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Estimation low rank matrices with sparse factors

X =

X =
r∑

i=1

uiv
>
i

factors not orthogonal a priori

6= from assuming the SVD of X is sparse
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Dictionary Learning /Sparse PCA

min
A∈Rk×n

D∈Rp×k

n∑

i=1

‖xi − Dαi‖2
2 + λ

n∑

i=1

‖αi‖1 s.t. ∀j , ‖dj‖2 ≤ 1.

Dictionary Learning

XT D α= .

e.g. overcomplete dictionaries
for natural images

sparse decomposition

(?)

Sparse PCA

XT α= .D

e.g. microarray data

sparse dictionary

(Witten et al., 2009; Bach et al.,
2008)

Sparsity of the loadings vs sparsity of the dictionary elements
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Applications

Low rank factorization with “community structure”

Modeling clusters or community structure in social networks or
recommendation systems (Richard et al., 2012).

Subspace clustering (Wang et al., 2013)

Up to an unknown permutation, X> =
[
X>1 . . . X>K

]
with Xk low rank, so that there exists a low rank matrix Zk such that
Xk = ZkXk . Finally,

X = ZX with Z = BkDiag(Z1, . . . ,ZK ).

Sparse PCA from Σ̂n

Sparse bilinear regression

y = x>Mx ′ + ε
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Existing approaches

Bi-convex formulations

min
U,V
L(UV>) + λ(‖U‖1 + ‖V ‖1),

with U ∈ Rn×r , V ∈ Rp×r .

Convex formulation for sparse and low rank

min
Z
L(Z ) + λ‖Z‖1 + µ‖Z‖∗

Doan and Vavasis (2013); Richard et al. (2012)

factors not necessarily sparse as r increases.
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Rank one case with square loss

min
u,v ,σ
‖X − σuv>‖2 s.t. σ ∈ R+,

u ∈ U ⊂ Rn, v ∈ V ⊂ Rp,

‖u‖2 = ‖v‖2 = 1.

is equivalent to solving

max
u,v

u>X v s.t. u ∈ U ⊂ Rn, v ∈ V ⊂ Rp,

‖u‖2 = ‖v‖2 = 1.

Corresponds to sparse PCA when u = v .
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Convex relaxations for sparse PCA

Approaches differ according to view

analysis view → build sequences of rank 1 approximations,

synthesis view→ find a set of common factors simultaneously

Analysis SPCA focusses on solving rank-1 sparse PCA

convex formulations: d’Aspremont et al. (2007, 2008); Amini and
Wainwright (2009)

modified power methods: Journée et al. (2010); Luss and Teboulle
(2013); Yuan and Zhang (2013)

Synthesis SPCA focusses on finding several complementary sparse
factors

Essentially based on nuclear norms (Jameson, 1987; Bach et al., 2008;
Bach, 2013).
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A new formulation
for sparse matrix factorization

and a new matrix norm
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A new formulation for sparse matrix factorization

Assumptions:
X =

r∑

i=1

aib
>
i

All left factors ai have support of size k .

All right factors bi have support of size q.

Goals:

Propose a convex formulation for sparse matrix factorization that

is able to handle multiple sparse factors

permits to identify the sparse factors themselves

leads to better statistical performance than `1/trace norm.

Propose algorithms based on this formulation.
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(k , q)-sparse counterpart of the rank

For any j , define An
j = {a ∈ Rn : ‖a‖0 ≤ j , ‖a‖2 = 1} .

Given a matrix Z ∈ Rm1×m2 , consider

min
(ai ,bi ,ci )i∈N∗

‖c‖0 s.t. Z =
∞∑

i=1

ciaib
>
i , (ai , bi , ci ) ∈ Am1

k ×Am2
q × R+ ,

Define

the (k , q)-rank of Z as the optimal value r := ‖c?‖0

a (k , q)-decomposition of Z any optimal solution (a?i , b
?
i , c

?
i )1≤i≤r
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For a matrix Z ∈ Rm1×m2 , we have

(1, 1)-rank (k , q)-rank (m1,m2)-rank

combinatorial penality ‖Z‖0 r∗k,q(Z ) rank(Z )

convex relaxation ‖Z‖1 ? ‖Z‖∗

Can we define a principled relaxation of the (k , q)-rank?
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Atomic Norm (Chandrasekaran et al., 2012)

Definition (Atomic norm of the set of atoms A)

Given a set of atoms A, the associated atomic norm is defined as

‖x‖A = inf{t > 0 | x ∈ t conv(A)}.

NB: This is really a norm if A is centrally symmetric and spans Rp

Proposition (Primal and dual form of the norm)

‖x‖A = inf

{∑

a∈A
ca | x =

∑

a∈A
ca a, ca > 0, ∀a ∈ A

}

‖x‖∗A = sup
a∈A
〈a, x〉
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Examples of atomic norms

‖x‖A = inf

{∑

a∈A
ca | x =

∑

a∈A
ca a, ca > 0, ∀a ∈ A

}

‖x‖∗A = sup
a∈A
〈a, x〉

vector `1-norm: x 7→ ‖x‖1

A =
{
± ek | 1 ≤ k ≤ p

}

matrix trace norm: Z 7→ ‖Z‖∗ (sum of singular value)

A =
{

ab> | a ∈ Sm1−1, b ∈ Sm2−1
}
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A convex relaxation of the (k , q)-rank
With

An
j = {a ∈ Rn : ‖a‖0 ≤ j , ‖a‖2 = 1}

consider the set of atoms

Ak,q :=
{

ab> | a ∈ Am1
k , b ∈ Am2

q

}
.

The atomic norm associated with Ak,q is

Ωk,q(Z ) = inf

{ ∑

A∈Ak,q

cA | Z =
∑

A∈Ak,q

cA A, cA > 0, ∀A ∈ A
}

so that

Ωk,q(Z ) = inf

{
‖c‖1 s.t. Z =

∞∑

i=1

ciaib
>
i , (ai , bi , ci ) ∈ Am1

k ×Am2
q ×R+

}

Call Ωk,q the (k , q)-trace norm and solutions the (k, q)-sparse SVDs.
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Properties of the (k , q)-trace norm

Nesting property

Ωm1,m2(Z ) = ‖Z‖∗ ≤ Ωk,q(Z ) ≤ ‖Z‖1 = Ω1,1(Z )

Dual norm and reformulation

Let ‖ · ‖op denote the operator norm.

Let Gk,q =
{

(I , J) ⊂
[[

1,m1

]]
×
[[

1,m2

]]
, |I | = k , |J| = q

}

Given that ‖x‖∗A = supa∈A 〈a, x〉, we have

Ω∗k,q(Z ) = max
(I ,J)∈Gk,q

‖ZI ,J‖op and

Ωk,q(Z ) = inf





∑

(I ,J)∈Gk,q

∥∥A(IJ)
∥∥
∗ : Z =

∑

(I ,J)∈Gk,q

A(IJ) , supp(A(IJ)) ⊂ I×J
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The (k,q)-CUT-norm: an `∞ counterpart

With the following subset of Am
k :

Ãm
k =

{
a ∈ Rm, ‖a‖0 = k , ∀i ∈ supp(a), |ai | = 1√

k

}
,

consider the set of atoms

Ãk,q =
{

ab> : a ∈ Ãm1
k , b ∈ Ãm2

q

}
.

Denote Ω̃k,q the “`∞” counterpart of the (k , q)-trace norm.

When k = m1 and q = m2, Ω̃n,n is the gauge function of the
CUT-polytope of a bipartite graph (Deza and Laurent, 1997).
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Vector case
When q = m2 = 1, we retrieve vector norms:

Ωk,1 = θk is the k-support norm of Argyriou et al. (2012).

Ω̃k,1 = κk with κk the vector Ky Fan norm.

θk

κj(w) =
1√

j
max

(
‖w‖∞,

1

j
‖w‖1

)
.

κk
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Relation between unit balls
 

 

L
1

k−support

κ
k
 

θk , κk and 1√
k
‖ · ‖1 for k = 2 in R3.
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Learning matrices with sparse factors

Sparse bilinear regression

min
Z

n∑

i=1

`
(
x>i Z x ′i , yi

)
+ λΩk,q(Z ) ,

Subspace clustering

min
Z

Ωk,k(Z ) s.t. ZX = X .

Rank r sparse PCA

min
Z

1

2
‖Σ̂n − Z‖2

F + λ Ωk,k(Z ) s.t. Z � 0 , or

min
Z

1

2
‖Σ̂n − Z‖2

F + λ Ωk,�(Z ) ,

with Ωk,� the atomic norm for the set Ak,� = {aa>, a ∈ Ak} .
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Statistical guarantees
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Statistical dimension (Amelunxen et al., 2013)

•

•

•

Z?

Y = Z? + ε

Ẑ

Z? + TΩ(Z?)

{Ω(·) ≤ 1}

www.cmap.polytechnique.fr/ giraud/MSV/LectureNotes.pdf

2

figure inspired by Amelunxen et al. (2013)
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Statistical dimension (Amelunxen et al., 2013)

Tangent cone:

TΩ(Z ) :=
⋃

τ>0

{H ∈ Rm1×m2 : Ω(Z + τH) ≤ Ω(Z )} .

The statistical dimension S(Z ,Ω) of Ω at Z can then be formally
defined as

S(Z ,Ω) :=S
(
TΩ(Z )

)
= E

[∥∥ΠTΩ(Z)(G )
∥∥2

Fro

]
,

where

G is a matrix with i.i.d. standard normal entries

ΠTΩ(Z)(G ) is the orthogonal projection of G onto TΩ(Z ).

“The statistical dimension δ is the unique continuous,
rotation-invariant localization valuation on the set of convex cones

that satisfies δ(L) = dim(L) for any subspace L.”
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Relation between Gaussian width and statistical dimension

Gaussian width of intersection of the cone with a Euclidean ball:

w(C ) = max
U∈TΩ(Z)∩ Sd−1

〈U,G 〉

= E
[
‖ΠC (G )‖Fro

]
.

Sparse matrices

X =

•

•

•

0

G

ΠC(G)

C

1

Amelunxen et al. (2013) show that

w(C )2 ≤ S(C ) ≤ w(C )2 + 1.
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Denoising with an atomic norm

If

Y = Z ? + σ√
n
ε

with ε standard Gaussian,

then

Ẑ = arg min
Z
‖Z − Y ‖Fro

s.t. Ω(Z ) ≤ Ω(Z ?)

satisfies

E‖Ẑ − Z ?‖2 ≤ σ2

n
S(Z ?,Ω).

•

•

•

Z?

Y = Z? + ε

Ẑ

Z? + TΩ(Z?)

{Ω(·) ≤ 1}

www.cmap.polytechnique.fr/ giraud/MSV/LectureNotes.pdf

2
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General Null Space property

Consider the optimization problem

min
Z

Ω(Z ) s.t. y = X (Z ) (1)

Theorem (NSP)

Z ∗ is the unique optimal solution of (1) if and only if

Ker(X ) ∩ TΩ(Z ∗) = ∅.

Note: this motivates a posteriori the construction of atomic norms.
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Nullspace property and S (Chandrasekaran et al., 2012)
PHASE TRANSITIONS IN RANDOM CONVEX PROGRAMS 7

x0 +null(A)

{x : f (x) ≤ f (x0)}

x0

x0 +D( f , x0)

x0 +null(A)

{x : f (x) ≤ f (x0)}

x0

x0 +D( f , x0)

FIGURE 2.3: The optimality condition for a regularized inverse problem. The condition for the regularized
linear inverse problem (2.4) to succeed requires that the descent cone D( f , x0) and the null space null(A) do
not share a ray. [left] The regularized linear inverse problem succeeds. [right] The regularized linear inverse
problem fails.

The function f is called a regularizer, and the formulation (2.4) is called a regularized linear inverse problem.
To illustrate the kinds of regularizers that arise in practice, we highlight two familiar examples.

Example 2.5 (Sparse vectors). When the vector x0 is known to be sparse, we can minimize the `1 norm to
look for a sparse solution to the inverse problem. Repeating (1.2), we have the optimization

minimize ‖x‖1 subject to z0 = Ax . (2.5)

This approach was proposed by Chen et al. [CDS01], motivated by work in geophysics [CM73, SS86].

Example 2.6 (Low-rank matrices). Suppose that X0 is a low-rank matrix, and we have acquired a vector of
measurements of the form z0 =A (X0), where A is a linear operator. This process is equivalent with (2.3).
We can look for low-rank solutions to the linear inverse problem by minimizing the Schatten 1-norm:

minimize ‖X ‖S1 subject to z0 =A (X ). (2.6)

This method was proposed in [RFP10], based on ideas from control [MP97] and optimization [Faz02].

We say that the regularized linear inverse problem (2.4) succeeds at solving (2.3) when the convex program
has a unique minimizer x̂ that coincides with the true unknown; that is, x̂ = x0. To develop conditions for
success, we introduce a convex cone associated with the regularizer f and the unknown x0.

Definition 2.7 (Descent cone). The descent cone D( f , x) of a proper convex function f : Rd → R at a point
x ∈Rd is the conic hull of the perturbations that do not increase f near x.

D( f , x) :=
⋃
τ>0

{
y ∈Rd : f (x +τy) ≤ f (x)

}
.

The descent cones of a proper convex function are always convex, but they may not be closed. The descent
cones of a smooth convex function are always halfspaces, so this concept inspires the most interest when the
function is nonsmooth.

To characterize when the optimization problem (2.4) succeeds, we write the primal optimality condition in
terms of the descent cone; cf. [RV08, Sec. 4] and [CRPW12, Prop. 2.1].

Fact 2.8 (Optimality condition for linear inverse problems). Let f be a proper convex function. The vector x0 is
the unique optimal point of the convex program (2.4) if and only if D( f , x0)∩null(A) = {0}.

Figure 2.3 illustrates the geometry of this optimality condition. Despite its simplicity, this result forges a
crucial link between the convex optimization problem (2.4) and the theory of conic integral geometry.

Figure from Amelunxen et al. (2013)

Exact recovery from random measurements

With X : Rp → Rn rand. lin. map from the std Gaussian ensemble

Ẑ = arg min
Z

Ω(Z ) s.th. X (Z ) = y

is equal to Z ? w.h.p. as soon as n ≥ S(Z ?,Ω).
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Robust recovery from random measurements Chandrasekaran

et al. (2012)

We observe y = X (Z ?) + ε with

X a random standard Gaussian linear map

ε ∈ Rn

Theorem

Consider Ẑ the estimator defined

Ẑ = arg min
Z

Ω(Z ) s.th. ‖X (Z )− y‖2 ≤ δ (2)

If ‖ε‖2 ≤ δ, then we have

‖Ẑ − Z ?‖2 ≤ 2δ/η

with overwhelming probability as soon as n ≥ (S(Z ?,Ω) + 3
2 )/(1− η)2.
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Statistical dimension of sparse rank 1 matrices

Known results for `1 and trace norms

For x ∈ Rp an s-sparse vector S(x , ‖ · ‖1) = Θ(s log p
s )

For a rank r matrix Z ∈ Rm1×m2 S(Z , ‖ · ‖tr) = Θ
(
r(m1 + m2 − r)

)

Statistical dimension at elements of Ãk,q

Consider an element ab> ∈ Ãk,q.

We have ‖ab>‖0 = kq.

Matrix norm S

`1 Θ(kq log m1m2
kq )

trace-norm Θ(m1 + m2)

`1 + trace-norm ?

(k , q)-trace ?

(k , q)-cut ?
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Theoretical results

Proposition (UB on S(A, Ω̃k,q))

For any A ∈ Ãk,q, we have that

S(A, Ω̃k,q) ≤ 16(k + q) + 9

(
k log

m1

k
+ q log

m2

q

)
.

Proposition (UB on S(A,Ωk,q))

Let A = ab> ∈ Ak,q with I0 = supp(a) and J0 = supp(b).

Let γ(a, b) := (k min
i∈I0

a2
i ) ∧ (q min

j∈J0

b2
j ),

we have

S(A,Ωk,q) ≤ 322

γ2
(k + q + 1) +

160

γ
(k ∨ q) log (m1 ∨m2) .
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Summary of results for statistical dimension

Matrix norm S

`1 Θ(kq log m1m2
kq )

trace-norm Θ(m1 + m2)

`1 + trace-n. Ω
(
kq ∧ (m1 + m2)

)

(k , q)-trace O((k ∨ q) log (m1 ∨m2))

(k , q)-cut O(k log m1
k + q log m2

q )

“cut-norm” O(m1 + m2)

Lower bound for `1+ trace norm based on a result of Oymak et al. (2012)
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Summary of results for statistical dimension

Matrix norm S Vector norm S

`1 Θ(kq log m1m2
kq ) `1 Θ(k log p

k )

trace-norm Θ(m1 + m2) `2 p

`1 + trace-n. Ω
(
kq ∧ (m1 + m2)

)
elastic net Θ(k log p

k )

(k , q)-trace O((k ∨ q) log (m1 ∨m2)) k-support Θ(k log p
k )

(k, q)-cut O(k log m1
k + q log m2

q ) κk Θ(k log p
k )

“cut-norm” O(m1 + m2) `∞ p
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Algorithm
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Working set algorithm

Given a working set S of blocks (I , J), solve the restricted problem

min
Z , (A(IJ))(I ,J)∈S

L(Z ) + λ
∑

(I ,J)∈S

∥∥A(IJ)
∥∥
∗

Z =
∑

(I ,J)∈S

A(IJ) , supp(A(IJ)) ⊂ I×J.

Proposition

The global problem is solved by a solution ZS of the restricted problem
if and only if

∀(I , J) ∈ Gk,q,
∥∥∥
[
∇L(ZS)

]
I ,J

∥∥∥
op
≤ λ. (?)
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Working set algorithm

Active set algorithm

Iterate:

1 Solve the restricted problem
2 Look for (I , J) that violates (?)

If none exists, terminate the algorithm !
Else add the found (I , J) to S

Problem: step 2 require to solve a rank-1 SPCA problem → NP-hard

Idea: Leverage the work on algorithms that attempt to solve
rank-1 SPCA like

convex relaxations,

truncated power iteration method

to heuristically find blocks potentially violating the constraint.
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Experiments
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Denoising results

Z ∈ R1000×1000 with Z =
∑r

i=1 aib
>
i + σG and aib

>
i ∈ Ak,q

k = q

σ2 small ⇒ MSE ∝ S(ab>,Ωk,q) σ2
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Ω
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Denoising results [Z ∈ R300×300 and σ2 small ⇒ MSE ∝ S(ab>,Ωk,q) σ2]
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Empirical results for sparse PCA
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Conclusions

Summary

Gain in statistical performance at the expense of theoretical
tractability.

Even though the problem is NP-hard the structure of the convex
problem can be exploited to devise efficient heuristics.

Not discussed

slow rate analysis

purely geometric results

Open questions and future work

Generalization to the case where (k , q) can be different for each
pair of factors and not known a priori.
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