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DETERMINISTIC AND STATISTICAL INVERSE
PROBLEMS

G. Blanchard

Let A be a bounded operator between Hilbert spaces Hy — Hao
(assumed known)

Classical (deterministic) inverse problem: observe
Y7 = Af tom, (IP)

under the assumption ||5|| < 1.

Note: the #H>-norm measures the observation error; the H1-norm
measures the reconstruction error.

Classical deterministic theory: see Engl, Hanke and Neubauer
(2000).
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DETERMINISTIC AND STATISTICAL INVERSE
PROBLEMS

» Inverse problem
yo =Af" +on. (IP)

» What if noise is random? Classical statistical inverse problem model:
7n is a Gaussian white noise process on Ho.

» Note: in this case (IP) is not an equation between elements in Ho,
but is to be interpreted as process on .
» Under Holder source condition of order r and polynomial

ill-posedness (eigenvalue decay) of order 1/s, sharp minimax rates
are known in this setting:

(A Ay - 1)

2r+0) 2(v+b0)
=0 (0—2r+1+s) =0 (g 20 ¥bH ) ,

Hq

for 6 € [0, ] (¢ = O: inverse problem; 6 = 1: direct problem.)
(Alternate parametrization: b :=1/s, v := rb “intrinsic regularity”.)
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LINEAR SPECTRAL REGULARIZATION METHODS

G. Blanchard

Inverse problem (deterministic or statistical) where A is known.
First consider the so-called “normal equation”:

A'y® = (A*AF + o(A™n).

Linear spectral methods: let ¢, (x) : R, — R, be a real function of 1
real variable which is an “approximation of 1/x” and A > 0 a tunig
parameter.
Define R

f=G(ATA)ATY?

Examples: Tikhonov ¢, (x) = (x + A)~', spectral cut-off
¢a(x) = x~ 11 {x > A}, Landweber iteration polynomials, »-methods

Under general conditions on ¢, optimal/mimimax rates can be
attained by such methods (Deterministic: Engl et al. , 2000;
Stochastic noise: Bissantz et al, 2007)
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STATISTICAL LEARNING

» “Learning” usually refers to the following setting:
(X, Yi)i:1,4..,n iid. ~PxyonX xY

where ) C R,

» Goal: estimate some functional related to the dependency between
Xand Y,

» for instance (nonparametric) least squares regression: estimate
f*(x) =E[Y|X =x],

and measure the quality of an estimator f via

2

o

)= Exee | (100~ 1 0))]

L2(
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SETTING: “INVERSE LEARNING” PROBLEM

» We refer to “inverse learning” for an inverse problem where we have
noisy observations at random design points:

piid. c Y= (AF)(X) + e (ILP)

.....

» the goal is to recover f* € H;.

» early works on closely related subjects: from the splines literature in
the 80’s (e.g. O’Sullivan "90)
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MAIN ASSUMPTION FOR INVERSE LEARNING

Model: Y= (AF)(X;)+ei,i=1,....n, where A: H; — Ha. (ILP)

Observe:

» o should be a space of real-values functions on X'.

» the geometrical structure of the “measurement errors” will be
dictated by the statistical properties of the sampling scheme — we do
not need to assume or consider any a priori Hilbert structure on #

» the crucial stuctural assumption we make is the following:

Assumption

The family of evaluation functionals (Syx), x € X, defined by

SX:H1 — R
fo— (Sx)(f) := (Af)(x)

is uniformly bounded, i.e., there exists x < co such that for any x € X

1Sx(O] < & [[fll3, -
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GEOMETRY OF INVERSE LEARNING

The inverse learning setting was essentially introduced by Caponnetto et
al. (2006).

» Riesz’s theorem implies the existence for any x € X of Fy € H1:

Vfe M (Af)(x) = (f, Fx)

» K(x,y) = (Fx, Fy) defines a positive semidefinite kernel on X" with
associated reproducing kernel Hilbert space (RKHS) denoted H.

» as a pure function space, #x coincides with Im(A).

» assuming A injective, A is in fact an isometric isomorphism between
Hq and Hk-

G. Blanchard Rates for statistical inverse learning 10/39



GEOMETRY OF INVERSE LEARNING

» Main assumption implies that as a function space, /Im(A) is endowed
with a natural RKHS structure with a kernel K bounded by x.

» Furthermore this RKHS #y is isometric to 4 (through A~").

» Therefore, the inverse learning problem is formally equivalent to the
kernel learning problem

Yi=h(X)+e, i=1,....n

where h* € Hk, and we measure the quality of an estimator h e Hy
via the RKHS norm HE e

Hr
» Indeed, if we put f := A~"h, then

i

Hx

e W
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SETTING, REFORMULATED

» We are actually back to the familiar regression setting on a random
design,
Vi = h(X) +<i.
where (X, Yj)1<i<n is an i.i.d. sample from Pxy on the space X x R,
» with E [¢;|Xj] = 0.
» Noise assumptions:

(BernsteinNoise)  E [¢7|X]] < %p!MP, p>2

» h* is assumed to lie in a (known) RKHS Hk with bounded kernel K.

» The criterion for measuring the quality of an estimator histhe RKHS
norm N
Hh s

Hy
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@ Rates for linear spectral regularization methods
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EMPIRICAL AND POPULATION OPERATORS

» Define the (random) empirical evaluation operator
To:heH— (h(Xi),...,h(X)) e R"
and its population counterpart the inclusion operator

T:heHw— he (X, Pyx);
» the (random) empirical kernel integral operator

1 n
T,’,‘:(v1,...,v,,)eR”HE;K(Xi,.)vie?’i
=

and its population counterpart, the kernel integral operator

T :fe Llo(X,Px)— T(f) = /f(x)k(x, JdPx(x) € H.

» finally, define the empirical covariance operator S, = T, T, and its
population counterpart S = T*T.

» observe that S, S are both opertors Hx — Hg; the intuition is that
Sp is a (random) approximation of S.
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» Recall the model with h* € Hg:
Yi=h"(Xi)+ei i.e. Y=T)h" +¢,

where Y .= (Yq,..., Yn).
» Associated “normal equation”:

Z=T:Y=T:Toh" + Tie=Sph* + Tic

» |dea (Rosasco, Caponnetto, De Vito, Odone): use methods from
inverse problems literature

Observe that there is also an error on the operator
» Use concentration principles to bound || T <|| and ||S, — S||.

v
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LINEAR SPECTRAL REGULARIZATION METHODS

» Linear spectral methods:
he = ((Sn)Z

for somme well-chosen function ¢ : R — R acting on the spectrum
and “approximating” the function x — x~1.

» Examples: Tikhonov ¢y (t) = (t + \)~ ', spectral cut-off
G(t) = t711{t > A}, Landweber iteration polynomials, v-methods ...
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SPECTRAL REGULARIZATION IN KERNEL SPACE

» Linear spectral regularization in kernel space is written
he = (SO T;Y

» notice
STy =Ty To) Ty = Tac(TaTy) = Th¢(Kn)
where K, = T,T;; : R"” — R" is the kernel Gram matrix,

. 1
Kn(’J) = EK()(M)(]) .

» equivalently:
n
he = aciK(X;,.)
i=1

1 1
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STRUCTURAL ASSUMPTIONS

» Two parameters determine attainable convergence rates:
» (Hélder) Source condition for the signal: for r > 0, define

SC(r,R): h* = Sho with ||ho|| < R

(can be generalized to “extended source conditions”, see e.g. Mathé
and Pereverzev 2003)

» lll-posedness: if (\;)i>1 is the sequence of positive eigenvalues of S
in nonincreasing order, then define

IP™(s,B): X\ <Bi s

and )
P (s,8): N=>pis
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ERROR/RISK MEASURE

» We are measuring the error (risk) of an estimator hin the family of
norms

'ﬁ%ﬁ—ﬁ) (eemén

Hk
» Note 6 = 0: inverse problem; § = 1/2: direct problem, since

Hsﬂﬁ—m)

_ R
Hi H L2(Px)
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PREVIOUS RESULTS
[1]: Smale and Zhou (2007)

[2]: Bauer, Pereverzev, Rosasco (2007)
[3]: Caponnetto, De Vito (2007)
[4]: Caponnetto (2006)

Error [1] [2] [3] [4]

™ gH—; 1 §,+; 1 2(2::1) 1 2(2,-:1)

_ px i r+ 1 r+ 1 r+1+s 1 r+1+s

| 20 ()7 | (%) (V) (%)

P 1\ 1\
[a=r,. ()" | (%)
Assumptions r<i r<qg-3|r<i 0<r<q-31
(g: qualification) +unlabeled data

if2r+s <1

Method Tikhonov | General Tikhonov General

Matching lower bound: only for HB — b

[2].
L2(Px)
Compare to results known for regularizationxmethods under Gaussian
White Noise model: Mair and Ruymgaart (1996), Nussbaum and
Pereverzev (1999), Bissantz, Hohage, Munk and Ruymgaart (2007).
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ASSUMPTIONS ON REGULARIZATION FUNCTION

From now on we assume « = 1 for simplicity. Standard assmptions on
the regularization family ¢, : [0,1] — R are:

(i) There exists a constant D < oo such that

sup sup |t¢\(t)| < D,

0<A<10<t<1

(i) There exists a constant M’ < co such that

U

M
sup sup A[G(B)] < —
0<A<1 0<t<1 s

(iii) Qualification:

VA< sup |1 — (8] 1 <A
0<t<1

holds for v =0and v = g > 0.
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UPPER BOUND ON RATES

Theorem (Mucke, Blanchard)

Assume r, R, b, 8 are fixed positive constants and let P(r, R, s, 3) denote
the set of distributions on X x Y satisfying (IP™)(s, 8), (SC)(r, R) and
(BernsteinNoise). Define

B = ¢,,(Sp)Z™

using a regularization family ({) satisfying the standard assumptions
with qualification q > r + 6, and the parameter choice rule

R2 02 - ‘2r+11+s’
An = .
n n

it holds for any 6 € [0, ].n € (0,1):

(r+6)

’ 0.2 T 2r¥i+s
- = <
’HK > C(logn )H(R2n> <n.
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COMMENTS

G. Blanchard

it follows that the convergence rate obtained is of order

2 *2(”1?
O_ r+ s
R(Z_
¢ (Rz,,)

the “constant” C depends on the various parameters entering in the
assumptions, but not on n, R, !

the result applies to all linear spectral regularization methods but
assuming a precise tuning of the regularization constant A as a
function of the assumed regularization parameters of the target — not
adaptive.
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“WEAK” LOWER BOUND ON RATES

Theorem (Mucke, Blanchard)

Assume r, R, s, 3 are fixed positive constants and let P'(r, R, s, 3) denote
the set of distributions on X x Y satisfying (IP~)(s, 8), (SC)(r, R) and
(BernsteinNoise). (We assume this set to be non empty!) Then

(r+6)

0.2 T 2r+i+s
» > CR (R2n) >0

n—oo h PeP/(r,R,s,3)

limsupinf  sup P®"(H89(h*—ﬁ)‘

Proof: Fano’s lemma technique
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“STRONG” LOWER BOUND ON RATES

Assume additionally “no big jumps in eigenvalues”:

.. Aok
ot =0

Theorem (Mucke, Blanchard)

Assume r, R, s, 3 are fixed positive constants and let P'(r, R, s, 3) denote
the set of distributions on X x Y satisfying (IP~)(s, 8), (SC)(r, R) and
(BernsteinNoise). (We assume this set to be non empty!) Then

(r+6

)
0.2 T 2r+i+s
» > CR <H2n> ) >0

n—=o0 b pep/(r,R,s,B

liminfinf  sup )P®"<Hs@(h*—?;)’

Proof: Fano’s lemma technique
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COMMENTS

» obtained rates are minimax (but not adaptive) in the parameters
R no...

» ...provided (IP~)(s, 8)N (IPT)(s, @) is not empty.
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STATISTICAL ERROR CONTROL

Error controls were introduced and used by Caponnetto and De Vito
(2007), Caponnetto (2007), using Bernstein’s inequality for Hilbert
space-valued variables (see Pinelis and Sakhanenko; Yurinski).

Theorem (Caponetto, De Vito)

Define
NN =Tr((S+X)7'S),

then under assumption (BernsteinNoise) we have the following:

P <am (204 2 Yoo > 1.

|(S+ N H(T3Y = 5uh")

n ﬁn

Also, the following holds:

H(S+)\)*1§(Sn— S)HHS <2 < N 2) log ?] >1-3.

P
n \F)\n
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® Rates for conjugate gradient regularization
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PARTIAL LEAST SQUARES REGULARIZATION

Consider first the classical linear regression setting
Y =Xw +¢,

where Y := (Yy,...,Yn); X:i=(X1,.... Xp) s e =(1,...,2n).
» Algorithmic description of Partial Least Squares:
» find direction vy s.t.

Cov((X,v),Y) YiXv

vi = Arg Max = Arg Max

x XY
veR? vl verd IV

project Y orthogonally on Xv yielding Y
iterate the procedure on the residual Y — Y4
The fit at step mis 31", Y.

Regularization is obtained by early stopping.

vV v v v
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PLS AND CONJUGATE GRADIENT

» An equivalent definition of PLS:

wm= ArgMin |Y — Xwl?
WEK m(XXIXEY)

where
Km(A,z) =span{z,Az,... 7A"7_1Z}

is a Krylov space of order m.
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PLS AND CONJUGATE GRADIENT

» An equivalent definition of PLS:

wm= ArgMin |Y — Xwl?
WEK m(XXIXEY)

where
Km(A,z) =span{z,Az,... 7A"7_1Z}

is a Krylov space of order m.

» This definition is equivalent to m steps of the conjugate gradient
algorithm applied to iteratively solve the linear equation

Aw = XXw = XY =z
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PLS AND CONJUGATE GRADIENT

» An equivalent definition of PLS:

wm= ArgMin |Y — Xwl?
WEK m(XXIXEY)

where
Km(A,z) =span{z,Az,... 7A"7_1Z}

is a Krylov space of order m.

» This definition is equivalent to m steps of the conjugate gradient
algorithm applied to iteratively solve the linear equation

Av=XXw=XY =2z
» For any fixed m, the fit Y,, = Xwp, is a nonlinear function of Y.
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PROPERTIES OF CONJUGATE GRADIENT

» by definition wy, has the form

G. Blanchard

wm = Pm(A)z = X' pm(XX)Y,

where pn, is a polynomial of degree < m — 1.
of particular interest are the residual polynomials

() =1—tom(t): Y= Ynl = Hrm(xxf)vH

the polynomials r, form a family of orthogonal polynomials for the
inner product

(p.q) = (P(XX')Y, XX'g(XX")Y )

and with the normalization r,(0) = 1.
the polynomials r, follow an order 2 recurrence relation of the type

Im+1(t) = amtrn(t) + bmrm(t) + Cmtm—1(f)

(— simple implementation)

Rates for statistical inverse learning
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ALGORITHM FOR CG/PLS

Initialize: wo = 0; rp = X'Y; go = 1o
form=0,...,(Mnx — 1) do
2

am = || Xrm||* / | X'Xgnm|

Wmi1 = wm + am@m (update)

Imit = Im — amX!Xgm (residuals)

B = [Xrimi [* / [ Xrim]*

Im+1 = Im+1 + BmGm (next direction)
end for
Return: approximate solution wp,..,
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KERNEL-CG REGULARIZATION

( ~ KERNEL PARTIAL LEAST SQUARES)
» Define the m-th iterate of CG as

77(:G(m) = ArgMin [[T7Y —hll,,
heKm(Sn T2 Y)

where K, denotes Krylov space:

Km(A, z) = span {z,Az,... ,Aqu}

» equivalently:

1 2
Kz (Y — K,,a)H

= |

and .
Bccs(m) = Z acg(m),iK(Xi, ) -
i—
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RATES FOR CG

Consider the following stopping rule for some fixed

Poa(m) H (Iog )} (1)

Theorem (Blanchard, Kramer)

Assume (BernsteinNoise), SC(r, R), IP(s, 3) hold; let 6 € [0, %). Then for
7 large enough, with probability larger than1 — ¢ :

c(r,R,s,B,7) ( log? 6) s .

ﬁ7:—min{m20:

HSO(ECG(I%) - h")

He

Technical tools: again, concentration of the error in appropriate norm,
and suitable reworking of the arguments of Nemirovskii (1980) for
deterministic CG.

G. Blanchard Rates for statistical inverse learning 34/39



OUTER RATES

» It it natural (for the prediction problem) to assume extension of
source condition for h* ¢ H (now assuming h* € L?(P))

SCouter(r, R) . HBi(rJr%)h*

<R (forB:=TT")
12

to include the possible range r € (—15, 0].

» For such “outer” source conditions, even for Kernel ridge regression
and for the direct (=prediction) problem, there are no known results
without additional assumptions to reach the optimal rate

r+d
(@) (n_zr:ﬁs).
» Mendelson and Neeman (2009) make assumptions on the sup norm
of the eigenfunctions of the integral operator
» Caponnetto (2006) assumes additional unlabeled examples
Xn+1, ..., X; are available, with

(1—2r—s)
Q ~ QO (nﬁ)
n
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CONSTRUCTION WITH UNLABELED DATA

» assume ni.i.d. X-examples are available, out of which n are labeled.
» extend the n vector Y to a n-vector

v:%(\q,...,yn,o,...,O)

» perform the same algorithm as before on X, Y.
» notice in particular that N
Y=T.Y.
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CONSTRUCTION WITH UNLABELED DATA

» assume ni.i.d. X-examples are available, out of which n are labeled.
» extend the n vector Y to a n-vector

v:%(\q,...,yn,o,...,O)

» perform the same algorithm as before on X, Y.
» notice in particular that N
Y=T.Y.

» Recall:

F’CG1(m) = Arg~Min || TnY — h”?—[
heKm(Sn, T;Y)
» equivalently:
1 o~ ~ 2
a = ArgMin ‘ Kn% (Y — Kna> H
weKm(Kn,Y)
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OUTER RATES FOR CG REGULARIZATION

Consider the following stopping rule for some fixed 7 > 3,

~ \ ~ 4 2r+1+s
A= mm{mzo; ,;“(TnhCG(m)—Y)nglw< ﬂ|ogzg> } )

Furthermore assume
(BoundedY): |Y|<M a.s.

Theorem
Assume (BoundedY), SCouter(r, R), IP*(s, 3), and r € (— min(s, %), 0).

(=2,
2r+i1+s

Assume unlabeled data is available with © > (% log® %) . Then
ford € [0,r + %), with probability larger than1 — ¢ :

r+1-6

» L 652 2r+1+s
||B (Ths —h )HL2 <c(r,7)(M+ R) log? 6 .
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OVERVIEW:

» inverse problem setting under random i.i.d. design scheme (“learning
setting”),

» for source condition: Hélder of order r;
» for ill-posedness: polynomial decay of eigenvalues of order s;
» rates of the form (for 6 € [0, }]):

HSe(h* fB)H <o(n %)
Hi
» rates established for general linear spectral methods, as well as CG.

» matching lower bound.

» matches “classical” rates in the white noise model (=sequence
model) with 02 < n.

» extension to “outer rates” (r € (—3,0)) if additional unlabeled data
available.
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CONCLUSION/PERSPECTIVES

» We filled gaps in the existing picture for inverse learning methods. ..
» Adaptivity?
» |deally attain optimal rates without a priori knowledge of r nor of s!

» Lepski’s method/balancing principle: in progress. Need a good
estimator for A’(\)! (Prior work on this: Caponnetto; need some
sharper bound)

» Hold-out principle: only valid for direct problem? But optimal parameter
does not depend on risk norm: hope for validity in inverse case.
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