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We often work with i.i.d. samples from a joint distribution P. Claim:

Many times, we are interested in a different distribution P̃ 6= P.

Messerli, N Eng J Med 2012

How do we relate P and P̃? CAUSALITY!
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P(X1, . . . ,X3) has been generated by a structural equation model if

X1 = f1(X3,N1) X1 = f̃1(Ñ1)

X2 = f2(X1,X3,N2)

X3 = f3(N3)

• Ni jointly independent

• G0 has no cycles

X2 X3

X1G0
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Assume that we know the graph and P.

X1 = f1(X3,N1) X1 = f̃1(Ñ1)

X2 = f2(X1,X3,N2)

X3 = f3(N3)

• Ni jointly independent

• G0 has no cycles

X2 X3

X1

nobel prize economy

chocolateG0
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Assume that we know the graph and P. We can then compute P̃.

X1 = f1(X3,N1) X1 = f̃1(Ñ1)

X2 = f2(X1,X3,N2)

X3 = f3(N3)

• Ni jointly independent

• G0 has no cycles

X2 X3

X1

nobel prize economy

chocolateG0

Ok, but how do we find the graph?
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Idea 1: Additive Noise

Assume P(X1, . . . ,X4) has been generated by

X1 = f1(X3,N1)

X2 = N2

X3 = f3(X2,N3)

X4 = f4(X2,X3,N4)

• Ni jointly independent

• G0 has no cycles

X4

X2 X3

X1G0

Structural equation model.
Can the DAG be recovered from P(X1, . . . ,X4)?

No.
JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014

P. Bühlmann, JP, J. Ernest: CAM: Causal add. models, high-dim. order search and penalized regr., Annals of Statistics 2014
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Idea 1: Additive Noise

Assume P(X1, . . . ,X4) has been generated by

X1 = f1(X3) +N1

X2 = N2

X3 = f3(X2) +N3

X4 = f4(X2,X3) +N4

• Ni ∼ N (0, σ2
i ) jointly independent

• G0 has no cycles

X4

X2 X3

X1G0

Additive noise model with Gaussian noise.

Can the DAG be recovered from P(X1, . . . ,X4)? Yes iff fi nonlinear.
JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014
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P. Bühlmann, JP, J. Ernest: CAM: Causal add. models, high-dim. order search and penalized regr., Annals of Statistics 2014

Jonas Peters (ETH Zurich) Causal Inference using Invariant Prediction 28 January 2015



Idea 1: Additive Noise

Assume P(X1, . . . ,X4) has been generated by

X1 = f1(X3) +N1

X2 = N2

X3 = f3(X2) +N3

X4 = f4(X2,X3) +N4

• Ni ∼ N (0, σ2
i ) jointly independent

• G0 has no cycles

X4

X2 X3

X1G0

Additive noise model with Gaussian noise.
Can the DAG be recovered from P(X1, . . . ,X4)? Yes iff fi nonlinear.
JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014
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Idea 1: Additive Noise
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Idea 2: Observing data from different environments

Key idea:
P(Y |PAY ) remains invariant if the struct. equ. for Y does not change.

X1 = f1(X3,N1)

Y = f2(X1,N2)

X3 = f3(N3)

X4 = f4(Y ,X3,N4)

• Ni jointly independent

• G0 has no cycles

X4

Y X3

X1G0
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Idea 2: Observing data from different environments

Observe target Y and p covariates X in different “environments” e ∈ E :

(X e ,Y e) ∼ Pe .

Assumption

There exists (S∗, γ∗) that satisfies property H0,γ,S(E) :⇔
γ vanishes outside S and

Y e = X eγ + ε, ε ⊥⊥ X e
S .

Definition

Good set: any set S such that ∃γ with H0,γ,S is true.

Identifiable causal predictors S(E): vars appearing in all good sets.
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Idea 2: Observing data from different environments

Example 1:
S∗ = {X1,X2}, E = {1}

X3

X1 X2

Y

e = 1: observational

S(E) = ∅
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Idea 2: Observing data from different environments

Example 2:
S∗ = {X1,X2}, E = {1, 2}

X3

X1 X2

Y

X3

X1 X2

Y

e = 1: observational e = 2: intervention on X1

S(E) = {X1}
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Idea 2: Observing data from different environments

Example 3:
S∗ = {X1,X2}, E = {1, 2}
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X1 X2

Y

X3

X1 X2

Y

e = 1: observational e = 2: intervention on X1

S(E) = {X1,X2}
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Idea 2: Observing data from different environments

Example 4:
S∗ = {X1,X2}, E = {1, 2, 3}

X3

X1 X2

Y

X3

X1 X2

Y

X3

X1 X2

Y

e = 1: obs. e = 2: interv. on X1 e = 3: interv. on X2

S(E) = {X1,X2}
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Idea 2: Observing data from different environments

Theorem
1 No mistakes:

S(E) ⊆ S∗.

2 No chances with one environment:

#E = 1 =⇒ S(E) = ∅.

3 Seeing more environments helps:

S(E1) ⊆ S(E2) if E1 ⊆ E2

4 Sufficient conditions for S(E) = S∗:

a) many “generic” interventions: on each node except Y OR
b) single “generic” intervention: on a “youngest” parent of Y that is

directly connected to all other parents of Y .

JP, P. Bühlmann, N. Meinshausen: Causal inference using invariant prediction: identification and conf. interv., arXiv 1501.01332
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Idea 2: Observing data from different environments

Method for finite samples: construct Γ̂(E), Ŝ(E) by testing for H0,γ,S .

Theorem

Assume that the probability of falsely rejecting H0,γ∗,S∗ is less than α.
Then

P
(
Ŝ(E) ⊆ S∗

)
≥ 1− α

possible test 1: test whether the regression models are the same for
group e and −e (Chow, 1960) (inversion of cov. matrix of Rese)

possible test 2: linear regression on pooled data; test whether Rese
of group e have same mean and variance as Res−e .

(easy) tricks for computations and high-dimensions.

JP, P. Bühlmann, N. Meinshausen: Causal inference using invariant prediction: identification and conf. interv., arXiv 1501.01332
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Idea 2: Observing data from different environments

Simulations: 100 settings, 1000 data sets each.

How often do we find Ŝ(E) = S∗?
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Idea 2: Observing data from different environments

Simulations: 100 settings, 1000 data sets each.
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Idea 2: Observing data from different environments

Simulations: 100 settings, 1000 data sets each.
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Idea 2: Observing data from different environments

Real data: genetic perturbation experiments for yeast (Kemmeren et al.,
2014)

p = 6170 genes

nobs = 160 wild-types

nint = 1479 gene deletions (targets known)

true hits: ≈ 9% of pairs

our method: E = {obs, int}
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Idea 2: Observing data from different environments
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Idea 2: Observing data from different environments

ACTIVITY GENE  3729

A
C

T
IV

IT
Y

 G
E

N
E

  3
73

0

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

observational training data

ACTIVITY GENE  3729
−0.5 0.0 0.5 1.0

interventional training data
(interv. on genes other than 3729 and 3730)

ACTIVITY GENE  3729

A
C

T
IV

IT
Y

 G
E

N
E

  3
73

0

−4 −3 −2 −1 0 1 2

−
4

−
3

−
2

−
1

0
1

2 interventional test data point
(intervention on gene 3729)

2nd most significant pair

Jonas Peters (ETH Zurich) Causal Inference using Invariant Prediction 28 January 2015



Idea 2: Observing data from different environments
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Idea 2: Observing data from different environments

proposed
GIES IDA

marginal corr. random
method observ. pooled guessing

# of true
6 2 2 1 2

2 (95% quantile)
positives 3 (99% quantile)

(out of 8) 4 (99.9% quantile)
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Summary:

Idea 1: additive noise (single environment)

Idea 2: invariant prediction (multiple environments); control family
wise error rate

Future directions (theory):

extend to estimation of graphs

combine ideas 1 and 2

nonlinear models

finite sample guarantees

Future work (methodology):

domain adaption

instrumental variables I X Y

W

Dankeschön!
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Does X cause Y or vice versa?
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Correlation: 0.698
p-value: < 2.2 · 10−16

Coffee→ Nobel Prize: Dependent residuals (p-value of 5.1 · 10−78).
Nobel Prize→ Coffee: Dependent residuals (p-value of 3.1 · 10−12).

⇒ Model class too small? Causally insufficient?
Question: When is a p-value too small?
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