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Abstract

Regularized learning is the contemporary framework for learning to generalize
from finite samples (classification, regression, clustering, etc). Here the prob-
lem is to learn an input-output mapping f : X → Y given finite samples
{(xi, yi), i = 1, . . . , N}. With minimal structural assumptions on X , the class
of functions under consideration is assumed to fall under a Banach space of func-
tions B. The learning-from-data problem is then formulated as an optimization
problem in such a function space, with the desired mapping as an optimizer to
be sought, where the objective function consists of a loss term L(f) capturing its
goodness-of-fit (or the lack thereof) on given samples {(f(xi), yi), i = 1, . . . , N},
and a penalty term R(f) capturing its complexity based on prior knowledge about
the solution (smoothness, sparsity, etc). This second, regularizing term is often
taken to be the norm of B, or a transformation φ thereof: R(f) = φ(‖f‖). This
program has been successfully carried out for the Hilbert space of functions, re-
sulting in the celebrated Reproducing Kernel Hilbert Space methods in machine
learning. Here, we will remove the Hilbert space restriction, i.e., the existence
of an inner product, and show that the key ingredients of this framework (repro-
ducing kernel, representer theorem, feature space) remain to hold for a Banach
space that is uniformly convex and uniformly Frechet differentiable. Central to
our development is the use of a semi-inner product operator and duality mapping
for a uniform Banach space in place of an inner-product for a Hilbert space. This
opens up the possibility of unifying kernel-based methods (regularizing L2-norm)
and sparsity-based methods (regularizing l1-norm), which have so far been inves-
tigated under different theoretical foundations.
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