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A Starting Point

Classically:
Statistics and optimization distinct steps in algorithm design

Large Scale:
Consider interplay between statistics and optimization!
(Bottou, Bousquet ’08)

Computational Regularization:
Computation “tricks”=regularization
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Supervised Learning

Problem: Estimate f∗
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The Setting
yi = f∗(xi) + εi i ∈ {1, . . . , n}

I εi ∈ R, xi ∈ Rd random (with unknown distribution)

I f∗ unknown



Supervised Learning

Problem: Estimate f∗ given Sn = {(x1, y1), . . . , (xn, yn)}

f⇤

(x2, y2)

(x3, y3)

(x4, y4)
(x5, y5)(x1, y1)

The Setting
yi = f∗(xi) + εi i ∈ {1, . . . , n}

I εi ∈ R, xi ∈ Rd random (with unknown distribution)

I f∗ unknown



Supervised Learning

Problem: Estimate f∗ given Sn = {(x1, y1), . . . , (xn, yn)}

f⇤

(x2, y2)

(x3, y3)

(x4, y4)
(x5, y5)(x1, y1)

The Setting
yi = f∗(xi) + εi i ∈ {1, . . . , n}

I εi ∈ R, xi ∈ Rd random (with unknown distribution)

I f∗ unknown



Outline

Learning with dictionaries and kernels

Data Dependent Subsampling

Data Independent Subsampling



Non-linear/non-parametric learning

f̂(x) =

M∑

i=1

ci q(x,wi)

I q non linear function

I wi ∈ Rd centers

I ci ∈ R coefficients

I M =Mn could/should grow with n

Question: How to choose wi, ci and M given Sn ?
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Learning with Positive Definite Kernels

There is an elegant answer if:

I q is symmetric

I all the matrices Q̂ij = q(xi, xj) are positive semi-definite1

Representer Theorem (Kimeldorf, Wahba ’70; Schölkopf et al. ’01)

I M = n,

I wi = xi,

I ci by convex optimization!

1They have non-negative eigenvalues
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Kernel Ridge Regression (KRR)

a.k.a. Penalized Least Squares

f̂λ = argmin
f∈H

1

n

n∑

i=1

(yi − f(xi))2 + λ‖f‖2

where

H = {f | f(x) =
M∑

i=1

ciq(x,wi), ci ∈ R, wi ∈ Rd︸ ︷︷ ︸
any center!

, M ∈ N︸ ︷︷ ︸
any length!

}

Solution

f̂λ =
n∑

i=1

ci q(x, xi) with c = (Q̂+ λnI)−1ŷ
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KRR: Statistics

Well understood statistical properties:

Classical Theorem
If f∗ ∈ H, then

λ∗ =
1√
n

E (f̂λ∗(x)− f∗(x))2 .
1√
n

Remarks

1. Optimal nonparametric bound

2. Results for general kernels (e.g. splines/Sobolev etc.)

λ∗ = n− 1
2s+1 , E (f̂λ∗(x)− f∗(x))2 . n− 2s

2s+1

3. Adaptive tuning via cross validation

4. Proofs: analysis/linear algebra+ random matrices
(Smale and Zhou + Caponnetto, De Vito, R.+ Steinwart)
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KRR: Optimization

f̂λ =

n∑

i=1

ci q(x, xi) with c = (Q̂+ λnI)−1ŷ

Linear System

bQ byc =

Complexity

I Space O(n2)

I Time O(n3)

BIG DATA?
Running out of time and space ...

Can this be fixed?
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Linear System

bQ byc =

Complexity

I Space O(n2)

I Time O(n3)

BIG DATA?
Running out of time and space ...

Can this be fixed?



Beyond Tikhonov: Spectral Filtering

(Q̂+ λI)−1 approximation of Q̂† controlled by λ

Can we approximate Q̂† by saving computations?

Yes!

Spectral filtering (Engl ’96- inverse problems, Rosasco et al. 05- ML )

gλ(Q̂) ∼ Q̂†

The filter function gλ defines the form of the approximation
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Spectral filtering

Examples

I Tikhonov- ridge regression

I Truncated SVD– principal component regression

I Landweber iteration– GD/ L2-boosting

I nu-method– accelerated GD/Chebyshev method

I . . .

Landweber iteration (truncated power series). . .

ct = gt(Q̂) = γ

t−1∑

r=0

(I − γQ̂)rŷ

. . . it’s GD for ERM!!

r = 1 . . . t cr = cr−1 − γ(Q̂cr−1 − ŷ), c0 = 0
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Semiconvergence

Iteration
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Early Stopping at Work
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Statistics and computations with spectral filtering

The different filters achieve essentially the same optimal statistical error!

Difference is in computations

Filter Time Space

Tikhonov n3 n2

GD n2λ−1∗ n2

Accelerated GD n2λ
−1/2
∗ n2

Truncated SVD n2λ−γ∗ n2
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Computational Regularization Arises

I Computational regularization: iterations control statistics and
time complexity

I Built-in regularization path

I Is there an advantage going for on-line learning? Not much, maybe
n2 log n? (Bach Dieluevet ’15 – R. Villa ’15)

I Computational regularization: principles to control statistics, time
and space complexity
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Subsampling

1. pick wi at random...

from training set
(Smola, Scholköpf ’00)

w̃1, . . . , w̃M ⊂ x1, . . . xn M � n

2. perform KRR on

HM = {f | f(x) =
M∑

i=1

ciq(x, w̃i), ci ∈ R,����wi ∈ Rd ,����M ∈ N}.

Linear System

by

c

=
bQM

Complexity

I Space ���O(n2) → O(nM)

I Time �
��O(n3) → O(nM2)

What about statistics? What’s the price for efficient computations?
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w̃1, . . . , w̃M ⊂ x1, . . . xn M � n

2. perform KRR on

HM = {f | f(x) =
M∑

i=1

ciq(x, w̃i), ci ∈ R,����wi ∈ Rd ,����M ∈ N}.

Linear System

by

c

=
bQM

Complexity

I Space ���O(n2) → O(nM)

I Time �
��O(n3) → O(nM2)

What about statistics? What’s the price for efficient computations?



Subsampling

1. pick wi at random... from training set
(Smola, Scholköpf ’00)
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Putting our Result in Context

I *Many* different subsampling schemes
(Smola, Scholkopf ’00; Williams, Seeger ’01; . . . 20+)

I Theoretical guarantees mainly on matrix approximation
(Mahoney and Drineas ’09; Cortes et al ’10, Kumar et al.’12 . . . 10+)

‖Q̂− Q̂M‖ .
1√
M

I Few prediction guarantees either suboptimal or in restricted
setting (Cortes et al. ’10; Jin et al. ’11, Bach ’13, Alaoui, Mahoney ’14)
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Main Result

(Rudi, Camoriano, Rosasco, ’15)

Theorem
If f∗ ∈ H, then

λ∗ =
1√
n

,M∗ =
1

λ∗
, E (f̂λ∗,M∗(x)− f∗(x))2 .

1√
n

Remarks

1. Subsampling achives optimal bound. . .

2. . . . with M∗ ∼
√
n !!

3. More generally,

λ∗ = n−
1

2s+1 , M∗ =
1

λ∗
, Ex (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

Note: An interesting insight is obtained rewriting the result. . .
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Computational Regularization by Subsampling

(Rudi, Camoriano, Rosasco, ’15)

A simple idea: “swap” the role of λ and M . . .

Theorem
If f∗ ∈ H, then

M∗ = n
1

2s+1 , λ∗ =
1

M∗
, Ex (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

I λ and M play the same role. . .
. . . new interpretation: subsampling regularizes!

I New natural incremental algorithm...

Algorithm

1. Pick a center + compute solution

2. Pick another center + rank one update

3. Pick another center . . .
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CoRe Illustrated

n, λ are fixed
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Computation controls stability!

Time/space requirement tailored to generalization



Experiments

comparable/better w.r.t. the state of the art

Dataset ntr d Incremental Standard Standard Random Fastfood
CoRe KRLS Nyström Features RF

Ins. Co. 5822 85 0.23180± 4× 10−5 0.231 0.232 0.266 0.264
CPU 6554 21 2.8466± 0.0497 7.271 6.758 7.103 7.366

CT slices 42800 384 7.1106± 0.0772 NA 60.683 49.491 43.858
Year Pred. 463715 90 0.10470± 5× 10−5 NA 0.113 0.123 0.115

Forest 522910 54 0.9638± 0.0186 NA 0.837 0.840 0.840

I Random Features (Rahimi, Recht ’07)

I Fastfood (Le et al. ’13)
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Few more questions:
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(Approximate) Leverage scores

Leverage scores
li(t) = (Q̂(Q̂+ tnI)−1)ii

ALS
With probability at least 1− δ,

1

T
li(t) ≤ l̃i(t) ≤ T li(t)

ALS subsampling
Pick w̃1, . . . , w̃M ⊂ x1, . . . xn with replacement, and probability

Pt(i) = l̃i(t)/
∑

j

l̃j(t).
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Learning with ALS Subsampling

(Rudi, Camoriano, Rosasco, ’15)

Theorem
If f∗ ∈ H and the integral operator associated to q has eigenvalue decay

i−
1
γ , γ ∈ (0, 1) then

λ∗ = n−
1

1+γ , M∗ =
1

λγ∗
, E (f̂λ∗,M∗(x)− f∗(x))2 . n−

1
1+γ

I Non uniform subsampling achieves optimal bound

I Most importantly: potentially much fewer samples needed

I Need efficient ALS computation (. . . )

I Extensions to more general sampling schemes are possible
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Outline

Learning with dictionaries and kernels

Data Dependent Subsampling

Data Independent Subsampling



Random Features

f̂(x) =
M∑

i=1

ci q(x,wi)

I q general non linear function

I pick w̃i at random according to a distribution µ

w̃1, . . . , w̃M ∼ µ

I perform KRR on

HM = {f | f(x) =
M∑

i=1

ciq(x, w̃i), ci ∈ R}.
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Random Fourier Features

(Rahimi, Recht ’07)

Consider

q(x,w) = eiw
T x,

w ∼ µ(w) = N (0, I)

Then
Ew [q(x,w)q(x′, w)] = e−‖x−x

′‖2γ = K(x, x′)

By sampling w̃1, . . . , w̃M we are considering the approximating kernel

1

M

M∑

i=1

[q(x, w̃i)q(x
′, w̃i)] = K̃(x, x′)
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More Random Features

I translation invariant kernels K(x, x′) = H(x− x′),

q(x,w) = eiw
T x, w ∼ µ = F(H)

I infinite neural nets kernels

q(x,w) = |wTx+ b|+, (w, b) ∼ µ = U [Sd]

I infinite dot product kernels

I homogeneous additive kernels

I group invariant kernels

I . . .

Note: Connections with hashing and sketching techniques.
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I Space: ���O(n2) O(nM)

Statistics
As before: do we pay a price for efficient computations?
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Previous works

I *Many* different random features for different kernels
(Rahimi, Recht ’07, Vedaldi, Zisserman, . . . 10+)

I Theoretical guarantees: mainly kernel approximation
(Rahimi, Recht ’07, . . . , Sriperumbudur and Szabo ’15)

|K(x, x′)− K̃(x, x′)| . 1√
M

I Statistical guarantees suboptimal or in restricted setting
(Rahimi, Recht ’09, Yang et al. ’13 . . . ,Bach ’15 )
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Main Result

Let

q(x,w) = eiw
T x,

w ∼ µ(w) = cd

(
1

1 + ‖w‖2

) d+1
2

Theorem
If f∗ ∈ Hs Sobolev space, then

λ∗ = n−
1

2s+1 , M∗ =
1

λ2s∗
, E (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

I Random feature achieves optimal bound!

I Efficient worst case subsampling M∗ ∼
√
n, but cannot exploit

smoothness.
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Remarks & Extensions

Nÿstrom vs Random features

I Both achieve optimal rates

I Nÿstrom seems to need fewer samples (random centers)

How tight are the results?
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Contributions

I Optimal bounds for data dependent/independent subsampling

I Subsampling: Nÿstrom vs Random features

I Beyond ridge regression: early stopping and multiple passes SGD
(coming up in AISTATS!)

Some questions:

I Quest for the best sampling

I Regularization by projection: inverse problems and preconditioning

I Beyond randomization: non convex optimization?

Some perspectives:

I Computational regularization: subsampling regularizes

I Algorithm design: Control stability with computations
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