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Automatically captioned: “Two pizzas sitting on top of a stove top oven”

From Vinyals et al,
CVPR’15 



Complex Data + Complex tasks

• Spectrum of tasks with varying metric structure. 
– Metric properties encoded into a non-linear signal representation: 

• As we move towards the right, how much information 
do we lose? How to quantify what we keep/lose?

• Can we identify a “perceptual” metric? 

d(x, x0) = k�(x)� �(x0)k
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Curse of Dimensionality

• Images, videos, audio and text are instances of high-
dimensional data.

high-dimensional space



Curse of Dimensionality

• Training data only provides local clues, which do not fill 
high-dimensional spaces. 

high-dimensional space
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• Therefore, in order to beat the curse of dimensionality, it 
is necessary to make assumptions about our data (e.and 
exploit them in our models.



Curse of Dimensionality

• Therefore, in order to beat the curse of dimensionality, it 
is necessary to make assumptions about our data (e.and 
exploit them in our models.

• Invariance and local stability perspective:

Supervised learning: (xi, yi)i, yi 2 {1,K} labels.

f(x) = p(y | x) satisfies f(x⌧ ) ⇡ f(x) if {x⌧}⌧ is a

high-dimensional family of deformations of x

x

x⌧

Unsupervised learning: (xi)i.
Density f(x) = p(x) also satisfies f(x⌧ ) ⇡ f(x).



• Natural Images, Speech and Text: high-dimensional data with 
structure.

• Some applications require good density models:
• Synthesis, Inverse Problems, Output Structured Prediction.

Generative Models of Complex data
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• Natural Images, Speech and Text: high-dimensional data with 
structure.

• Some applications require good density models:
• Synthesis, Inverse Problems, Output Structured Prediction.

Generative Models of Complex data

How to perform high-dimensional density estimation via 
invariant representations? Conditional density?

high-dimensional space



Plan

• Review of Scattering Convolutional Networks.

• Signal and Texture Recovery.

• Applications to high-dimensional Inverse Problems
– Synthesis,
– Super-Resolution,

• Unsupervised Learning Perspectives.



Geometric Variability Prior
x(u) , u : pixels, time samples, etc. ⌧(u) , : deformation field

L⌧ (x)(u) = x(u� ⌧(u)) : warping



• Deformation prior : 
– Models change in point of view in images
– Models frequency transpositions in sounds
– Consistent with local translation invariance

Geometric Variability Prior
x(u) , u : pixels, time samples, etc. ⌧(u) , : deformation field

k⌧k = � sup
u

|⌧(u)|+ sup
u

|r⌧(u)| .

L⌧ (x)(u) = x(u� ⌧(u)) : warping



Geometric Variability Prior
• Blur operator: 

– The only linear operator A stable to deformations
kAL⌧x�Axk  k⌧kkxk .

[Bruna’12]
�(u)

Ax = x ⇤ � , �: local average
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Geometric Variability Prior
• Blur operator: 

– The only linear operator A stable to deformations:

• Wavelet filter bank: 

• Point-wise non-linearity   
– Commutes with deformations: 
– Demodulates wavelet coefficients, preserves energy.

kAL⌧x�Axk  k⌧kkxk .

[Bruna’12]
�(u)

Ax = x ⇤ � , �: local average

Wx = {x ⇤  k} ,  k(u) = 2�j
 (2�j

R✓u)

 k

✓

j

 : spatially localized band-pass filter.

⇢L⌧x = L⌧⇢x

W recovers information lost by A.

⇢(x) = |x|
[Bruna’12]

W nearly commutes with deformations:

kWL⌧ � L⌧Wk  C|r⌧ |1



     Scattering Convolutional Network

| |f ⇧ ⇤j1,�1 | ⇧ ⇤j2,�2 | ⇧ ⇥J
�j1, j2
��1, �2

|WJ |

|f ⌅ ⇤j1,�1 | ⌅ ⇥J
�j1
��1

| |f ⇥ �j1,�1 | ⇥ �j2,�2 |

|WJ |
|f ⇥ �j1,�1 |

f ⇥ �J
|WJ |

| |f ⇥ �j1,�1 · · · | ⇥ �jm+1,�m+1 |

Cascade of contractive operators.

· · · · · ·
| |f ⇥ �j1,�1 | · · · ⇥ �jm,�m |

|WJ |
| |f ⇧ ⇤j1,�1 | · · · ⇧ ⇤jm,�m | ⇧ ⇥J

⇥j1...jm

⇥�1...�m

f



Wavelet Scattering

SIFT

window size = image size

f̂ |f ⇤ ⇥�1 | ⇤ �

Image Examples

Images Fourier

�1

�2

�1

�2

f ||f ⇤ ⇥�1 | ⇤ ⇥�2 | ⇤ �

[Bruna, Mallat, ’11,’12]



Representation of Stationary Processes 
x(u): realizations of a stationary process X(u) (not Gaussian)



Representation of Stationary Processes
x(u): realizations of a stationary process X(u) (not Gaussian)

Discriminability: need to capture high-order moments

�(X) = {E(fi(X))}i

Stability: E(kb�(X)� �(X)k2) small

b�(X) =

(
1

N

X

n

fi(x)(n)

)

i

Estimation from samples x(n):



     Scattering Moments
X
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     Scattering Moments

|WJ |

|WJ |

|WJ |

· · · · · ·

|WJ |

X

E(X)

|X ?  j1,�1 |
E(|X ?  j1,�1 |) , 8j1, �1

| |X ?  j1,�1 | ?  j2,�2 |

E(| |X ?  j1,�1 | ?  j2,�2 |) , 8ji, �i

| ..|X ?  j1,�1 | ? . . . | ?  jm,�m |

E(|..|X ?  j1,�1 | ? . . . | ?  jm,�m |) , 8ji, �i
| ..|X ?  j1,�1 | ? . . . | ?  jm+1,�m+1 |



Properties of Scattering Moments
• Captures high order moments:

m = 1 m = 2
SJ [p]XPower Spectrum

[Bruna, Mallat, ’11,’12]



Properties of Scattering Moments
• Captures high order moments:

m = 1 m = 2
SJ [p]XPower Spectrum

[Bruna, Mallat, ’11,’12]

• Cascading non-linearities is necessary to reveal higher-
order moments.



Consistency of Scattering Moments

Theorem: [B’15] If  is a wavelet such that k k1  1, and X(t) is a

linear, stationary process with finite energy, then

lim

N!1
E(k ˆSNX � SXk2) = 0 .



Consistency of Scattering Moments

Corollary: If moreover X(t) is bounded, then

E(k ˆSNX � SXk2)  C
|X|21p

N
.

• Although we extract a growing number of features, their 
global variance goes to 0.

• No variance blow-up due to high order moments.
• Adding layers is critical (here depth is log(N)). 

Theorem: [B’15] If  is a wavelet such that k k1  1, and X(t) is a

linear, stationary process with finite energy, then

lim

N!1
E(k ˆSNX � SXk2) = 0 .



Classification with Scattering
• State-of-the art on pattern and texture recognition:

– MNIST [Pami’13]

– Texture (CUREt) [Pami’13]

• Object Recognition:

– 17% error on Cifar-10 [Oyallon, Mallat, CVPR’15] using better second 
layer wavelets that recombine channels.

– General Object Recognition requires adapting the wavelets to the 
signal classes. Learning is necessary.



Signal and Texture Recovery Challenge

• [Q1] Given        computed with m layers, under what 
conditions can we recover    (up to global symmetry)? 
Using what algorithm? As a function of the localization 
scale J ?

SJx = {x ⇤ �J , |x ⇤  j1 | ⇤ �J , ||x ⇤  j1 | ⇤  j2 | ⇤ �J , . . . }jiJ

SJx

x



Signal and Texture Recovery Challenge

• [Q1] Given        computed with m layers, under what 
conditions can we recover    (up to global symmetry)? 
Using what algorithm? As a function of the localization 
scale J ?

• [Q2] Given SX, how can we characterize interesting 
processes? How to sample from such distributions?

SJx = {x ⇤ �J , |x ⇤  j1 | ⇤ �J , ||x ⇤  j1 | ⇤  j2 | ⇤ �J , . . . }jiJ

SJx

x

SX = {E(X), E(|X ⇤  j1 |), E(||X ⇤  j1 | ⇤  j2 |), . . . }



Related Work

• [Q1] As J→∞, with depth fixed to m, we have                         
measurements
– Non-linear, invariant compressed sensing.
– Eldar et al [’12]: Sparse Recovery from Fourier Magnitude
– Plan and Vershynin [’14]: Generalized Linear Model, 1-bit compressed 

sensing.

• [Q1] For fixed J, it is a generalized phase-recovery 
problem
– Balan et al [’06], Candes et al. [’11] , Waldspurger et al [’12]
– Bruna et al [’14]: Signal Recovery from pooling.

• [Q2] Texture synthesis
– Simoncelli & Portilla [’00], Simoncelli & McDermott [’11], Mumford et al 

[’98]: define statistical models using generalized wavelet moments.
– Peyre et al [’14]: models on learnt dictionaries, Effros&Freeman [’01] Quilting

O(| logN |m) ⌧ N



Sparse Signal Recovery

Theorem [B,M’14]: Suppose x0(t) =
P

n an�(t�bn) with |bn�bn+1| � �,

and SJx0 = SJx with m = 1 and J = 1. If  has compact support, then

x(t) =

X

n

cn�(t� en) , with |en � en+1| & � .



Sparse Signal Recovery

•  

• Here, sparsity is encoded in the measurements 
themselves.

• In 2D, singular measures (ie curves) require           to be 
well characterized.

Sx essentially identifies sparse measures,
up to log spacing factors.

m = 2

Theorem [B,M’14]: Suppose x0(t) =
P

n an�(t�bn) with |bn�bn+1| � �,

and SJx0 = SJx with m = 1 and J = 1. If  has compact support, then

x(t) =

X

n

cn�(t� en) , with |en � en+1| & � .



Oscillatory Signal Recovery

• Oscillatory, lacunary signals are also well captured with 
the same measurements. 

• It is the opposite set of extremal points from previous 
result.

Theorem [B,M’14]: Suppose cx0(⇠) =

P
n an�(⇠ � bn) with | log bn �

log bn+1| � �, and SJx = SJx0 with m = 2 and J = logN . If

b
 has com-

pact support K  �, then

bx(⇠) =
X

n

cn�(⇠ � en) , with | log en � log en+1| & � .



Scattering Reconstruction Algorithm

• Non-linear Least Squares. 
– Levenberg-Marquardt gradient descent:

• (Weak) Global convergence guarantees using complex 
wavelets:

S
x0 ⇠ N (0, I)

min
x

kbSx� b
S0k2

xn+1 = xn � �(D b
Sxn)

†(bSxn � b
S0)

S = {x s.t.

b
Sx = b

S0}

D

ˆ

Sx is full rank for m = 2 if x compact support.



Sparse Shape Reconstructions
Original images of N2 pixels:

m = 2, 2

J
= N : reconstruction from O(log

2
2 N) scattering coe↵.

m = 1, 2

J
= N : reconstruction from O(log2 N) scattering coe↵.



Multiscale Scattering Reconstruction

• For finite J and finite m, recovery depends on redundancy 
factor.

• As J increases, redundancy decreases. 
• No universal provable recovery guarantees.
• We use the same gradient descent algorithm.

dim(SJx) = O(N2�2JJm)



Multiscale Scattering Reconstruction

2J = 16

2J = 32

2J = 64

2J = 128 = N

Scattering
Reconstruction

N2
pixels

1.4N2
coe↵.

0.5N2
coe↵.

Original
Images



Related Work on CNN inversion
• Deeper CNNs trained on large classification tasks also preserve many 

geometrical features:
Images

Reconstruction from CONV5

Our-GAN

Our-simple

[20]

Reconstruction from FC6

Our-GAN

Our-simple

[20]

Reconstruction from FC7

Our-GAN

Our-simple

[20]

Figure 13: Reconstructions from higher layers of AlexNet with the GAN-based version of our method, the simple version of
our method and the method of Mahendran and Vedaldi [20].

[Dosovitsky & Brox’15]

(uses a “learnt” prior 
over natural images using

Generative Adversarial 
Networks)

[Mahendran&Vedaldi,’15]



Texture Synthesis
• Maximum Entropy Distribution from Scattering Moments: 

by Boltzmann Theorem, we have

•  

p(x) =
1

Z

e

P
|p|m �p(U [p]x⇤�J )(0)

�p are Lagrange multipliers that guarantee that Ep(U [p]x) = ŜX(p).



Texture Synthesis
• Maximum Entropy Distribution from Scattering Moments: 

by Boltzmann Theorem, we have

•  
• When X(t) is ergodic, this distribution converges to the 

uniform measure on the set (the Julesz ensemble):

• Convergence in distribution is a hard problem (cf Chatterjee).
• We can sample approximately using previous algorithm.

⌦(SX) = {x s.t. U [p]x = SX(p) 8 p} .

p(x) =
1

Z

e

P
|p|m �p(U [p]x⇤�J )(0)

�p are Lagrange multipliers that guarantee that Ep(U [p]x) = ŜX(p).



Ergodic Texture Reconstruction
Original Textures

Gaussian process model with same second order moments

m = 2, 2

J
= N : reconstruction from O(log

2
2 N) scattering coe↵.



Ergodic Texture Reconstruction
• Scattering Moments of 2nd order thus capture essential geometric 

structures with only                  coefficients.
• However, not all texture geometry is captured. 
• Results using a deep VGG network from [Gathys et al, NIPS’15]

O((logN)

2
)



Ergodic Texture Reconstruction
• Scattering Moments of 2nd order thus capture essential geometric 

structures with only                  coefficients.
• However, not all texture geometry is captured. 
• Results using a deep VGG network from [Gathys et al, NIPS’15]

O((logN)

2
)



Application: Super-Resolution

• Best Linear Method: Least Squares estimate (linear 
interpolation):

x

y

F

ŷ = (b⌃†
x

b⌃
xy

)x



Application: Super-Resolution

• Best Linear Method: Least Squares estimate (linear 
interpolation):

• State-of-the-art Methods:
– Dictionary-learning Super-Resolution
– CNN-based: Just train a CNN to regress from low-res to high-res.
– They optimize cleverly a fundamentally unstable metric criterion:

x

y

F

ŷ = (b⌃†
x

b⌃
xy

)x

⇥⇤ = argmin
⇥

X

i

kF (xi,⇥)� yik2 , ŷ = F (x,⇥⇤)



Scattering Approach
• Relax the metric: 

F

S
S

x

y

S�1



Scattering Approach
• Relax the metric: 

– Start with simple linear estimation on scattering domain.
– Deformation stability gives more approximation power in the 

transformed domain via locally linear methods.
– The method is not necessarily better in terms of PSNR!

F

S
S

x

y

S�1



Some Numerical Results
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Radon Inverse Transform

•  
(with I. Domanic (ENS/UIUC), S. Mallat)

Given y = R(x), Radon Transform of x, recover x.

original originalpositive LS positive LS

scattering scattering



Sparse Spike Super-Resolution
(with I. Domanic (ENS/UIUC), S. Mallat)

Examples with Cox Processes

(inhomogeneous Poisson point processes)



CNN Conditional Gibbs Models

• Q: Can we optimize the parameters of the model, 
including the network?

[B., Sprechmann, LeCun, ICLR’16]



• Q: Can we optimize the parameters of the model, 
including the network?

• Conditional Generative Model: 

• Energy-based models (EBM)
– MRF/CRF (Geman & Geman’)
– LeCun et al’06. 
– Ranzato et al.’10, Osindero et al’09.  
– Ngiam et al.’11: Consider deep sufficient statistics. 
– Dai et al, Lu et al’15-16: Consider unconditional CNN Gibbs Models.  

CNN Conditional Gibbs Models

p(y | x) / exp(�k�(x)� (y)k2) �, : CNNs

[B., Sprechmann, LeCun, ICLR’16]



CNN Conditional Gibbs Models

• Block coordinate training:
–   

[B., Sprechmann, LeCun, ICLR’16]

Leaving  is fixed, update � via feature regression:

min
�

E(X,Y )⇠Dk�(X)� (Y )k2



CNN Conditional Gibbs Models

• Block coordinate training:
–  

–  

[B., Sprechmann, LeCun, ICLR’16]

Leaving  is fixed, update � via feature regression:

min
�

E(X,Y )⇠Dk�(X)� (Y )k2

Leaving � fixed, we have

r
✓

log p(y | x) = r
✓

(k�(x;�)� (y; ✓)k2)� E
y⇠p(y | x)r✓

(k�(x;�)� (y; ✓)k2) .



CNN Conditional Gibbs Models

• Block coordinate training:
–  

–  

[B., Sprechmann, LeCun, ICLR’16]

Leaving  is fixed, update � via feature regression:

min
�

E(X,Y )⇠Dk�(X)� (Y )k2

Leaving � fixed, we have

r
✓

log p(y | x) = r
✓

(k�(x;�)� (y; ✓)k2)� E
y⇠p(y | x)r✓

(k�(x;�)� (y; ✓)k2) .

We approximate E
y⇠p(y | x)r✓

(k�(x;�)� (y; ✓)k2) with
1

L

X

lL

r✓(k�(x;�)� (yl; ✓)k2) with yl drawn from the typical set

{y ; k�(x)� (y)k  ✏}



CNN Conditional Gibbs Models

Under review as a conference paper at ICLR 2016

Figure 3: Relative error in pixel and in scattering domains observed when applying image deforma-
tions to high-resolution images: (left) rigid shift; (right) Gaussian blur. Relative error plotted agains
the “severity” of the degradation measured in pixel shifts or standard deviation of the blur. Results
are the average over 10 images of size 200⇥ 200.

(a) Original (b) Baseline (c) VGG-19 (d) Scattering (e) Fine Tunned

Figure 4: Super-resolution results for up-scaling ⇥3. We compare the original images (column (a)
), the baseline CNN (column (b) ) with sampled synthesized images from our model using VGG
(column (c) ), Scattering (column (d) ), and fine-funned Scattering (column (e) ) as CNNs.

9

 is initialized with Scattering and pre-trained CNN models.

Fine-tuning approximately optimizes conditional log-likelihood



Conclusions

• CNNs: Geometric encoding with built-in deformation 
stability.
– Equipped to break curse of dimensionality.

• This statistical advantage is useful both in supervised and 
unsupervised learning.
– Maximum Entropy Gibbs CNN distributions are stable to 

deformations. 
– Exploited in high-dimensional inverse problems. 

• Challenges Ahead:
– True for other generative models?
– Reconcile Gibbs and Sampling Models?



Thank you!



• Latent Graphical Models or Mixtures.

Generative Models of Complex data
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• Latent Graphical Models or Mixtures.

Generative Models of Complex data

x

h

high-dimensional space

p(x) =

Z
p(x, h)dh =

Z
p(x | h)p(h)dh

latent space

h ⇠ p(h)

�

p(x | h) = p�(h)(x)

✓ = �(h)

p✓(x)

RBM
DBN
DBM
VAE
…



• Flows or Transports of Measure:

Generative Models of Complex data
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• Flows or Transports of Measure

Generative Models of Complex data
GAN

NormFlow
…

p(x) defined implicitly with

x

h

high-dimensional space

latent space

h ⇠ p(h)
�

Z
f(x)p(x)dx =

Z
f(�(h))p(h)dh , 8 f measurable

Sampling is easy and cheap

Evaluation is hard

Currently the state-of-the-art in image generation with �: CNN

high-dimensional analysis hard



Latest GAN Generations

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised
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Audio Source Separation

•  
•  
• Ill-posed inverse problem. We need to impose structure 

in our estimates 

• Different learning set-ups:
– Blind/No learning: Construct priors via time-frequency local 

regularity ([Wolf et al,’14]).
– Non-discriminative: We observe each source separately, learn a 

model of each source. 
– Discriminative: We train directly with input mixtures.

(joint work with P. Sprechmann and Y. LeCun, ICLR’15)

Suppose we observe y(t) = x1(t) + x2(t).

Goal: Estimate x1(t), x2(t).

x̂1(t), x̂2(t).



Audio Source Separation
• State-of-the-art methods:

–      is a synthesis operator, trained to estimate        from      .  
•Non-negative Matrix Factorization

– Can be trained either non-discriminative or discriminative. 

•DNN/ RNN / LSTM:      is modeled as a Neural Net trained 
discriminatively.

–         is approximately linear if      small. 
– Long temporal structure is imposed on the D.

Time-Freq

D�

sampling rate ��1

��1

��1

y(t)
x̂1(t)

x̂2(t)

D �xi �y

min
zi

k�y �
X

i

Dizik2 + �(
X

i

kzik1) .

D

��1 �



Multi-Resolution Scattering Source Sep.

• Rather than adding structure to the unstable synthesis 
block, replace the analysis with a more invariant one.

• We use a multi-resolution pyramid CNN analysis 
– Pros: We relieve the synthesis from having to model uninformative 

variability.
– Pros: The wavelets can be replaced by a learnt linear transformation 

that preserves informations.
– Cons: Phase Recovery is more expensive, but approximate linear 

inverse still works well in practice.

�



Results on TIMIT

• 64 Speakers, gender-specific models.

• Learning long-range dependency with multi scale as an 
alternative to recurrent architectures.

SDR SIR SAR
NMF 6.1 [2.9] 14.1 [3.8] 7.4 [2.1]
scatt-NMF(1) 6.2 [2.8] 13.5 [3.5] 7.8 [2.2]
scatt-NMF(2) 6.9 [2.7] 16.0 [3.5] 7.9 [2.2]
CQT-DNN-1 frame 9.4 [3.0] 17.7 [4.2] 10.4 [2.6]
CQT-DNN-5 frame 9.2 [2.8] 17.4 [4.0] 10.3 [2.4]
CQT-DNN-scatt 9.7 [3.0] 19.6 [4.4] 10.4 [2.7]
CQT-CNN-scatt 9.9 [3.1] 19.8 [4.2] 10.6 [2.8]



Thank you! 


