Tight convex relaxations for sparse matrix factorization

Guillaume Obozinski

Ecole des Ponts - ParisTech

Joint work with Emile Richard and Jean-Philippe Vert

Gastby Unit, London, September 10th 2014
Estimation low rank matrices with sparse factors

\[X = \sum_{i=1}^{r} u_i v_i^\top \]

- factors not orthogonal a priori
- \(\neq \) from assuming the SVD of \(X \) is sparse
Dictionary Learning /Sparse PCA

\[
\min_{A \in \mathbb{R}^{k \times n}, D \in \mathbb{R}^{p \times k}} \sum_{i=1}^{n} \|x_i - D\alpha_i\|_2^2 + \lambda \sum_{i=1}^{n} \|\alpha_i\|_1 \quad \text{s.t.} \quad \forall j, \|d_j\|_2 \leq 1.
\]

Dictionary Learning

\[X^T = D \cdot \alpha\]

- e.g. overcomplete dictionaries for natural images
- sparse decomposition
- (?)

Sparse PCA

\[X^T = D \cdot \alpha\]

- e.g. microarray data
- sparse dictionary
- (Witten et al., 2009; Bach et al., 2008)

Sparsity of the loadings vs sparsity of the dictionary elements
Applications

Low rank factorization with “community structure”
Modeling clusters or community structure in social networks or recommendation systems (Richard et al., 2012).

Subspace clustering (Wang et al., 2013)
Up to an unknown permutation, $X^\top = [X_1^\top \ldots X_K^\top]$ with X_k low rank, so that there exists a low rank matrix Z_k such that $X_k = Z_k X_k$. Finally,

$$X = ZX \quad \text{with} \quad Z = Bk\text{Diag}(Z_1, \ldots, Z_K).$$

Sparse PCA from $\hat{\Sigma}_n$

Sparse bilinear regression

$$y = x^\top Mx' + \varepsilon$$
Existing approaches

Bi-convex formulations

\[\min_{U,V} \mathcal{L}(UV^\top) + \lambda(\|U\|_1 + \|V\|_1), \]

with \(U \in \mathbb{R}^{n \times r}, \ V \in \mathbb{R}^{p \times r}. \)

Convex formulation for sparse and low rank

\[\min_{Z} \mathcal{L}(Z) + \lambda\|Z\|_1 + \mu\|Z\|_\ast \]

- Doan and Vavasis (2013); Richard et al. (2012)
- factors not necessarily sparse as \(r \) increases.
Rank one case with square loss

\[
\min_{u,v,\sigma} \|X - \sigma uv^T\|_2 \quad \text{s.t.} \quad \sigma \in \mathbb{R}_+, \\
u \in \mathcal{U} \subset \mathbb{R}^n, \quad v \in \mathcal{V} \subset \mathbb{R}^p, \\
\|u\|_2 = \|v\|_2 = 1.
\]

is equivalent to solving

\[
\max_{u,v} \quad u^T X v \quad \text{s.t.} \quad u \in \mathcal{U} \subset \mathbb{R}^n, \quad v \in \mathcal{V} \subset \mathbb{R}^p, \\
\|u\|_2 = \|v\|_2 = 1.
\]

- Corresponds to sparse PCA when \(u = v\).
Convex relaxations for sparse PCA

Approaches differ according to view
- analysis view → build sequences of rank 1 approximations,
- synthesis view → find a set of common factors simultaneously

Analysis SPCA focusses on solving rank-1 sparse PCA
- convex formulations: d’Aspremont et al. (2007, 2008); Amini and Wainwright (2009)
- modified power methods: Journée et al. (2010); Luss and Teboulle (2013); Yuan and Zhang (2013)

Synthesis SPCA focusses on finding several complementary sparse factors
Essentially based on nuclear norms (Jameson, 1987; Bach et al., 2008; Bach, 2013).
A new formulation for sparse matrix factorization and a new matrix norm
A new formulation for sparse matrix factorization

Assumptions:

\[X = \sum_{i=1}^{r} a_i b_i^\top \]

- All left factors \(a_i \) have support of size \(k \).
- All right factors \(b_i \) have support of size \(q \).

Goals:

Propose a convex formulation for sparse matrix factorization that

- is able to handle multiple sparse factors
- permits to identify the sparse factors themselves
- leads to better statistical performance than \(\ell_1 / \text{trace norm} \).

Propose algorithms based on this formulation.
(k, q)-sparse counterpart of the rank

For any j, define $A^j_n = \{ a \in \mathbb{R}^n : \|a\|_0 \leq j, \|a\|_2 = 1 \}$. Given a matrix $Z \in \mathbb{R}^{m_1 \times m_2}$, consider

$$\min_{(a_i, b_i, c_i) \in \mathbb{N}^*} \|c\|_0 \quad \text{s.t.} \quad Z = \sum_{i=1}^{\infty} c_i a_i b_i^\top, \quad (a_i, b_i, c_i) \in A^m_{k} \times A^{m_2} \times \mathbb{R}_+, \quad (a_i, b_i, c_i) \in A^m \times A^{m_2} \times \mathbb{R}_+,$$

Define

the (k, q)-rank of Z as the optimal value $r := \|c^*\|_0$

a (k, q)-decomposition of Z any optimal solution $(a_i^*, b_i^*, c_i^*)_{1 \leq i \leq r}$
For a matrix $Z \in \mathbb{R}^{m_1 \times m_2}$, we have

<table>
<thead>
<tr>
<th></th>
<th>(1, 1)-rank</th>
<th>(k, q)-rank</th>
<th>(m_1, m_2)-rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>combinatorial penalty</td>
<td>$|Z|_0$</td>
<td>$r_{k,q}^*(Z)$</td>
<td>rank(Z)</td>
</tr>
<tr>
<td>convex relaxation</td>
<td>$|Z|_1$</td>
<td>$?$</td>
<td>$|Z|_*$</td>
</tr>
</tbody>
</table>
Atomic Norm (Chandrasekaran et al., 2012)

Definition (Atomic norm of the set of atoms \mathcal{A})

Given a set of atoms \mathcal{A}, the associated atomic norm is defined as

$$\|x\|_{\mathcal{A}} = \inf\{ t > 0 \mid x \in t \text{conv}(\mathcal{A}) \}.$$

NB: This is really a norm if \mathcal{A} is centrally symmetric and spans \mathbb{R}^p

Proposition (Primal and dual form of the norm)

$$\|x\|_{\mathcal{A}} = \inf \left\{ \sum_{a \in \mathcal{A}} c_a \mid x = \sum_{a \in \mathcal{A}} c_a a, \quad c_a > 0, \quad \forall a \in \mathcal{A} \right\}$$

$$\|x\|_{\mathcal{A}}^* = \sup_{a \in \mathcal{A}} \langle a, x \rangle$$
Examples of atomic norms

$$\|x\|_A = \inf \left\{ \sum_{a \in A} c_a \mid x = \sum_{a \in A} c_a a, \ c_a > 0, \ \forall a \in A \right\}$$

$$\|x\|_A^* = \sup_{a \in A} \langle a, x \rangle$$

- vector ℓ_1-norm: $x \mapsto \|x\|_1$

 $$\mathcal{A} = \left\{ \pm e_k \mid 1 \leq k \leq p \right\}$$

- matrix trace norm: $Z \mapsto \|Z\|_*$ (sum of singular value)

 $$\mathcal{A} = \left\{ ab^\top \mid a \in S^{m_1-1}, \ b \in S^{m_2-1} \right\}$$
A convex relaxation of the \((k, q)\)-rank

With

\[\mathcal{A}^n_j = \{ a \in \mathbb{R}^n : \|a\|_0 \leq j, \|a\|_2 = 1 \} \]

consider the set of atoms

\[\mathcal{A}_{k, q} := \{ ab^\top : a \in \mathcal{A}^{m_1}_k, \ b \in \mathcal{A}^{m_2}_q \} . \]

The atomic norm associated with \(\mathcal{A}_{k, q}\) is

\[\Omega_{k, q}(Z) = \inf \left\{ \sum_{A \in \mathcal{A}_{k, q}} c_A \mid Z = \sum_{A \in \mathcal{A}_{k, q}} c_A A, \ c_A > 0, \ \forall A \in \mathcal{A} \right\} \]

so that

\[\Omega_{k, q}(Z) = \inf \left\{ \|c\|_1 \ \text{s.t.} \ Z = \sum_{i=1}^{\infty} c_i a_i b_i^\top, \ (a_i, b_i, c_i) \in \mathcal{A}^{m_1}_k \times \mathcal{A}^{m_2}_q \times \mathbb{R}_+ \right\} \]

Call \(\Omega_{k, q}\) the \((k, q)\)-trace norm and solutions the \((k, q)\)-sparse SVDs.
Properties of the \((k, q)\)-trace norm

Nesting property

\[
\Omega_{m_1, m_2}(Z) = \|Z\|_* \leq \Omega_{k, q}(Z) \leq \|Z\|_1 = \Omega_{1, 1}(Z)
\]

Dual norm and reformulation

- Let \(\| \cdot \|_{op}\) denote the operator norm.
- Let \(G_{k, q} = \{(I, J) \subset [1, m_1] \times [1, m_2], |I| = k, |J| = q\}\)

Given that \(\| x \|_\mathcal{A}^* = \sup_{a \in \mathcal{A}} \langle a, x \rangle\), we have

\[
\Omega_{k, q}^*(Z) = \max_{(I, J) \in G_{k, q}} \| Z_{I, J} \|_{op}
\]

and

\[
\Omega_{k, q}(Z) = \inf \left\{ \sum_{(I, J) \in G_{k, q}} \| A^{(IJ)} \|_* : Z = \sum_{(I, J) \in G_{k, q}} A^{(IJ)}, \text{supp}(A^{(IJ)}) \subset I \times J \right\}
\]
The \((k,q)\)-CUT-norm: an \(\ell_\infty\) counterpart

With the following subset of \(\mathcal{A}_k^m\):

\[
\tilde{\mathcal{A}}_k^m = \left\{ a \in \mathbb{R}^m, \|a\|_0 = k , \forall i \in \text{supp}(a), |a_i| = \frac{1}{\sqrt{k}} \right\},
\]

consider the set of atoms

\[
\tilde{\mathcal{A}}_{k,q} = \left\{ ab^\top : a \in \tilde{\mathcal{A}}_k^{m_1}, b \in \tilde{\mathcal{A}}_q^{m_2} \right\}.
\]

- Denote \(\tilde{\Omega}_{k,q}\) the “\(\ell_\infty\)” counterpart of the \((k,q)\)-trace norm.
- When \(k = m_1\) and \(q = m_2\), \(\tilde{\Omega}_{n,n}\) is the gauge function of the CUT-polytope of a bipartite graph (Deza and Laurent, 1997).
Vector case

When \(q = m_2 = 1 \), we retrieve vector norms:

- \(\Omega_{k,1} = \theta_k \) is the \(k \)-support norm of Argyriou et al. (2012).
- \(\tilde{\Omega}_{k,1} = \kappa_k \) with \(\kappa_k \) the vector Ky Fan norm.

\[
\kappa_j(w) = \frac{1}{\sqrt{j}} \max \left(\|w\|_\infty, \frac{1}{j} \|w\|_1 \right).
\]
Relation between unit balls

θ_k, κ_k, and $\frac{1}{\sqrt{k}} \| \cdot \|_1$ for $k = 2$ in \mathbb{R}^3.
Learning matrices with sparse factors

Sparse bilinear regression

\[
\min_Z \sum_{i=1}^{n} \ell(x_i^\top Z x_i', y_i) + \lambda \Omega_{k,q}(Z),
\]

Subspace clustering

\[
\min_Z \Omega_{k,k}(Z) \quad \text{s.t.} \quad ZX = X.
\]

Rank \(r\) sparse PCA

\[
\min_Z \frac{1}{2}\|\hat{\Sigma}_n - Z\|_F^2 + \lambda \Omega_{k,k}(Z) \quad \text{s.t.} \quad Z \succeq 0, \quad \text{or}
\]

\[
\min_Z \frac{1}{2}\|\hat{\Sigma}_n - Z\|_F^2 + \lambda \Omega_{k,\succeq}(Z),
\]

with \(\Omega_{k,\succeq}\) the atomic norm for the set \(\mathcal{A}_{k,\succeq} = \{aa^\top, a \in \mathcal{A}_k\}\).
Statistical guarantees
Statistical dimension (Amelunxen et al., 2013)

\[
Y = Z^* + \varepsilon
\]

\[
\{ \Omega(\cdot) \leq 1 \}
\]

\[
Z^* + T_\Omega(Z^*)
\]

figure inspired by Amelunxen et al. (2013)
Statistical dimension (Amelunxen et al., 2013)

Tangent cone:

\[
T_\Omega(Z) := \bigcup_{\tau > 0} \{ H \in \mathbb{R}^{m_1 \times m_2} : \Omega(Z + \tau H) \leq \Omega(Z) \}.
\]

The statistical dimension \(\mathcal{S}(Z, \Omega) \) of \(\Omega \) at \(Z \) can then be formally defined as

\[
\mathcal{S}(Z, \Omega) := \mathcal{S}(T_\Omega(Z)) = \mathbb{E} \left[\| \Pi_{T_\Omega(Z)}(G) \|_{\text{Fro}}^2 \right],
\]

where

- \(G \) is a matrix with i.i.d. standard normal entries
- \(\Pi_{T_\Omega(Z)}(G) \) is the orthogonal projection of \(G \) onto \(T_\Omega(Z) \).

"The statistical dimension \(\delta \) is the unique continuous, rotation-invariant localization valuation on the set of convex cones that satisfies \(\delta(L) = \text{dim}(L) \) for any subspace \(L \)."
Relation between Gaussian width and statistical dimension

Gaussian width of intersection of the cone with a Euclidean ball:

\[w(C) = \max_{U \in T_\Omega(Z) \cap \mathbb{S}^{d-1}} \langle U, G \rangle \]

\[= \mathbb{E} \left[\| \Pi_C(G) \|_{\text{Fro}} \right]. \]

Amelunxen et al. (2013) show that

\[w(C)^2 \leq \mathcal{G}(C) \leq w(C)^2 + 1. \]
Denoising with an atomic norm

If

- $Y = Z^* + \frac{\sigma}{\sqrt{n}} \epsilon$
- with ϵ standard Gaussian,

then

\[
\hat{Z} = \text{arg min}_Z \| Z - Y \|_{\text{Fro}}
\]

s.t. $\Omega(Z) \leq \Omega(Z^*)$

satisfies

\[
\mathbb{E} \| \hat{Z} - Z^* \|^2 \leq \frac{\sigma^2}{n} \mathcal{G}(Z^*, \Omega).
\]
General Null Space property

Consider the optimization problem

$$\min_Z \Omega(Z) \quad \text{s.t.} \quad y = \mathcal{X}(Z)$$ \quad (1)

Theorem (NSP)

Z^* is the unique optimal solution of (1) if and only if

$$\text{Ker}(\mathcal{X}) \cap T_\Omega(Z^*) = \emptyset.$$

Note: this motivates a posteriori the construction of atomic norms.
Nullspace property and \mathcal{G} (Chandrasekaran et al., 2012)

![Diagram showing the nullspace property](image)

Exact recovery from random measurements

With $\mathcal{X}: \mathbb{R}^p \rightarrow \mathbb{R}^n$ rand. lin. map from the std Gaussian ensemble

$$\hat{Z} = \arg\min_Z \Omega(Z) \quad \text{s.th.} \quad \mathcal{X}(Z) = y$$

is equal to Z^* w.h.p. as soon as $n \geq \mathcal{G}(Z^*, \Omega)$.

Figure from Amelunxen et al. (2013)
Robust recovery from random measurements Chandrasekaran et al. (2012)

We observe \(y = \mathcal{X}(Z^*) + \epsilon \) with

- \(\mathcal{X} \) a random standard Gaussian linear map
- \(\epsilon \in \mathbb{R}^n \)

Theorem

Consider \(\hat{Z} \) the estimator defined

\[
\hat{Z} = \arg \min_{Z} \Omega(Z) \text{ s.th. } \|\mathcal{X}(Z) - y\|_2 \leq \delta
\]

(2)

If \(\|\epsilon\|_2 \leq \delta \), then we have

\[
\|\hat{Z} - Z^*\|_2 \leq 2\delta/\eta
\]

with overwhelming probability as soon as \(n \geq (\mathcal{G}(Z^*, \Omega) + \frac{3}{2})/(1 - \eta)^2 \).
Statistical dimension of sparse rank 1 matrices

Known results for ℓ_1 and trace norms

For $x \in \mathbb{R}^p$ an s-sparse vector
\[\mathcal{G}(x, \| \cdot \|_1) = \Theta(s \log \frac{p}{s}) \]

For a rank r matrix $Z \in \mathbb{R}^{m_1 \times m_2}$
\[\mathcal{G}(Z, \| \cdot \|_{tr}) = \Theta(r(m_1 + m_2 - r)) \]

Statistical dimension at elements of $\tilde{A}_{k,q}$

- Consider an element $ab^\top \in \tilde{A}_{k,q}$.
- We have $\| ab^\top \|_0 = kq$.

<table>
<thead>
<tr>
<th>Matrix norm</th>
<th>\mathcal{G}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_1</td>
<td>$\Theta(kq \log \frac{m_1 m_2}{kq})$</td>
</tr>
<tr>
<td>trace-norm</td>
<td>$\Theta(m_1 + m_2)$</td>
</tr>
<tr>
<td>$\ell_1 + \text{trace-norm}$</td>
<td>$?$</td>
</tr>
<tr>
<td>(k, q)-trace</td>
<td>$?$</td>
</tr>
<tr>
<td>(k, q)-cut</td>
<td>$?$</td>
</tr>
</tbody>
</table>
Theoretical results

Proposition (UB on $\mathcal{G}(A, \tilde{\Omega}_{k,q})$)

For any $A \in \tilde{A}_{k,q}$, we have that

$$\mathcal{G}(A, \tilde{\Omega}_{k,q}) \leq 16(k + q) + 9 \left(k \log \frac{m_1}{k} + q \log \frac{m_2}{q} \right).$$

Proposition (UB on $\mathcal{G}(A, \Omega_{k,q})$)

Let $A = ab^\top \in A_{k,q}$ with $I_0 = \text{supp}(a)$ and $J_0 = \text{supp}(b)$.

Let $\gamma(a, b) := (k \min_{i \in I_0} a_i^2) \land (q \min_{j \in J_0} b_j^2)$,

we have

$$\mathcal{G}(A, \Omega_{k,q}) \leq \frac{322}{\gamma^2} (k + q + 1) + \frac{160}{\gamma} (k \lor q) \log (m_1 \lor m_2).$$
Summary of results for statistical dimension

<table>
<thead>
<tr>
<th>Matrix norm</th>
<th>\mathcal{G}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_1</td>
<td>$\Theta(kq \log \frac{m_1 m_2}{kq})$</td>
</tr>
<tr>
<td>trace-norm</td>
<td>$\Theta(m_1 + m_2)$</td>
</tr>
<tr>
<td>$\ell_1 +$ trace-n.</td>
<td>$\Omega(kq \wedge (m_1 + m_2))$</td>
</tr>
<tr>
<td>(k, q)-trace</td>
<td>$\mathcal{O}((k \vee q) \log (m_1 \vee m_2))$</td>
</tr>
<tr>
<td>(k, q)-cut</td>
<td>$\mathcal{O}(k \log \frac{m_1}{k} + q \log \frac{m_2}{q})$</td>
</tr>
<tr>
<td>“cut-norm”</td>
<td>$\mathcal{O}(m_1 + m_2)$</td>
</tr>
</tbody>
</table>

Lower bound for ℓ_1+ trace norm based on a result of Oymak et al. (2012)
Summary of results for statistical dimension

<table>
<thead>
<tr>
<th>Matrix norm</th>
<th>(S)</th>
<th>Vector norm</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ell_1)</td>
<td>(\Theta(kq \log \frac{m_1 m_2}{kq}))</td>
<td>(\ell_1)</td>
<td>(\Theta(k \log \frac{p}{k}))</td>
</tr>
<tr>
<td>trace-norm</td>
<td>(\Theta(m_1 + m_2))</td>
<td>(\ell_2)</td>
<td>(p)</td>
</tr>
<tr>
<td>(\ell_1 +) trace-n.</td>
<td>(\Omega(kq \wedge (m_1 + m_2)))</td>
<td>elastic net</td>
<td>(\Theta(k \log \frac{p}{k}))</td>
</tr>
<tr>
<td>((k, q))-trace</td>
<td>(\mathcal{O}((k \vee q) \log (m_1 \vee m_2)))</td>
<td>(k)-support</td>
<td>(\Theta(k \log \frac{p}{k}))</td>
</tr>
<tr>
<td>((k, q))-cut</td>
<td>(\mathcal{O}(k \log \frac{m_1}{k} + q \log \frac{m_2}{q}))</td>
<td>(\kappa_k)</td>
<td>(\Theta(k \log \frac{p}{k}))</td>
</tr>
<tr>
<td>“cut-norm”</td>
<td>(\mathcal{O}(m_1 + m_2))</td>
<td>(\ell_\infty)</td>
<td>(p)</td>
</tr>
</tbody>
</table>
Algorithm
Working set algorithm

Given a working set S of blocks (I, J), solve the restricted problem

$$
\begin{align*}
\min_{Z, (A^{(I)})_{(I, J) \in S}} & \quad \mathcal{L}(Z) + \lambda \sum_{(I, J) \in S} \|A^{(I)}\|_* \\
\text{subject to} & \quad Z = \sum_{(I, J) \in S} A^{(I)}, \quad \text{supp}(A^{(I)}) \subset I \times J.
\end{align*}
$$

Proposition

The global problem is solved by a solution Z_S of the restricted problem if and only if

$$
\forall (I, J) \in \mathcal{G}_{k,q}, \quad \left\| \left[\nabla \mathcal{L}(Z_S) \right]_{I,J} \right\|_{op} \leq \lambda. \quad (\star)
$$
Working set algorithm

Active set algorithm

Iterate:
1. Solve the restricted problem
2. Look for \((I, J)\) that violates \((\star)\)
 - If none exists, terminate the algorithm!
 - Else add the found \((I, J)\) to \(S\)

Problem: step 2 require to solve a rank-1 SPCA problem \(\rightarrow\) NP-hard

Idea: Leverage the work on algorithms that attempt to solve rank-1 SPCA like
 - convex relaxations,
 - truncated power iteration method
to heuristically find blocks potentially violating the constraint.
Experiments
Denoising results

- $Z \in \mathbb{R}^{1000 \times 1000}$ with $Z = \sum_{i=1}^{r} a_i b_i^\top + \sigma G$ and $a_i b_i^\top \in A_{k,q}$
- $k = q$
- σ^2 small \Rightarrow $\text{MSE} \propto \mathcal{G}(ab^\top, \Omega_{k,q}) \sigma^2$

![Graph showing NMSE vs. (k,q)-rank for different values of k and (k,q)-rank]
Denoising results \[Z \in \mathbb{R}^{300 \times 300} \text{ and } \sigma^2 \text{ small } \Rightarrow \text{MSE } \propto \mathcal{G}(ab^\top, \Omega_{k,q}) \sigma^2 \]
Empirical results for sparse PCA
Conclusions

Summary

- Gain in statistical performance at the expense of theoretical tractability.
- Even though the problem is NP-hard the structure of the convex problem can be exploited to devise efficient heuristics.

Not discussed

- slow rate analysis
- purely geometric results

Open questions and future work

- Generalization to the case where \((k, q)\) can be different for each pair of factors and not known a priori.

References II

