ‖f‖H1
.
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GEOMETRY OF INVERSE LEARNING

The inverse learning setting was essentially introduced by Caponnetto et
al. (2006).

I Riesz’s theorem implies the existence for any x ∈ X of Fx ∈ H1:

∀f ∈ H1 : (Af )(x) = 〈f ,Fx〉

I K (x , y) := 〈Fx ,Fy 〉 defines a positive semidefinite kernel on X with
associated reproducing kernel Hilbert space (RKHS) denoted HK .

I as a pure function space, HK coincides with Im(A).
I assuming A injective, A is in fact an isometric isomorphism between
H1 and HK .
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GEOMETRY OF INVERSE LEARNING

I Main assumption implies that as a function space, Im(A) is endowed
with a natural RKHS structure with a kernel K bounded by κ.

I Furthermore this RKHS HK is isometric to H1 (through A−1).
I Therefore, the inverse learning problem is formally equivalent to the

kernel learning problem

Yi = h∗(Xi) + εi , i = 1, . . . ,n

where h∗ ∈ HK , and we measure the quality of an estimator ĥ ∈ HK

via the RKHS norm
∥∥∥ĥ − h∗

∥∥∥
HK

I Indeed, if we put f̂ := A−1ĥ, then∥∥∥f̂ − f ∗
∥∥∥
H1

=
∥∥∥A(̂f − f ∗)

∥∥∥
HK

=
∥∥∥ĥ − h∗

∥∥∥
HK
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SETTING, REFORMULATED

I We are actually back to the familiar regression setting on a random
design,

Yi = h∗(Xi) + εi ,

where (Xi ,Yi)1≤i≤n is an i.i.d. sample from PXY on the space X × R,
I with E [εi |Xi ] = 0.
I Noise assumptions:

(BernsteinNoise) E
[
εp

i |Xi
]
≤ 1

2
p!Mp, p ≥ 2

I h∗ is assumed to lie in a (known) RKHS HK with bounded kernel K .
I The criterion for measuring the quality of an estimator ĥ is the RKHS

norm ∥∥∥ĥ − h∗
∥∥∥
HK

.
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EMPIRICAL AND POPULATION OPERATORS

I Define the (random) empirical evaluation operator

Tn : h ∈ H 7→ (h(X1), . . . ,h(Xn)) ∈ Rn

and its population counterpart the inclusion operator

T : h ∈ H 7→ h ∈ L2(X ,PX );

I the (random) empirical kernel integral operator

T ∗n : (v1, . . . , vn) ∈ Rn 7→ 1
n

n∑
i=1

K (Xi , .)vi ∈ H

and its population counterpart, the kernel integral operator

T ∗ : f ∈ L2(X ,PX ) 7→ T ∗(f ) =
∫

f (x)k(x , .)dPX (x) ∈ H.

I finally, define the empirical covariance operator Sn = T ∗n Tn and its
population counterpart S = T ∗T .

I observe that Sn,S are both opertors HK → HK ; the intuition is that
Sn is a (random) approximation of S.
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I Recall the model with h∗ ∈ HK :

Yi = h∗(Xi) + εi i.e. Y = Tnh∗ + ε ,

where Y := (Y1, . . . ,Yn) .
I Associated “normal equation”:

Z = T ∗n Y = T ∗n Tnh∗ + T ∗n ε = Snh∗ + T ∗n ε

I Idea (Rosasco, Caponnetto, De Vito, Odone): use methods from
inverse problems literature

I Observe that there is also an error on the operator
I Use concentration principles to bound ‖T ∗n ε‖ and ‖Sn − S‖.
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LINEAR SPECTRAL REGULARIZATION METHODS

I Linear spectral methods:

ĥζ = ζ(Sn)Z

for somme well-chosen function ζ : R→ R acting on the spectrum
and “approximating” the function x 7→ x−1.

I Examples: Tikhonov ζλ(t) = (t + λ)−1, spectral cut-off
ζλ(t) = t−11{t ≥ λ}, Landweber iteration polynomials, ν-methods . . .
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SPECTRAL REGULARIZATION IN KERNEL SPACE

I Linear spectral regularization in kernel space is written

ĥζ = ζ(Sn)T ∗n Y

I notice

ζ(Sn)T ∗n = ζ(T ∗n Tn)T ∗n = T ∗n ζ(TnT ∗n ) = T ∗n ζ(Kn) ,

where Kn = TnT ∗n : Rn → Rn is the kernel Gram matrix,

Kn(i , j) =
1
n

K (Xi ,Xj) .

I equivalently:

ĥζ =
n∑

i=1

αζ,iK (Xi , .)

with

αζ =
1
n
ζ

(
1
n

Kn

)
Y.
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STRUCTURAL ASSUMPTIONS

I Two parameters determine attainable convergence rates:
I (Hölder) Source condition for the signal: for r > 0, define

SC(r ,R) : h∗ = Sr h0 with ‖ho‖ ≤ R

(can be generalized to “extended source conditions”, see e.g. Mathé
and Pereverzev 2003)

I Ill-posedness: if (λi)i≥1 is the sequence of positive eigenvalues of S
in nonincreasing order, then define

IP+(s, β) : λi ≤ βi−
1
s

and
IP−(s, β′) : λi ≥ β′i−

1
s
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ERROR/RISK MEASURE

I We are measuring the error (risk) of an estimator ĥ in the family of
norms ∥∥∥Sθ(ĥ − h∗)

∥∥∥
HK

(θ ∈ [0,
1
2
])

I Note θ = 0: inverse problem; θ = 1/2: direct problem, since∥∥∥S
1
2 (ĥ − h∗)

∥∥∥
HK

=
∥∥∥ĥ − h∗

∥∥∥
L2(PX )

.
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PREVIOUS RESULTS
[1]: Smale and Zhou (2007)
[2]: Bauer, Pereverzev, Rosasco (2007)
[3]: Caponnetto, De Vito (2007)
[4]: Caponnetto (2006)

Error [1] [2] [3] [4]∥∥∥ĥ − h∗
∥∥∥

L2(PX )

(
1√
n

) 2r+1
2r+2

(
1√
n

) 2r+1
2r+2

(
1√
n

) (2r+1)
2r+1+s

(
1√
n

) (2r+1)
2r+1+s

∥∥∥ĥ − h∗
∥∥∥
HK

(
1√
n

) r
r+1

(
1√
n

) r
r+1

Assumptions r ≤ 1
2 r ≤ q − 1

2 r ≤ 1
2 0 ≤ r ≤ q − 1

2
(q: qualification) +unlabeled data

if 2r + s < 1
Method Tikhonov General Tikhonov General

Matching lower bound: only for
∥∥∥ĥ − h∗

∥∥∥
L2(PX )

[2].

Compare to results known for regularization methods under Gaussian
White Noise model: Mair and Ruymgaart (1996), Nussbaum and
Pereverzev (1999), Bissantz, Hohage, Munk and Ruymgaart (2007).
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ASSUMPTIONS ON REGULARIZATION FUNCTION

From now on we assume κ = 1 for simplicity. Standard assmptions on
the regularization family ζλ : [0,1]→ R are:

(i) There exists a constant D <∞ such that

sup
0<λ≤1

sup
0<t≤1

|tζλ(t)| ≤ D,

(ii) There exists a constant M ′ <∞ such that

sup
0<λ≤1

sup
0<t≤1

λ |ζλ(t)| ≤
M ′

,

(iii) Qualification:

∀λ ≤ 1 : sup
0<t≤1

|1− tζλ(t)| tν ≤ γνλν .

holds for ν = 0 and ν = q > 0.
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UPPER BOUND ON RATES

Theorem (Mücke, Blanchard)

Assume r ,R,b, β are fixed positive constants and let P(r ,R, s, β) denote
the set of distributions on X × Y satisfying (IP+)(s, β), (SC)(r ,R) and
(BernsteinNoise). Define

ĥ(n)
λn

= ζλn(Sn)Z (n)

using a regularization family (ζλ) satisfying the standard assumptions
with qualification q ≥ r + θ, and the parameter choice rule

λn =

(
R2σ2

n

)− 1
2r+1+s

.

it holds for any θ ∈ [0, 1
2 ], η ∈ (0,1):

sup
P∈P(r ,R,s,β)

P⊗n

∥∥∥Sθ(h∗ − ĥ(n)
λn

)
∥∥∥
HK

> C(log η−1)R
(
σ2

R2n

)− (r+θ)
2r+1+s

 ≤ η.
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COMMENTS

I it follows that the convergence rate obtained is of order

C.R
(
σ2

R2n

)− (r+θ)
2r+1+s

I the “constant” C depends on the various parameters entering in the
assumptions, but not on n,R, σ!

I the result applies to all linear spectral regularization methods but
assuming a precise tuning of the regularization constant λ as a
function of the assumed regularization parameters of the target – not
adaptive.
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“WEAK” LOWER BOUND ON RATES

Assume additionally “no big jumps in eigenvalues”:

inf
k≥1

λ2k

λk
> 0

Theorem (Mücke, Blanchard)

Assume r ,R, s, β are fixed positive constants and let P ′(r ,R, s, β) denote
the set of distributions on X × Y satisfying (IP−)(s, β), (SC)(r ,R) and
(BernsteinNoise). (We assume this set to be non empty!) Then

lim sup
n→∞

inf
ĥ

sup
P∈P′(r ,R,s,β)

P⊗n

 ∥∥∥Sθ(h∗ − ĥ)
∥∥∥
HK

> CR
(
σ2

R2n

)− (r+θ)
2r+1+s

 > 0

Proof: Fano’s lemma technique
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“STRONG” LOWER BOUND ON RATES

Assume additionally “no big jumps in eigenvalues”:

inf
k≥1

λ2k

λk
> 0

Theorem (Mücke, Blanchard)

Assume r ,R, s, β are fixed positive constants and let P ′(r ,R, s, β) denote
the set of distributions on X × Y satisfying (IP−)(s, β), (SC)(r ,R) and
(BernsteinNoise). (We assume this set to be non empty!) Then

lim inf
n→∞

inf
ĥ

sup
P∈P′(r ,R,s,β)

P⊗n

 ∥∥∥Sθ(h∗ − ĥ)
∥∥∥
HK

> CR
(
σ2

R2n

)− (r+θ)
2r+1+s

 > 0

Proof: Fano’s lemma technique
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COMMENTS

I obtained rates are minimax (but not adaptive) in the parameters
R,n, σ. . .

I . . . provided (IP−)(s, β)∩ (IP+)(s, α) is not empty.
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STATISTICAL ERROR CONTROL

Error controls were introduced and used by Caponnetto and De Vito
(2007), Caponnetto (2007), using Bernstein’s inequality for Hilbert
space-valued variables (see Pinelis and Sakhanenko; Yurinski).

Theorem (Caponetto, De Vito)

Define
N (λ) = Tr( (S + λ)−1S ) ,

then under assumption (BernsteinNoise) we have the following:

P

[∥∥∥(S + λ)−
1
2 (T ∗n Y− Snh∗)

∥∥∥ ≤ 2M

(√
N (λ)

n
+

2√
λn

)
log

6
δ

]
≥ 1− δ .

Also, the following holds:

P

[∥∥∥(S + λ)−
1
2 (Sn − S)

∥∥∥
HS
≤ 2

(√
N (λ)

n
+

2√
λn

)
log

6
δ

]
≥ 1− δ .
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PARTIAL LEAST SQUARES REGULARIZATION

Consider first the classical linear regression setting

Y = Xω + ε ,

where Y := (Y1, . . . ,Yn); X := (X1, . . . ,Xn)
t ; ε = (ε1, . . . , εn) .

I Algorithmic description of Partial Least Squares:
I find direction v1 s.t.

v1 = ArgMax
v∈Rd

Ĉov(〈X , v〉 ,Y )

‖v‖
= ArgMax

v∈Rd

YtXv
‖v‖

∝ XtY

I project Y orthogonally on Xv yielding Y1

I iterate the procedure on the residual Y− Y1

I The fit at step m is
∑m

i=1 Yi .
I Regularization is obtained by early stopping.
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PLS AND CONJUGATE GRADIENT

I An equivalent definition of PLS:

ωm = ArgMin
ω∈Km(XXt ,Xt Y)

‖Y− Xω‖2

where
Km(A, z) = span

{
z,Az, . . . ,Am−1z

}
is a Krylov space of order m.

I This definition is equivalent to m steps of the conjugate gradient
algorithm applied to iteratively solve the linear equation

Aω = XtXω = XtY = z

I For any fixed m, the fit Ym = Xωm is a nonlinear function of Y.
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PROPERTIES OF CONJUGATE GRADIENT

I by definition ωm has the form

ωm = pm(A)z = Xtpm(XXt)Y,

where pm is a polynomial of degree ≤ m − 1.
I of particular interest are the residual polynomials

rm(t) = 1− tpm(t) ; ‖Y− Ym‖ =
∥∥∥rm(XXt)Y

∥∥∥
I the polynomials rm form a family of orthogonal polynomials for the

inner product
〈p,q〉 =

〈
p(XXt)Y,XXtq(XXt)Y

〉
and with the normalization rm(0) = 1.

I the polynomials rm follow an order 2 recurrence relation of the type

rm+1(t) = amtrm(t) + bmrm(t) + cmrm−1(t)

(→ simple implementation)
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ALGORITHM FOR CG/PLS

Initialize: ω0 = 0; r0 = XtY;g0 = r0
for m = 0, . . . , (mmax − 1) do
αm = ‖Xrm‖2

/
∥∥XtXgm

∥∥2

ωm+1 = ωm + αmgm (update)
rm+1 = rm − αmXtXgm (residuals)
βm = ‖Xrm+1‖2

/ ‖Xrm‖2

gm+1 = rm+1 + βmgm (next direction)
end for
Return: approximate solution ωmmax
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KERNEL-CG REGULARIZATION
( ≈ KERNEL PARTIAL LEAST SQUARES)

I Define the m-th iterate of CG as

ĥCG(m) = ArgMin
h∈Km(Sn,T∗n Y)

‖T ∗n Y− h‖H ,

where Km denotes Krylov space:

Km(A, z) = span
{

z,Az, . . . ,Am−1z
}

I equivalently:

αCG(m) = ArgMin
α∈Km(Kn,Y)

∥∥∥K
1
2

n (Y− Knα)
∥∥∥2

and

ĥCG(m) =
n∑

i=1

αCG(m),iK (Xi , .) .
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RATES FOR CG

Consider the following stopping rule for some fixed τ

m̂ := min

{
m ≥ 0 :

∥∥∥T ∗n (TnĥCG(m) − Y)
∥∥∥ ≤ τ (1

n
log2 6

δ

) r+1
2r+1+s

}
. (1)

Theorem (Blanchard, Krämer)

Assume (BernsteinNoise), SC(r ,R), IP(s, β) hold; let θ ∈ [0, 1
2 ). Then for

τ large enough, with probability larger than 1− δ :

∥∥∥Sθ(ĥCG(m̂) − h∗)
∥∥∥
Hk

≤ c(r ,R, s, β, τ)
(

1
n

log2 6
δ

) r+θ
2r+1+s

.

Technical tools: again, concentration of the error in appropriate norm,
and suitable reworking of the arguments of Nemirovskii (1980) for
deterministic CG.
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OUTER RATES

I It it natural (for the prediction problem) to assume extension of
source condition for h∗ 6∈ H (now assuming h∗ ∈ L2(PX ))

SCouter(r ,R) :
∥∥∥B−(r+

1
2 )h∗

∥∥∥
L2
≤ R (for B := TT ∗)

to include the possible range r ∈ (− 1
2 ,0] .

I For such “outer” source conditions , even for Kernel ridge regression
and for the direct (=prediction) problem, there are no known results
without additional assumptions to reach the optimal rate

O
(

n−
r+ 1

2
2r+1+s

)
.

I Mendelson and Neeman (2009) make assumptions on the sup norm
of the eigenfunctions of the integral operator

I Caponnetto (2006) assumes additional unlabeled examples
Xn+1, . . . ,Xñ are available, with

ñ
n
∼ O

(
n

(1−2r−s)+
2r+1+s

)
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CONSTRUCTION WITH UNLABELED DATA

I assume n̂ i.i.d. X -examples are available, out of which n are labeled.
I extend the n vector Y to a ñ-vector

Ỹ =
ñ
n
(Y1, . . . ,Yn,0, . . . ,0)

I perform the same algorithm as before on X, Ỹ.
I notice in particular that

T ∗ñ Ỹ = T ∗n Y.

I Recall:

ĥCG1(m) = ArgMin
h∈Km(S̃n,T∗n Y)

‖TnY− h‖H

I equivalently:

α = ArgMin
ω∈Km(K̃n,Ỹ)

∥∥∥K̃
1
2

n

(
Ỹ− K̃nα

)∥∥∥2
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OUTER RATES FOR CG REGULARIZATION

Consider the following stopping rule for some fixed τ > 3
2 ,

m̂ := min

{
m ≥ 0 :

∥∥∥T ∗n (TnĥCG(m) − Y)
∥∥∥ ≤ τM

(
4β
n

log2 6
δ

) r+1
2r+1+s

}
. (2)

Furthermore assume

(BoundedY) : |Y | ≤ M a.s.

Theorem
Assume (BoundedY), SCouter(r ,R), IP+(s, β), and r ∈ (−min(s, 1

2 ),0) .

Assume unlabeled data is available with ñ
n ≥

(
16β2

n log2 6
δ

)− (−2r)+
2r+1+s

. Then

for θ ∈ [0, r + 1
2 ), with probability larger than 1− δ :

∥∥B−θ(Thm̂ − h∗)
∥∥

L2 ≤ c(r , τ)(M + R)

(
16β2

n
log2 6

δ

) r+ 1
2−θ

2r+1+s

.
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OVERVIEW:

I inverse problem setting under random i.i.d. design scheme (“learning
setting”),

I for source condition: Hölder of order r ;
I for ill-posedness: polynomial decay of eigenvalues of order s ;
I rates of the form (for θ ∈ [0, 1

2 ]):∥∥∥Sθ(h∗ − ĥ)
∥∥∥
HK

≤ O
(

n−
(r+θ)

2r+1+s

)
.

I rates established for general linear spectral methods, as well as CG.
I matching lower bound.
I matches “classical” rates in the white noise model (=sequence

model) with σ−2 ↔ n .
I extension to “outer rates” (r ∈ (− 1

2 ,0)) if additional unlabeled data
available.
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CONCLUSION/PERSPECTIVES

I We filled gaps in the existing picture for inverse learning methods. . .
I Adaptivity?
I Ideally attain optimal rates without a priori knowledge of r nor of s!

I Lepski’s method/balancing principle: in progress. Need a good
estimator for N (λ)! (Prior work on this: Caponnetto; need some
sharper bound)

I Hold-out principle: only valid for direct problem? But optimal parameter
does not depend on risk norm: hope for validity in inverse case.
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