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We often work with i.i.d. samples from a joint distribution P. Claim:
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We often work with i.i.d. samples from a joint distribution P. Claim:

Many times, we are interested in a different distribution P # P.

Nobel Laureates per 10 Million Population

?

Switzerland
2 Sweden EXsv
r=0.791
P<0.0001 Denmark
.
Austria
= 1= Norway
Y2 United Kingdom
United B Wireland == Germany
The Netherlands o pace®
= Fiance
seigum] 1l |
P = Finland
Poland 1 BB Australia
porugal TN g
== _ Spain
. g
China Brazil
. T
5 10

Chocolate Consumption (kg/yr/capita)

How do we relate P and P?

Jonas Peters (ETH Zurich)

Causal Inference using Invariant Prediction

15

Messerli, N Eng J Med 2012

28 January 2015
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P(X1i,...,X3) has been generated by a structural equation model if

X1 = fi(X3, Np)

Xo = h(X1, X3, N.
2 2( 1 3 2) Go @

X3 = f3(Ns)

N

e /V; jointly independent
e Gp has no cycles
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Assume that we know the graph and P.

X1 = f (X3, N1)
X2 - f2(X17X33 NQ)
Go  chocolate

X3 = f(Ns) / )\

nobel pﬁée—ec' onomy

e |V; jointly independent

e Gp has no cycles
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Assume that we know the graph and P. We can then compute P.

Xi = (L)
X2 - f2(X17X3) NQ)
X3 = f3(N3)

e |V; jointly independent

e Gp has no cycles

Go  chocolate
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Assume that we know the graph and P. We can then compute P.

\
X1 = fi(Ny)
Xa = £(X1, X3, o) 0 ’&\\e ®
Xy = f3(N3) s‘ “ ~olate
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Slashdot * CHEEENN

Catch up on stories from the past week (and beyond) at the Slashdot story archive

submissions

popular Cause and Effect: How a Revolutionary New Statistical Test Can Tease Them Apart

blog Posted by imothy on Thursday December 18, 2014 @01 10PIW
from the submission-caused-post dept.

build
KentuekyF C writes
Statisticians have long thought it impossible to tell cause and effect apart using ohsemvational data. T
book reviews and ¥, and to find out if X caused ¥ or ¥ caused X. That's straightforward with a controlled experiment
other. Take for example, a correlation between wind speed and the rotation speed of a wind turhine. ©
that holds the wind speetl constant while measu\mg the spee[l of the turbine, and vice versa, would st

ask slashdot

games
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Idea 1: Additive Noise

Assume P(Xi,...,Xs) has been generated by

Xl = fl(X37 Nl) @
Xo =Ny

X; = £3(Xa, Ns) \

Xo = fi(Xo, X3, Ny) Co——9)

e \; jointly independent

e Gy has no cycles

Structural equation model.
Can the DAG be recovered from P(Xi,...,Xs)?
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Xl = fl(X37 Nl) @
Xo =Ny

X; = £3(Xa, Ns) \

Xo = fi(Xo, X3, Ny) Co——9)

e \; jointly independent

e Gy has no cycles

Structural equation model.
Can the DAG be recovered from P(Xi,...,Xs)? No.
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Idea 1: Additive Noise

Assume P(Xi,...,Xs) has been generated by

X1 = H(X3)+ M @
Xo = Ny

X3 = f(X5) + N3 \

Xy = f(Xa, X3) + Ny Co——9)

o N; ~ N(0,0?) jointly independent

e Gy has no cycles

Additive noise model with Gaussian noise.
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Idea 1: Additive Noise

Assume P(Xi,...,Xs) has been generated by

X1 =f((X3)+ M

X, = Ny & )

X3 = f(X5) + N3 \

Xy = f(Xa, X3) + Ny Co——9)

o N; ~ N(0,0?) jointly independent

e Gy has no cycles

Additive noise model with Gaussian noise.
Can the DAG be recovered from P(Xi,...,Xs)? Yes iff f; nonlinear.

JP, J. Mooij, D. Janzing and B. Schélkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014
P. Biihlmann, JP, J. Ernest: CAM: Causal add. models, high-dim. order search and penalized regr., Annals of Statistics 2014
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Idea 1: Additive Noise

&, e Ml : il i i
% # 7 i "Hjﬂ il HU:‘ s i il
| ¢ z § 4 ’M"Hm 5 'MﬁMI“IWiH; 5 ‘||”|“H' - “lﬂ‘"ﬂ"ﬂln! w “I““‘"ﬂ\ﬁ}@ ) .dil”|mm““ ”

e Tare

Jonas Peters (ETH Zurich) Causal Inference using Invariant Prediction 28 January 2015



Idea 1: Additive Noise
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Idea 1: Additive Noise

I " news | woeo | soca | roLcow wir 5NN IR EE.

iVIIT News

ON CAMPUS AND AROUND THE WORLD

Can we see the arrow of time?
Algorithm can determine, with 80 percent accuracy, whether video is running forward
or backward.

Larry Hardesty | MIT News Office
June 20, 2014

Einstein's theory of relativity envisions time as a spatial dimension, like height, width, and PAPER: "Seeing the arrow of time.
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Idea 1: Additive Noise

Method #3: Auto-regressive model

If object motion is linear, then the current velocity of the object should be affected only by the past. Noise on this motion will
e asymmetric in the forward and backward directions, and fitting an auto-regressive model to the linear motion ought to
yeild independence between the noise and signal only in the forwards-time direction. This method attempts to find the
forward direction by locking at the independence of AR fitting errer on motion rajectories,

1
——backward velocity
— backward noise

——forward velocity
——foward noise
100 150
Frame
Top: tracked points from a sequence, and an example track. Bottom: Forward-time (left) and backward-time {right) vertical trajectory

components, and the corresponding model residuals. Tr should be i ‘model residuals (noise) in the forward-time
direction only. For the example track shown, p-values for the forward and backwand directions are 0.52 and 0.016 respectively, indicating

that forwanis time is more likely.

January 2015
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Idea 2: Observing data from different environments

Key idea:
P(Y |PAy) remains invariant if the struct. equ. for Y does not change.

X1 = fi(Xz, Nq)

(

Y = hH(X1, N)

X3 = f3(N3) )/
Xy = (Y, X3, Ng) \

&
Y

e \; jointly independent

e Gp has no cycles
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Idea 2: Observing data from different environments

Key idea:
P(Y |PAy) remains invariant if the struct. equ. for Y does not change.

Xy = fi(Nq)

Y = H(X1, Np) o @

X3 = f3(N3) )/

Xo = fa(Y, X, N) ®) (x)

e \; jointly independent

e Gp has no cycles
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Idea 2: Observing data from different environments

Key idea:

P(Y |PAy) remains invariant if the struct. equ. for Y does not change.

Xl == fl(X37 Nl)

G
Y = (X1, Na) ’
X3 = f3(Ns3)
Xy = fa(Y, X3, Ny) @

e [V; jointly independent

e Gp has no cycles

e
\

\®

®
e

Jonas Peters (ETH Zurich) Causal Inference using Invariant Prediction

28 January 2015



Idea 2: Observing data from different environments

Key idea:

P(Y |PAy) remains invariant if the struct. equ. for Y does not change.

e Gy has no cycles

Xy = A(fh) c
Y = h(Xi, Np) o
X3 = f(X1, X, N3) )/
Xo = fa(Y, Ny) ®\

e [V; jointly independent

(%)

p
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Idea 2: Observing data from different environments

Observe target Y and p covariates X in different “environments” e € &:

(X8, Y®¢) ~ PC.

There exists (S*,~*) that satisfies property Hy , s(€) &
v vanishes outside S and

Ye=X®v+e, el XS
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(X8, Y®¢) ~ PC.

There exists (S*,~*) that satisfies property Hy , s(€) &
v vanishes outside S and

Ye=X®v+e, el XS

Definition

o Good set: any set S such that 3y with Hp, s is true.
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v vanishes outside S and
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Definition
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Idea 2: Observing data from different environments

Observe target Y and p covariates X in different “environments” e € &:

(X8, Y®¢) ~ PC.

There exists (S*,~*) that satisfies property Hy , s(€) &
v vanishes outside S and

Ye=X®v+e, el XS

°0 G o «‘ |y set S such that 3y with Hp, s is true.
t’ .ole causal predictors S(&): vars appearing in all good sets.
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Idea 2: Observing data from different environments

Example 1:
S*={X1, X}, &={1}

& ®
N
|
®

e = 1: observational
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Idea 2: Observing data from different environments

Example 1:
S*={X1, X}, &={1}

& ®
N
|
®

e = 1: observational
S(€) =1

Jonas Peters (ETH Zurich) Causal Inference using Invariant Prediction

28 January 2015



Idea 2: Observing data from different environments

Example 2:
S*={X1, X2}, &£={1,2}

& ® & ®
Ny Ny

v v
Q )

e = 1: observational e = 2: intervention on Xi
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Idea 2: Observing data from different environments

Example 2:
S*={X1, X2}, &£={1,2}

& ® & ®
Ny Ny

v v
Q )

e = 1: observational e = 2: intervention on Xi

5(8) = {X}
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Idea 2: Observing data from different environments

Example 3:
S*={X1, X2}, &£={1,2}

@ ® @ ®
Ny Ny
@ &
| ¥
® ®

e = 1: observational e = 2: intervention on Xi
5(&) = {X1, X2}
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Idea 2: Observing data from different environments

Example 4:
S*={X1, X2}, £={1,2,3}

@ ® & ®
Ny N Ny

v
&)

e = 1: obs. e = 2: interv. on X e = 3: interv. on X5

&<
)
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Idea 2: Observing data from different environments

Example 4:

Q. ®
Ny

v
&)

e = 1: obs.

Jonas Peters (ETH Zurich)

t = {Xl) X2}’

£=1{1,2,3}

& ®
N

&<
)

e = 2: interv. on X e = 3: interv. on X5

S(&) = {X1, Xo}
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Idea 2: Observing data from different environments

@ No mistakes:

S(€) C §*.
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Idea 2: Observing data from different environments

Theorem

@ No mistakes:
S(&) C s

@ No chances with one environment:

#E=1 = S(&)=0.
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Idea 2: Observing data from different environments

@ No mistakes:

S(&) C s
@ No chances with one environment:
#E=1 = S(&)=0.
© Seeing more environments helps:

5(51) - 5(52) if & Cé&
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Idea 2: Observing data from different environments

Theorem
@ No mistakes:

S(&) C s
@ No chances with one environment:
#E=1 = S(&)=0.
© Seeing more environments helps:
S(&1)CS(&) if & C&

Q@ Sufficient conditions for S(£) = S*:
a) many “generic” interventions: on each node except Y OR
b) single “generic” intervention: on a “youngest” parent of Y that is
directly connected to all other parents of Y.

v

JP, P. Bithlmann, N. Meinshausen: Causal inference using invariant prediction: identification and conf. interv., arXiv 1501.01332
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Idea 2: Observing data from different environments

Method for finite samples: construct [ (€), 5(&) by testing for Ho~.s-
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Idea 2: Observing data from different environments

Method for finite samples: construct [ (€), 5(&) by testing for Ho~.s-

Assume that the probability of falsely rejecting Ho .+ s+ is less than .
Then
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Idea 2: Observing data from different environments

Method for finite samples: construct [ (€), 5(&) by testing for Ho~.s-

Assume that the probability of falsely rejecting Ho .+ s+ is less than .
Then

P(5(6)CS*)>1-a
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Idea 2: Observing data from different environments

Method for finite samples: construct [ (€), 5(&) by testing for Ho~.s-

Assume that the probability of falsely rejecting Ho .+ s+ is less than .
Then

P(5(6)CS*)>1-a

o possible test 1: test whether the regression models are the same for
group e and —e (Chow, 1960) (inversion of cov. matrix of Res,)
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Idea 2: Observing data from different environments

Method for finite samples: construct [ (€), 5(&) by testing for Ho~.s-

Assume that the probability of falsely rejecting Ho .+ s+ is less than .
Then

P(5(6)CS*)>1-a

o possible test 1: test whether the regression models are the same for
group e and —e (Chow, 1960) (inversion of cov. matrix of Res,)

o possible test 2: linear regression on pooled data; test whether Res,
of group e have same mean and variance as Res_,.
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Idea 2: Observing data from different environments

Method for finite samples: construct [ (€), 5(&) by testing for Ho~.s-

Assume that the probability of falsely rejecting Ho .+ s+ is less than .
Then

P(5(6)CS*)>1-a

o possible test 1: test whether the regression models are the same for
group e and —e (Chow, 1960) (inversion of cov. matrix of Res,)

o possible test 2: linear regression on pooled data; test whether Res,
of group e have same mean and variance as Res_,.

@ (easy) tricks for computations and high-dimensions.

JP, P. Bithlmann, N. Meinshausen: Causal inference using invariant prediction: identification and conf. interv., arXiv 1501.01332
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Idea 2: Observing data from different environments

Simulations: 100 settings, 1000 data sets each.

How often do we find 5(£) = §*?
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Idea 2

100 settings, 1000 data sets each.

Simulations:

A

How often do we find S(€) = $*7?
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Idea 2: Observing data from different environments

Simulations: 100 settings, 1000 data sets each.

How often do we find 5(£) Z $*?
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Idea 2: Observing data from different environments

Simulations: 100 settings, 1000 data sets each.

How often do we find 5(£) Z $*?
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Idea 2: Observing data from different environments

Real data: genetic perturbation experiments for yeast (Kemmeren et al.,
2014)

@ p=16170 genes

@ nyps = 160 wild-types

® nj,r = 1479 gene deletions (targets known)
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Idea 2: Observing data from different environments

Real data: genetic perturbation experiments for yeast (Kemmeren et al.,
2014)

@ p=16170 genes

@ nyps = 160 wild-types

® nj,r = 1479 gene deletions (targets known)

o true hits: ~ 9% of pairs

interventional test data point
(intervention on gene 5954)

1

0

L

-1

ACTIVITY GENE 4710
-3 -2

-4

(é:k

5 4 3 2 1 0 1
ACTIVITY GENE 5954

-5
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Idea 2: Observing data from different environments

Real data: genetic perturbation experiments for yeast (Kemmeren et al.,
2014)

@ p=16170 genes

@ nyps = 160 wild-types

® nj,r = 1479 gene deletions (targets known)

o true hits: ~ 9% of pairs

interventional test data point
(intervention on gene 5954)

L

-1 0 1

ACTIVITY GENE 4710
-2

4 3

(é:k

5 4 3 2 1 0 1
ACTIVITY GENE 5954

-5

e our method: £ = {obs, int}
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Idea 2: Observing data from different environments

observational training data interventional training data o interventional test data point
g (interv. on genes other than 5954 and 4710) (intervention on gene 5954)
S 9o /g/
= =
< o <
> “
g we
w w
o [C!
£2 g
= S
= =7
o Q
< <
o <
] o
i
L? J
-1.0 -05 0.0 0.5 -1.0 -05 0.0 0.5 5 -4 -3 -2 -1 0 1
ACTIVITY GENE 5954 ACTIVITY GENE 5954 ACTIVITY GENE 5954

most significant pair
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Idea 2: Observing data from different environments

observational training data interventional training data N1 interventional test data point

° (interv. on genes other than 3729 and 3730) (intervention on gene 3729)
(=3 = (=] 1
Id g .
2 2
W w
Z o z
] . |
o Gl
£ z
53 Sl
= F
o Q
< Lo

™ I

=]

T <]

)
-0.5 0.0 0.5 1.0 -05 0.0 0.5 1.0 -4 -3 -2 -1 0 1 2
ACTIVITY GENE 3729 ACTIVITY GENE 3729 ACTIVITY GENE 3729

2nd most significant pair
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Idea 2: Observing data from different environments

w_
=

observational training data interventional training data 4 interventional test data point
(interv. on genes other than 3672 and 1475) (intervention on gene 3672)

1

1.0

0

O <ud E/

-1

ACTIVITY GENE 1475
0.0 0.5 X
ACTIVITY GENE 1475

-2

-3

-0.5

-0.5 0.0 0.5 1.0 15 -0.5 0.0 0.5 1.0 15 -3 -2 -1 0 1 2
ACTIVITY GENE 3672 ACTIVITY GENE 3672 ACTIVITY GENE 3672

3rd most significant pair
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Idea 2: Observing data from different environments

proposed | - o | |pa | marginal corr. random

method observ. \ pooled guessing
# of true 2 (95% quantile)
positives 6 2 2 1 2 3 (99% quantile)
(out of 8) 4 (99.9% quantile)
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Summary:
o Idea 1: additive noise (single environment)

@ Idea 2: invariant prediction (multiple environments); control family
wise error rate

Jonas Peters (ETH Zurich) Causal Inference using Invariant Prediction 28 January 2015



Summary:
o Idea 1: additive noise (single environment)

@ Idea 2: invariant prediction (multiple environments); control family
wise error rate

Future directions (theory):
@ extend to estimation of graphs
@ combine ideas 1 and 2
@ nonlinear models
o

finite sample guarantees

Jonas Peters (ETH Zurich) Causal Inference using Invariant Prediction 28 January 2015



Summary:
o Idea 1: additive noise (single environment)

@ Idea 2: invariant prediction (multiple environments); control family
wise error rate

Future directions (theory):
@ extend to estimation of graphs
@ combine ideas 1 and 2
@ nonlinear models

o finite sample guarantees

Future work (methodology): ':l;l/\/‘
@ domain adaption

VAN
@ instrumental variables @_>®_>®

Dankeschon!

nachdenken « klimabewusst reisen

atmosfair
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cause Y or vice versa?
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Does X cause Y or vice versa?
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Coffee — Nobel Prize: Dependent residuals (p-value of 5.1 -1078).
Nobel Prize — Coffee: Dependent residuals (p-value of 3.1-10712).

= Model class too small? Causally insufficient?
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Does X cause Y vice versa?
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Coffee — Nobel Prize: Dependent residuals (p-value of 5.1 -1078).
Nobel Prize — Coffee: Dependent residuals (p-value of 3.1-10712).

= Model class too small? Causally insufficient?
Question: When is a p-value too small?
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