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Complex data + Complex tasks

compression,
denoising
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super
resolution
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(from Aren jehsen)
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general
object
recognition

(from Imagenet dataset)



Image
captioning

/

From Vinyals et dl,
CVPR'[5

Automatically captioned: “Two pizzas sitting on top of a stove top oven”



. general
compression,  source super . L pattern -
. - . segmentation localization » object
denoising  separation  resolution recognition

* Spectrum of tasks with varying metric structure.

—Metric properties encoded into a non-linear signal representation:

d(z,z') = [|®(x) — ®(z')|

* As we move towards the right, how much information
do we lose! How to quantity what we keep/lose?

* Can we identify a “perceptual’ metric?



* Images, videos, audio and text are instances of high-
dimensional data.

high-dimensional space &



* [raining data only provides local clues, which do not fill
high-dimensional spaces.

high-dimensional space @



* [herefore, In order to beat the curse of dmensionality, it
s necessary to make assumptions about our data (e.and
explort them In our models.




* [herefore, In order to beat the curse of dmensionality, it

s necessary to make assumptions about our data (e.and
explort them In our models.

f(x) =p(y | ) satisfies f(z;) =~ f(z) if {z;}; is a

high-dimensional family of deformations of x

Unsupervised learning: (x;);.
Density f(x) = p(z) also satisfies f(x,) =~ f(x).



Generatlve I\/Iode\s of Complex data

. Natural Images Speech and Text: high-dimensional data vv|th
structure.

* Some applications require good density models:
 Synthesis, Inverse Problems, Output Structured Prediction.

high-dimensional space =



Generatlve Models of Complex data

. Natural Images Speech and Text: high-dimensional data vv|th

structure.

* Some applications require good density models:

 Synthesis,

How to pe
INnvariant re

Inverse Problems, Output Structured Prediction.
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form high-dimensional density estimation via

bresentations! Conditional density?



* Review of Scattering Convolutional Networks.

* Signal and Texture Recovery.

* Applications to high-dimensional Inverse Problems
— Synthesis,
— Super-Resolution,

* Unsupervised Learning Perspectives.



xr(u) , u: pixels, time samples, etc. 7(u) , : deformation field

L.(x)(u) =2(u—7(u)) : warping




x(u) , u: pixels, time samples, etc. 7(u) , : deformation field

L:(x)(u) =z(u—7(u)) : warping

e Deformation prior: |I7]| = Asup|7(u)| 4+ sup [VT(u)| .

—Models change In point of view In iImages

—Models frequency transpositions in sounds
—Consistent with local translation invariance



* Blur operator:Az = z x ¢ , ¢: local average

— The only linear operator A stable to deformations

|AL,x — Az| < |||zl o(u)

[Bruna’12]




* Blur operatoriAxz = x * ¢ , ¢: local average

— The only linear operator A stable to deformations:

|AL .« — Ax|| < |7]2] - o(u)

[Bruna’12]

* Wavelet filter bank: Wz = {z * ¢} , ¥r(u) = 27799(277 Rou)

: spatially localized band-pass filter.
W recovers information lost by A.
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* Wavelet filter bank: Wz = {z * ¢} , ¥r(u) = 27799(277 Rou)

: spatially localized band-pass filter.
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* Blur operatoriAxz = x * ¢ , ¢: local average

— The only linear operator A stable to deformations:

|AL .« — Ax|| < |7]2] - o(u)

[Bruna’12]

* Wavelet filter bank: Wz = {z * ¢} , ¥r(u) = 27799(277 Rou)

: spatially localized band-pass filter.
W recovers information lost by A.

W nearly commutes with deformations: 7

|\WL,— LW/ <C|VT|s
* Point-wise non-linearity p(z) = |z

—Commutes with deformations: pL,x = L, px [Bruna12] @

—Demodulates wavelet coefficients, preserves energy.
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Cascade of contractive operators.




Fourier Wavelet Scattering

fra ] *d ||f x x| x| * ¢

SIFT

window size = image size



x(u): realizations of a stationary process X (u) (not Gaussian)
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(u) (not Gaussian)

Discriminability: need to capture high-order moments
Stability: E(||®(X) — ®(X)||?) small
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Properties of Scattering Moments o
. | [Bruna Mallat

rder moments:

Power Spectrum

ol gh o

* Cascading non-linearities 1s necessary to reveal higher-
order moments.



Theorem: [B’15] If ¢ is a wavelet such that |[¢|1 < 1, and X (¢) is a
linear, stationary process with finite energy, then

lim E(||SyX —SX||*)=0.
N — o0



Consistency of Scattering Moments

Theorem: [B’15] If ¢ is a wavelet such that |[¢|1 < 1, and X (¢) is a
linear, stationary process with finite energy, then

lim E(||SyX — SX|?)=0.
N —00

Corollary: If moreover X (t) is bounded, then

X5

E(|SyX — SX||?) < C .
(HN H)— \/N

* Although we extract a growing number of features, their
olobal variance goes to 0.

* No variance blow-up due to high order moments.

* Adding layers is critical (here depth i1s log(N)).



» State-of-the art on pattern and texture recogmtlon
—MNIST [Pami’ | 3] JeY/7
6757F¢
2 079N
N7l 9O

—Texture (CURER) [Pami'13] | L, ed
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S rERN
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— 17% error on Cifar-10 [Oyallon, Mallat, C\/PR | 5] using better second
layer wavelets that recombine channels.

» Object Recognition:

— General Object Recognition requires adapting the wavelets to the
signal classes. Learning is necessary.
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e [QI] GivenSjx computed with m layers, under what
conditions can we recover  (up to global symmetry)?
Using what algorithm? As a function of the localization

scale | ?




SJCI’J:{LIZ‘*¢J, , ,...}jigj

e [QI] GivenSjx computed with m layers, under what
conditions can we recover  (up to global symmetry)?
Using what algorithm? As a function of the localization

scale | ?

SX ={F(X), , R

e [Q2] Given SX, how can we characterize interesting
brocesses! How to sample from such distributions?




Related Work

* [QI]As =00, with depth fixed to m, we have
mMmeasurements O(|log N|"™) < N

— Non-linear, invariant compressed sensing.

— Eldar et al ['12]: Sparse Recovery from Fourier Magnitude
— Plan and Vershynin ['14]: Generalized Linear Model, |-bit compressed
sensing,
e [QI] For fixed |, it I1s a generalized phase-recovery
broblem
—Balan et al [06], Candes et al.['| | ] ,Waldspurger et al ['| 2]

—Bruna et al ['|4]: Signal Recovery from pooling.

* [Q2] Texture synthesis

— Simoncelli & Portilla ['00], Simoncelli & McDermott ['| | ], Mumford et al
[98]: define statistical models using generalized wavelet moments.

— Peyre et al ['14]: models on learnt dictionaries, Effros&Freeman [0 1] Quilting



Theorem [B,M’14]|: Suppose xo(t) = ) a,0(t—by) with |b, —bp+1]| > A,
and Syxrg = Syx with m =1 and J = oo. If ¥ has compact support, then

z(t) =Y cad(t —ey) , with [e, — ent1]| 2 A .

n



Theorem [B,M’14]|: Suppose xo(t) = ), a,0(t—by) with |b, —bp+1]| > A,
and Syrg = Syxr with m =1 and J = oo. If ¥ has compact support, then

z(t) =Y cald(t —ey) , with |e, — ent1]| 2 A .

n

e Sz essentially identifies sparse measures,
up to log spacing factors.

* Here, sparsity 1s encoded In the measurements
themselves.

* In 2D, singular measures (le curves) require m = 2 to be
well characterized.



Osclllatory Signal Recovery

Theorem [B,M’14]: Suppose zg(§) = > and(§ — b,) with |logb, —
logb,1| > A, and Syjxr = Sjyxg with m = 2 and J = log N. If ¢ has com-
pact support K < A, then

Z(6) = cnd(€ —en) , with [loge, —logenti| 2 A .

n

* Osclllatory, lacunary signals are also well captured with
the same measurements.

* [t Is the opposite set of extremal points from previous
result.




20~ N(0,T)

S
S={z st Sx=25)

min || Sz — Sp||?
X

* Non-linear Least Squares.

— Levenberg-Marquardt gradient descent:

Tpi1 = Ty — v(Dan)T(gxn — §0)

* (Weak) Global convergence guarantees using complex
wavelets:

DSz is full rank for m = 2 if x compact support.



Sparse Shape Reconstructions

Original images of N? pixels:
Y - 1
P |
/7 A e
P
PO

=1,27 = N: reconstructlon from O( log2 ) scattering coeff.

m = 2, 27 = N: reconstruction from O( log2 ) scattering coeff.

M
M
(7 | Z.
M
M




* For finite | and finite m, recovery depends on redundancy
actOI” dlm(SJﬂf) — O(NQ—ZJJ’WL)

* As | Increases, redundancy decreases.

* No universal provable recovery guarantees.

* We use the same gradient descent algorithm.



Original
Images

N? pixels
Scattering '
Reconstructior e
27 — 16
1.4 N? coeff.

0.5 N? coeff.




* Deeper C\INS tramed on arge classﬁcaﬂon tas|<s also preserve many
geometrical features:

[20]

[Mahendran&Vedaldi,"| 5]

Our-GAN |, ey 9

(uses a “learnt” prior
over natural images using
Generative Adversarial
Networks)

[Dosovitsky & Brox'| 5]

Our-simple |

[20]




Maximum Entropy Distribution from Scattering Moments:
oy Boltzmann Theorem, we have

p(z) = Eez|p|gm Ap(Ulplz*¢5)(0)

e )\, are Lagrange multipliers that guarantee that E,(U[p]z) = SX(p).



Texture Synthesis

* Maximum Entropy
oy Boltzmann Theo

Distribution from Scattering Moments:

rem, we have

p(x) — —ezlmgm Ap(Ulplz*¢5)(0)

A

e )\, are Lagrange multipliers that guarantee that E,(U[p]z) = SX(p).

* When X(1) Is ergodic, this distribution converges to the

uniform measure o

n the set (the Julesz ensemble):

Q(SX) =A{x s.t. Ulplx = SX(p) Vp} .

* Convergence In distribution is a hard problem (cf Chatterjee).

* We can sample approximately using previous algorithm.
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* Scattering Moments of 2Znd order thus capture essential geometric
structures with only O((log V)?) coefficients.

* However, not all texture geometry Is captured.
» Results using a deep VGG network from [Gathys et al, NIPS' [ 5]
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* Scattering Moments of 2Znd order thus capture essential geometric
structures with only O((log N)?) coefficients.

* However, not all texture geometry Is captured.
» Results using a deep VGG network from [Gathys et al, NIPS' [ 5]

Synthesised Source

Synthesised




* Best Linear Method: Least Squares estimate (linear
interpolation): § = (X13,,)z



* Best Linear Method: Least Squares estimate (linear
interpolation): § = (X13,,)z
* State-of-the-art Methods:

— Dictionary-learning Super-Resolution
— CNN-based: Just train a CNN to regress from low-res to high-res.
— They optimize cleverly a fundamentally unstable metric criterion:

* : . R I S %
© —argmén;\\F(wz,@) yil|© , 9= F(z,07)



Scattering Approach

o Relax the metric;




Scattering Approach

. Relax the metric;

— Start with simple linear estimation on scattering domain.

— Deformation stablility gives more approximation power Iin the
transformed domain via locally linear methods.

— The method Is not necessarily better in terms of PSNR!



—

Some Numerical Results




. Best Scattering
Original Linear Estimate state-of-the-art Estimate




Scattering
Estimate

state-of-the-art

Linear Estimate
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- Inverse Transform

(with I. Domanic (ENS/UIUC), S. Mallat)

* Given y = R(z), Radon Transform of z, recover z.

original positive LS

scattering scattering



Sparse Sp||<e Super Resolution
(with I. Domanic (ENS/UIUC), S. Mallat)

Examples with Cox Processes
(inhomogeneous Poisson point processes)

¢, minimization

Scatterlng reconstructlon
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Cox realization Measurements ¢, minimization Scattering reconstruction



CNN Condntnona\ Gibbs Models

- ~ [B., Sprechmann, LeCun, ICLR’16]
* Q: Can we optimize the parameters of the model,

including the network!?



CNN Conditional Gibbs Models

- B., Sprechmann, LeCun, ICLR’16]
* Q: Can we optimize the parameters of the model,

including the network!?

e Condrtional Generative Model:

ply | ) x exp(—||P(x) — \I!(y)||2) ® W: CNNs

* Energy-based models (EBM)
—MRF/CRF (Geman & Geman’)
—LeCun et al'0é.

—Ranzato et al. | 0, Osindero et al'09.

—Ngiam et al. | |: Consider deep sufficient statistics.
—Dail et al, Lu et al' | 5-16: Consider uncondrtional CNN Gibbs Models.



CNN Condntnona\ Gibbs Models
~ [B., Sprechmann, LeCun, ICLR’16]

* Block coordinate training:
— Leaving W is fixed, update ® via feature regression:

quiﬂ L x,v)~D|[®(X) — (YY)




CNN Condntlona\ Gibbs Models
 [B., Sprechmann, LeCun, ICLR’16|

* Block coordinate training:
— Leaving W is fixed, update ® via feature regression:

Hl(gﬂ L x,v)~D|[®(X) — (YY)

— Leaving ® fixed, we have

Vologp(y | #) = Vo([[®(z;8) — U(y; 0)[*) — Eympy | o) Vol 2(z;8) — ¥(y; 0)[%)



CNN Condmona\ Gibbs Models
 [B., Sprechmann, LeCun, ICLR’16|

* Block coordinate training:
— Leaving W is fixed, update ® via feature regression:

Hl(gﬂ L x,v)~D|[®(X) — (YY)

— Leaving ® fixed, we have

Vologp(y | #) = Vo([[®(z;8) — U(y; 0)[*) — Eympy | o) Vol 2(z;8) — ¥(y; 0)[%)

We approximate E, ., | ) Vo([|®(z; 8) — ¥(y; 6)||?) with

1 . :
7 Z Vo(||®(x; B) — ¥ (y;; 0)||?) with y; drawn from the typical set

- (v 19(x) - Uyl < ¢}



1S»1n1t1a11zed Wlth Scatermg and pre tramed CNN models o
Fine-tuning approximately optimizes conditional log-likelihood

: J

(a) Original (b) Baseline (c) VGG-19 (d) Scattering (e) Fine Tunned



* CNINs: Geometric encoding with built-in deformation
stability.

—Equipped to break curse of dimensionality.

* This statistical advantage Is useful both In supervised and
unsupervised learning.

—Maximum Entropy Gibbs CNN distributions are stable to
deformations.

—Explorted in high-dimensional inverse problems.

* Challenges Ahead:

— [rue for other generative models!
—Reconcile Gibbs and Sampling Models!?



Thank you!



* Latent Graphical Models or Mixtures.

latent space

high-dimensional space @
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* Latent Graphical Models or Mixtures.

latent space

high-dimensional space @
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* Latent Graphical Models or Mixtures.

latent space

high-dimensional space
o °, @ . e @
e ® o ® h
2 @
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® @ @ 0 = d(h)
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* Latent Graphical Models or Mixtures.

latent space

high-dimensional space
o °, @ . e @
e ® o ® h
2 @
 J ® @ h ~ p(h)
ZL’ & @ .
o _polz)y i3
@ ;\0 0 = d(h)
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* Latent Graphical Models or Mixtures.

latent space

high-dimensional space ®
® ® o ®
R N T SRR
“‘ ] o I - b~ ()
@
o @
I’ @ ‘pg(x)‘ ° P
& ;\0 0 = ®(h)
@ RBM
p(x ‘ h) :p@(h)(x) DBN



* Flows or Transports of Measure:

high-dimensional space B



* Flows or Transports of Measure:

latent space

high-dimensional space B

GAN
NormFlow



* Flows or Transports of Measure

high-dimensional space @

) defined 1mp11(:1tly with

latent space

@ h
* o h~ph)
GAN
NormfFlow

/ flzx)p(x)dr = / f(d h)dh , ¥V f measurable



* Flows or Transports of Measure GAN
NormFlow
o latent space
high-dimensional space @
e ° @ - ®
o ¢ ® @ @ h
@D @ £
° . ® @ ‘# . e h~plh)
/@ ® @
@
@ ® e
p(x) defined implicitly with
/f(:zz) dx—/f(CI) h)dh , V f measurable

Currently the state-of-the-art in image generation with ®: CNN

Sampling is easy and cheap _ , , ,
high-dimensional analysis hard

Evaluation i1s hard



high-dimensional space 2 latent space

é - >.<‘h~p]zh)

o ®: “upside-down” CNN

Radford, Metz & Chintala, ICLR'[ 6




Generatlve Mode\s of Comp\ex data -

. Glbbs or Energy-based Models:

high-dimensional space B
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Generatlve Mode\s of Comp\ex data

. Glbbs or Energy-based Models:

high-dimensional space B
o °, ® o ® —
0 . @ @
@
@ . @ (I)
® =
@
@ ® =
@
@ ® a
4 @ E
class 1 ®
class 2 sampl lng
class 3 e.g. ~ N (i, ;)




~ Generative Models of Complex data

. Glbbs or Energy-based Models:

CRF
high-dimensional sp o ® e 3
* ety

® O
O e @ ® oo

@ ® - o B 4
Class ] ® p(x) o exp(” ®(z))
class 3




Generative Models of Complex data

'be E based Model
ibbs or Energy-based Models: RE

lass 1
lass 2
lass 3

;OxO.

®)

If ® is stable to deformations, then p(x) is stable as well.
Sampling is expensive



Generative Models of Complex data

'be E based Model
ibbs or Energy-based Models: RE

lass 1
lass 2
lass 3

;OxO.

®)

If ® is stable to deformations, then p(x) is stable as well.
Sampling is expensive = Training is Expensive




~ Audio Source Separation
(/omt work with P Sprechmann and Y, LeCun, ICLR’ /5)

e Suppose we observe y(t) = x1(t) + x2(1).

e Goal: Estimate x1(%), x2(t).

* [l-posed Inverse problem.VWe need to impose structure
in our estimates 1 (t), 2a2(t).

* Different learning set-ups:

—Blind/No learning: Construct priors via time-frequency local
regularity ([Wolf et al; [4]).

—Non-discriminative: We observe each source separately, learn a
model of each source.

—Discriminative: VWe train directly with input mixtures.



~ Audio Source Separaton

. State of the-art methods:

y(t) Time-Freq > (I)_l wl(j)
— ¢ > D , P @)
\ o P

— D is a synthesis operator, trained to estimate ®x; from Oy .
* Non-negative Matrix Factorization

min |y — Y Dizil|* + A |lzilh)

IIL N N N N ' ' ' e '
— Can be trained either non-discriminative or discrimmative.

« DNIN/ RNIN / LSTM: D is modeled as a Neural Net trained
discriminatively.

— @1 is approximately linear if A small.
—Long temporal structure is iImposed on the D.



__Multi-Resolution Scattering Source Sep.

* Rather than adding structure to the unstable synthesis
block, replace the analysis with a more Invariant one.

* We use a multi-resolution pyramid CNN analysis d

—Pros:We relieve the synthesis from having to model uninformative
variability.

—Pros: The wavelets can be replaced by a learnt linear transformation
that preserves informations.

— Cons: Phase Recovery i1s more expensive, but approximate linear
inverse still works well In practice.



* 64 Speakers, gender-specific models.

SDR SIR SAR
NMFE 6.1 [2.9] | 14.1[3.8] | 7.4 2.0
scatt-NMF (1) 6.2 [2.8] | 13.5[3.5] | 7.8 (2.2
scatt-NMF(2) 6.9 [2.7] | 16.0[3.5] | 7.9 [2.2

CQT-DNN-1 frame | 9.4 [3.0] | 17.7 [4.2] 10.4 [2.6]
CQT-DNN-5 frame | 9.2 [2.8] | 17.4 [4.0] 10.3 [2.4]
CQT-DNN-scatt 0.7 [3.0] | 19.6 [4.4] | 10.4 [2.7
CQT-CNN-scatt 9.9 [3.1] | 19.8 [4.2] | 10.6 [2.8]

* Learning long-range dependency with multi scale as an
alternative to recurrent architectures.



Thank you!



