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Estimation low rank matrices with sparse factors

X %E

r

X Z uiv;'

i=1

o factors not orthogonal a priori

@ # from assuming the SVD of X is sparse



Dictionary Learning /Sparse PCA

n n
min > lxi = Dail3+ 1Y llaills st Vi, [ldill2 < 1.

AeRkxn £ :
DERPX" i=1 i=1
Dictionary Learning Sparse PCA
Kz

@ e.g. overcomplete dictionaries @ e.g. microarray data

for natural images @ sparse dictionary
@ sparse decomposition @ (Witten et al., 2009; Bach et al.,
e (7) 2008)

Sparsity of the loadings vs sparsity of the dictionary elements




Applications

Low rank factorization with “community structure”

Modeling clusters or community structure in social networks or
recommendation systems (Richard et al., 2012).

Subspace clustering (Wang et al., 2013)

Up to an unknown permutation, X = [XIT X,—(r]
with Xj low rank, so that there exists a low rank matrix Z, such that
Xk = Zka. FinaIIy,

X=2ZX with Z=BkDiag(Z,...,2Zx).
Sparse PCA from S,
Sparse bilinear regression

y:xTI\/IX'—i—s



Existing approaches

Bi-convex formulations

min LUV + AUl + 1V ][1),

with U € R™" V € RP*",

Convex formulation for sparse and low rank

min £(Z) + Al Z][x + ullZ]]:

@ Doan and Vavasis (2013); Richard et al. (2012)

@ factors not necessarily sparse as r increases.



Rank one case with square loss

min || X —ouv' |2
g

WYy

s.t. (RS R+,

uveldCR" veVCRP,

lulla = [[v]l2 = 1.
is equivalent to solving
max u' Xv s.t. veUCR", veVCRP,
u,v
lulla = [[v]l2 = 1.

o Corresponds to sparse PCA when u = v.



Convex relaxations for sparse PCA

Approaches differ according to view
@ analysis view — build sequences of rank 1 approximations,

@ synthesis view — find a set of common factors simultaneously

Analysis SPCA focusses on solving rank-1 sparse PCA

@ convex formulations: d'Aspremont et al. (2007, 2008); Amini and
Wainwright (2009)

e modified power methods: Journée et al. (2010); Luss and Teboulle
(2013); Yuan and Zhang (2013)

Synthesis SPCA focusses on finding several complementary sparse
factors

Essentially based on nuclear norms (Jameson, 1987; Bach et al., 2008;
Bach, 2013).



A new formulation
for sparse matrix factorization
and a new matrix norm



A new formulation for sparse matrix factorization

X = Z aib]
i=1

Assumptions:

@ All left factors a; have support of size k.

@ All right factors b; have support of size g.

Goals:

Propose a convex formulation for sparse matrix factorization that
@ is able to handle multiple sparse factors
@ permits to identify the sparse factors themselves
@ leads to better statistical performance than ¢; /trace norm.

Propose algorithms based on this formulation.



(k, g)-sparse counterpart of the rank

Forany j, define A7 ={aeR" : |allo <J,[lal2=1}.

Given a matrix Z € R™*™ consider

)
min llcllo st. Z= Z c,-a,-b,-T, (ai, bi, ci) € AZH X .Agu xRy,
i=1

(ai,bi,ci)ien,

Define

the (k, q)-rank of Z as the optimal value r := ||c*||o

a (k,q)-decomposition of Z any optimal solution (af, b7, ¢/')1<i<,



For a matrix Z € R™*™_ we have

(1,1)-rank | (k, g)-rank | (mq, my)-rank

combinatorial penality 1Zllo i o(Z) rank(Z)

convex relaxation 1Z|l1 ? 1 Z])«

o Can we define a principled relaxation of the (k, g)-rank?



Atomic Norm (Chandrasekaran et al., 2012)

Definition (Atomic norm of the set of atoms .A)

Given a set of atoms A, the associated atomic norm is defined as

|x|]4 =inf{t > 0| x € tconv(A)}.

NB: This is really a norm if A is centrally symmetric and spans R”

Proposition (Primal and dual form of the norm)

Ixlla = inf{an | x=) ca, >0 VaeA}
acA acA
x4 = sup(a,x)

aceA



Examples of atomic norms

Ixlla = inf{zca!XZana, ca>0,VaeA}

acA acA
[x[Za = sup (a,x)
acA
@ vector ¢1-norm: x — ||x|1

A:{j:ek | 1§k§p}

@ matrix trace norm: Z — ||Z||« (sum of singular value)

A={ab" | acsS™ ! pes™ !}



A convex relaxation of the (k, g)-rank
With
Af ={acR" : [lallo <J[lall =1}

consider the set of atoms
Ak g = {abT |a€e Z’l, be AZ”}.

The atomic norm associated with Ay 4 is

Qk,q(Z):inf{ Y calZ= > caA >0, VAGA}

AGAk,q AEAk,q
so that
oo
Qu,q(Z) = inf {c\l st. Z = Z ciaib;, (ai, bj,ci) € A" x AZ? XR+}
i=1

Call Qy 4 the (k, g)-trace norm and solutions the (k, g)-sparse SVDs.



Properties of the (k, g)-trace norm
Nesting property

Qmymo(2) = 12115 < Qug(2) < [ 2]l = 21,1(2)

Dual norm and reformulation
@ Let || - ||op denote the operator norm.

o Let gk,q: {(le) C [[]wml]l X |[1’m2]|7 |I| = ka’J‘ = q}

Given that ||x||% = sup,c 4 (a,x), we have

ra(Z) = Z d
kq(Z) (/,ﬁéék,q” 1Ml op an
Qg(2)=infq > AV, : Z2=> AY, supp(A”) C IxJ
(1,9)€Gk q (1,1)€Gk q



The (k,q)-CUT-norm: an /., counterpart

With the following subset of AJ:

AT = {a €R™, |lallo =k, Vi € supp(a), |ai| = ﬁ}=
consider the set of atoms

flk,q:{abT cae A™, bej;"z}.

o Denote S~2k7q the “¢s." counterpart of the (k, g)-trace norm.

@ When k = my and g = mo, €, is the gauge function of the
CUT-polytope of a bipartite graph (Deza and Laurent, 1997).



Vector case
When g = my = 1, we retrieve vector norms:
® Q1 = 0y is the k-support norm of Argyriou et al. (2012).
° ﬁk,l = ki with Ky the vector Ky Fan norm.

1 1
wi(w) =~ max ([l wloe, 51wl ).




Relation between unit balls

L

—— K-support

Ok, rx and ﬁH |1 for k =2 in R3.




Learning matrices with sparse factors

Sparse bilinear regression

i 3507 2%,) + Aa(2).

Subspace clustering
mZin Qe(Z) st. ZX=X.

Rank r sparse PCA
1 4
min o[ %5 — ZI2 + Aui(Z2) st. Z=0, or
1.
min Z||X, - Z|2 + AQus(2),
z 2
with Qy - the atomic norm for the set Ay~ = {aa",a € Ax}.



Statistical guarantees
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Statistical dimension (Amelunxen et al., 2013)

Z*

Z* + To(2%)

figure inspired by Amelunxen et al. (2013)




Statistical dimension (Amelunxen et al., 2013)
Tangent cone:

To(Z):=J {H e Rmxm . Q(Z+7H)<Q(Z)}.
7>0

The statistical dimension &(Z,Q) of Q at Z can then be formally
defined as

&(2,9) =6(Ta(2)) = E||Nry2)(6)|[5,] -

where
@ G is a matrix with i.i.d. standard normal entries

o M1,(2)(G) is the orthogonal projection of G onto Tq(Z).

“The statistical dimension ¢ is the unique continuous,
rotation-invariant localization valuation on the set of convex cones

that satisfies (L) = dim(L) for any subspace L."
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Relation between Gaussian width and statistical dimension

Gaussian width of intersection of the cone with a Euclidean ball:

) = U, G
w(€) UETQTZa))r(WSd*1< - C)

E[INc(G) o ]-

Amelunxen et al. (2013) show that

w(C)? < &(C) < w(C)?+1.
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Denoising with an atomic norm

If
° \/:::2?*-+-;§;e
@ with € standard Gaussian,

Z*

then

~

Z = argmin ||Z - Y”Fro
V4

st. Q2) < QZY)

satisfies 2"+ Ta(27)

~ 0'2
E||Z — Z*|]? < —6(2%,9).
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General Null Space property

Consider the optimization problem

mZin Q(2) s.t. y=X(2) (1)

Theorem (NSP)
Z* is the unique optimal solution of (1) if and only if

Ker(X)N To(Z*) = 2.

Note: this motivates a posteriori the construction of atomic norms.



Nullspace property and & (Chandrasekaran et al., 2012)

X0 +null(A) xp +null(A)

X0

{x: f(x) = f(x)} {x: f(x) = f(xo)}

X0 +2(f,%o) xo+2(f, x0)

Figure from Amelunxen et al. (2013)

Exact recovery from random measurements
With X : RP — R” rand. lin. map from the std Gaussian ensemble

~

Z=argminQ(Z) sth. X(Z)=y
Z

is equal to Z* w.h.p. as soon as n > &(Z*,Q).



Robust recovery from random measurements Chandrasekaran
et al. (2012)

We observe y = X (Z*) + € with
@ X a random standard Gaussian linear map
e eccR”

Theorem

Consider Z the estimator defined

Z=argminQ(Z) sth ||X(Z)—y|2<6 (2)
z

If ||e]|2 < 6, then we have
1Z = Z*||2 < 25/

with overwhelming probability as soon as n > (&(Z*,Q) + %)/(1 —n)2.
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Statistical dimension of sparse rank 1 matrices

Known results for ¢; and trace norms

For x € RP an s-sparse vector S(x, ] - [l1) = ©(slog &)
For a rank r matrix Z e R™*™  &(Z, || - [¢:) = ©(r(m1 + ma —r))
Statistical dimension at elements of Xk,q

o Consider an element ab' € ./Tk,q.
o We have |lab' ||g = kq.

] Matrix norm \ G} ‘
0 O(kq log 7(72)
trace-norm O(m + mo)
f1 + trace-norm ?
(k, g)-trace ?
(k, q)-cut ?
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Theoretical results

Proposition (UB on G(A,ﬁm))
For any A € .Zk,q, we have that

S(A Qgq) < 16(k+q)+9 <k log % + qlog 'Zf) ,

Proposition (UB on G(A, Qx4))
Let A= ab" € Ay q with Iy = supp(a) and Jo = supp(b).
Let ~(a,b):= (k mina?) A (q min bf),
i€l Jj€Jh

we have

322 160
S(A, Qq) < ?(k +qg+1)+ T(k V q)log (my VvV my) .



Summary of results for statistical dimension

’ Matrix norm ‘ S ‘
l O(kq log " 7?)
trace-norm O(my + my)
{1 + trace-n. Q(kg A (my + my))

(k,q)-trace | O((k V q)log(mi VvV my))

(k, q)-cut O(klog 7 + qlog ™2)

“cut-norm” O(my + my)

Lower bound for ¢1+ trace norm based on a result of Oymak et al. (2012)
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Summary of results for statistical dimension

’ Matrix norm ‘ S H Vector norm ‘ S ‘
A ©(kq log 01 O(klog £)
trace-norm O(m1 + my) 0 p
{1 + trace-n. Q(kg A (m1 + m)) elastic net | ©(klog )

(k,q)-trace | O((kV q)log(m1V my)) k-support | ©(klog?)

(k, g)-cut O(klog 7t + qlog 2) Kk O(klog Z)

“cut-norm” O(my + my) lss p




Algorithm



Working set algorithm

Given a working set S of blocks (/, J), solve the restricted problem

min L(Z)+ X APl
W TRE-CR
Z = Z A supp(AM) C Ix J.
(1,J)esS

Proposition

The global problem is solved by a solution Zs of the restricted problem
if and only if

V(1,Jd) € Gkqs H [VL(Zs)] 1,J

<A (%)
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Working set algorithm

Active set algorithm
Iterate:

@ Solve the restricted problem
@ Look for (/,J) that violates (%)

o If none exists, terminate the algorithm !
o Else add the found (/,J) to S

Problem: step 2 require to solve a rank-1 SPCA problem — NP-hard

Idea: Leverage the work on algorithms that attempt to solve
rank-1 SPCA like

@ convex relaxations,
@ truncated power iteration method

to heuristically find blocks potentially violating the constraint.



Experiments



Denoising results

0 Z € RI000X1000 with 7 = S~ a;b 4+ oG and a;b, € Ay,
o k=g

o 02 small = MSE x &(ab", Qx 4) 02

(k,k)-rank = 1
10° :
e I1 ‘
. —¥— Trace
0H - Qk,q
10*
w
@ @
= =
4 5 4
10
10°
10 100 i i i :
10° 10" 10° 10° 1 2 3 4 5 6
k (k,q)-rank
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Denoising results [z € R30%3%0 and 62 small = MSE x &(ab”, Qi q) 07

No overlap 90 % overlap

NMSE
NMSE
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Empirical results for sparse PCA

o Seq. SPCA

Ground truth




Conclusions

Summary

@ Gain in statistical performance at the expense of theoretical
tractability.

@ Even though the problem is NP-hard the structure of the convex
problem can be exploited to devise efficient heuristics.

Not discussed

@ slow rate analysis

@ purely geometric results
Open questions and future work

o Generalization to the case where (k, g) can be different for each
pair of factors and not known a priori.
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