
Less is More:
Computational Regularization by Subsampling

Lorenzo Rosasco
University of Genova - Istituto Italiano di Tecnologia

Massachusetts Institute of Technology
lcsl.mit.edu

joint work with Alessandro Rudi, Raffaello Camoriano

Jan 13th, 2016
UCL, London

A Starting Point

Classically:
Statistics and optimization distinct steps in algorithm design

Large Scale:
Consider interplay between statistics and optimization!
(Bottou, Bousquet ’08)

Computational Regularization:
Computation “tricks”=regularization

A Starting Point

Classically:
Statistics and optimization distinct steps in algorithm design

Large Scale:
Consider interplay between statistics and optimization!
(Bottou, Bousquet ’08)

Computational Regularization:
Computation “tricks”=regularization

A Starting Point

Classically:
Statistics and optimization distinct steps in algorithm design

Large Scale:
Consider interplay between statistics and optimization!
(Bottou, Bousquet ’08)

Computational Regularization:
Computation “tricks”=regularization

Supervised Learning

Problem: Estimate f∗

f⇤

The Setting
yi = f∗(xi) + εi i ∈ {1, . . . , n}

I εi ∈ R, xi ∈ Rd random (with unknown distribution)

I f∗ unknown

Supervised Learning

Problem: Estimate f∗ given Sn = {(x1, y1), . . . , (xn, yn)}

f⇤

(x2, y2)

(x3, y3)

(x4, y4)
(x5, y5)(x1, y1)

The Setting
yi = f∗(xi) + εi i ∈ {1, . . . , n}

I εi ∈ R, xi ∈ Rd random (with unknown distribution)

I f∗ unknown

Supervised Learning

Problem: Estimate f∗ given Sn = {(x1, y1), . . . , (xn, yn)}

f⇤

(x2, y2)

(x3, y3)

(x4, y4)
(x5, y5)(x1, y1)

The Setting
yi = f∗(xi) + εi i ∈ {1, . . . , n}

I εi ∈ R, xi ∈ Rd random (with unknown distribution)

I f∗ unknown

Outline

Learning with dictionaries and kernels

Data Dependent Subsampling

Data Independent Subsampling

Non-linear/non-parametric learning

f̂(x) =

M∑

i=1

ci q(x,wi)

I q non linear function

I wi ∈ Rd centers

I ci ∈ R coefficients

I M =Mn could/should grow with n

Question: How to choose wi, ci and M given Sn ?

Non-linear/non-parametric learning

f̂(x) =

M∑

i=1

ci q(x,wi)

I q non linear function

I wi ∈ Rd centers

I ci ∈ R coefficients

I M =Mn could/should grow with n

Question: How to choose wi, ci and M given Sn ?

Non-linear/non-parametric learning

f̂(x) =

M∑

i=1

ci q(x,wi)

I q non linear function

I wi ∈ Rd centers

I ci ∈ R coefficients

I M =Mn could/should grow with n

Question: How to choose wi, ci and M given Sn ?

Non-linear/non-parametric learning

f̂(x) =

M∑

i=1

ci q(x,wi)

I q non linear function

I wi ∈ Rd centers

I ci ∈ R coefficients

I M =Mn could/should grow with n

Question: How to choose wi, ci and M given Sn ?

Non-linear/non-parametric learning

f̂(x) =

M∑

i=1

ci q(x,wi)

I q non linear function

I wi ∈ Rd centers

I ci ∈ R coefficients

I M =Mn could/should grow with n

Question: How to choose wi, ci and M given Sn ?

Non-linear/non-parametric learning

f̂(x) =

M∑

i=1

ci q(x,wi)

I q non linear function

I wi ∈ Rd centers

I ci ∈ R coefficients

I M =Mn could/should grow with n

Question: How to choose wi, ci and M given Sn ?

Learning with Positive Definite Kernels

There is an elegant answer if:

I q is symmetric

I all the matrices Q̂ij = q(xi, xj) are positive semi-definite1

Representer Theorem (Kimeldorf, Wahba ’70; Schölkopf et al. ’01)

I M = n,

I wi = xi,

I ci by convex optimization!

1They have non-negative eigenvalues

Learning with Positive Definite Kernels

There is an elegant answer if:

I q is symmetric

I all the matrices Q̂ij = q(xi, xj) are positive semi-definite1

Representer Theorem (Kimeldorf, Wahba ’70; Schölkopf et al. ’01)

I M = n,

I wi = xi,

I ci by convex optimization!

1They have non-negative eigenvalues

Kernel Ridge Regression (KRR)

a.k.a. Penalized Least Squares

f̂λ = argmin
f∈H

1

n

n∑

i=1

(yi − f(xi))2 + λ‖f‖2

where

H = {f | f(x) =
M∑

i=1

ciq(x,wi), ci ∈ R, wi ∈ Rd︸ ︷︷ ︸
any center!

, M ∈ N︸ ︷︷ ︸
any length!

}

Solution

f̂λ =
n∑

i=1

ci q(x, xi) with c = (Q̂+ λnI)−1ŷ

Kernel Ridge Regression (KRR)

a.k.a. Penalized Least Squares

f̂λ = argmin
f∈H

1

n

n∑

i=1

(yi − f(xi))2 + λ‖f‖2

where

H = {f | f(x) =
M∑

i=1

ciq(x,wi), ci ∈ R, wi ∈ Rd︸ ︷︷ ︸
any center!

, M ∈ N︸ ︷︷ ︸
any length!

}

Solution

f̂λ =
n∑

i=1

ci q(x, xi) with c = (Q̂+ λnI)−1ŷ

Kernel Ridge Regression (KRR)

a.k.a. Penalized Least Squares

f̂λ = argmin
f∈H

1

n

n∑

i=1

(yi − f(xi))2 + λ‖f‖2

where

H = {f | f(x) =
M∑

i=1

ciq(x,wi), ci ∈ R, wi ∈ Rd︸ ︷︷ ︸
any center!

, M ∈ N︸ ︷︷ ︸
any length!

}

Solution

f̂λ =

n∑

i=1

ci q(x, xi) with c = (Q̂+ λnI)−1ŷ

KRR: Statistics

Well understood statistical properties:

Classical Theorem
If f∗ ∈ H, then

λ∗ =
1√
n

E (f̂λ∗(x)− f∗(x))2 .
1√
n

Remarks

1. Optimal nonparametric bound

2. Results for general kernels (e.g. splines/Sobolev etc.)

λ∗ = n− 1
2s+1 , E (f̂λ∗(x)− f∗(x))2 . n− 2s

2s+1

3. Adaptive tuning via cross validation

4. Proofs: analysis/linear algebra+ random matrices
(Smale and Zhou + Caponnetto, De Vito, R.+ Steinwart)

KRR: Statistics

Well understood statistical properties:

Classical Theorem
If f∗ ∈ H, then

λ∗ =
1√
n

E (f̂λ∗(x)− f∗(x))2 .
1√
n

Remarks

1. Optimal nonparametric bound

2. Results for general kernels (e.g. splines/Sobolev etc.)

λ∗ = n− 1
2s+1 , E (f̂λ∗(x)− f∗(x))2 . n− 2s

2s+1

3. Adaptive tuning via cross validation

4. Proofs: analysis/linear algebra+ random matrices
(Smale and Zhou + Caponnetto, De Vito, R.+ Steinwart)

KRR: Statistics

Well understood statistical properties:

Classical Theorem
If f∗ ∈ H, then

λ∗ =
1√
n

E (f̂λ∗(x)− f∗(x))2 .
1√
n

Remarks

1. Optimal nonparametric bound

2. Results for general kernels (e.g. splines/Sobolev etc.)

λ∗ = n− 1
2s+1 , E (f̂λ∗(x)− f∗(x))2 . n− 2s

2s+1

3. Adaptive tuning via cross validation

4. Proofs: analysis/linear algebra+ random matrices
(Smale and Zhou + Caponnetto, De Vito, R.+ Steinwart)

KRR: Statistics

Well understood statistical properties:

Classical Theorem
If f∗ ∈ H, then

λ∗ =
1√
n

E (f̂λ∗(x)− f∗(x))2 .
1√
n

Remarks

1. Optimal nonparametric bound

2. Results for general kernels (e.g. splines/Sobolev etc.)

λ∗ = n− 1
2s+1 , E (f̂λ∗(x)− f∗(x))2 . n− 2s

2s+1

3. Adaptive tuning via cross validation

4. Proofs: analysis/linear algebra+ random matrices
(Smale and Zhou + Caponnetto, De Vito, R.+ Steinwart)

KRR: Statistics

Well understood statistical properties:

Classical Theorem
If f∗ ∈ H, then

λ∗ =
1√
n

E (f̂λ∗(x)− f∗(x))2 .
1√
n

Remarks

1. Optimal nonparametric bound

2. Results for general kernels (e.g. splines/Sobolev etc.)

λ∗ = n− 1
2s+1 , E (f̂λ∗(x)− f∗(x))2 . n− 2s

2s+1

3. Adaptive tuning via cross validation

4. Proofs: analysis/linear algebra+ random matrices
(Smale and Zhou + Caponnetto, De Vito, R.+ Steinwart)

KRR: Statistics

Well understood statistical properties:

Classical Theorem
If f∗ ∈ H, then

λ∗ =
1√
n

E (f̂λ∗(x)− f∗(x))2 .
1√
n

Remarks

1. Optimal nonparametric bound

2. Results for general kernels (e.g. splines/Sobolev etc.)

λ∗ = n− 1
2s+1 , E (f̂λ∗(x)− f∗(x))2 . n− 2s

2s+1

3. Adaptive tuning via cross validation

4. Proofs: analysis/linear algebra+ random matrices
(Smale and Zhou + Caponnetto, De Vito, R.+ Steinwart)

KRR: Optimization

f̂λ =

n∑

i=1

ci q(x, xi) with c = (Q̂+ λnI)−1ŷ

Linear System

bQ byc =

Complexity

I Space O(n2)

I Time O(n3)

BIG DATA?
Running out of time and space ...

Can this be fixed?

KRR: Optimization

f̂λ =

n∑

i=1

ci q(x, xi) with c = (Q̂+ λnI)−1ŷ

Linear System

bQ byc =

Complexity

I Space O(n2)

I Time O(n3)

BIG DATA?
Running out of time and space ...

Can this be fixed?

Beyond Tikhonov: Spectral Filtering

(Q̂+ λI)−1 approximation of Q̂† controlled by λ

Can we approximate Q̂† by saving computations?

Yes!

Spectral filtering (Engl ’96- inverse problems, Rosasco et al. 05- ML)

gλ(Q̂) ∼ Q̂†

The filter function gλ defines the form of the approximation

Beyond Tikhonov: Spectral Filtering

(Q̂+ λI)−1 approximation of Q̂† controlled by λ

Can we approximate Q̂† by saving computations?

Yes!

Spectral filtering (Engl ’96- inverse problems, Rosasco et al. 05- ML)

gλ(Q̂) ∼ Q̂†

The filter function gλ defines the form of the approximation

Beyond Tikhonov: Spectral Filtering

(Q̂+ λI)−1 approximation of Q̂† controlled by λ

Can we approximate Q̂† by saving computations?

Yes!

Spectral filtering (Engl ’96- inverse problems, Rosasco et al. 05- ML)

gλ(Q̂) ∼ Q̂†

The filter function gλ defines the form of the approximation

Beyond Tikhonov: Spectral Filtering

(Q̂+ λI)−1 approximation of Q̂† controlled by λ

Can we approximate Q̂† by saving computations?

Yes!

Spectral filtering (Engl ’96- inverse problems, Rosasco et al. 05- ML)

gλ(Q̂) ∼ Q̂†

The filter function gλ defines the form of the approximation

Spectral filtering

Examples

I Tikhonov- ridge regression

I Truncated SVD– principal component regression

I Landweber iteration– GD/ L2-boosting

I nu-method– accelerated GD/Chebyshev method

I . . .

Landweber iteration (truncated power series). . .

ct = gt(Q̂) = γ

t−1∑

r=0

(I − γQ̂)rŷ

. . . it’s GD for ERM!!

r = 1 . . . t cr = cr−1 − γ(Q̂cr−1 − ŷ), c0 = 0

Spectral filtering

Examples

I Tikhonov- ridge regression

I Truncated SVD– principal component regression

I Landweber iteration– GD/ L2-boosting

I nu-method– accelerated GD/Chebyshev method

I . . .

Landweber iteration (truncated power series). . .

ct = gt(Q̂) = γ

t−1∑

r=0

(I − γQ̂)rŷ

. . . it’s GD for ERM!!

r = 1 . . . t cr = cr−1 − γ(Q̂cr−1 − ŷ), c0 = 0

Spectral filtering

Examples

I Tikhonov- ridge regression

I Truncated SVD– principal component regression

I Landweber iteration– GD/ L2-boosting

I nu-method– accelerated GD/Chebyshev method

I . . .

Landweber iteration (truncated power series). . .

ct = gt(Q̂) = γ

t−1∑

r=0

(I − γQ̂)rŷ

. . . it’s GD for ERM!!

r = 1 . . . t cr = cr−1 − γ(Q̂cr−1 − ŷ), c0 = 0

Semiconvergence

Iteration
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Er
ro

r

0.12

0.14

0.16

0.18

0.2

0.22

0.24
Empirical Error
Expected Error

Early Stopping at Work

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Fitting on the training set
Iteration #1

Early Stopping at Work

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Fitting on the training set
Iteration #2

Early Stopping at Work

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Fitting on the training set
Iteration #7

Early Stopping at Work

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Fitting on the training set
Iteration #5000

Statistics and computations with spectral filtering

The different filters achieve essentially the same optimal statistical error!

Difference is in computations

Filter Time Space

Tikhonov n3 n2

GD n2λ−1∗ n2

Accelerated GD n2λ
−1/2
∗ n2

Truncated SVD n2λ−γ∗ n2

Statistics and computations with spectral filtering

The different filters achieve essentially the same optimal statistical error!

Difference is in computations

Filter Time Space

Tikhonov n3 n2

GD n2λ−1∗ n2

Accelerated GD n2λ
−1/2
∗ n2

Truncated SVD n2λ−γ∗ n2

Computational Regularization Arises

I Computational regularization: iterations control statistics and
time complexity

I Built-in regularization path

I Is there an advantage going for on-line learning? Not much, maybe
n2 log n? (Bach Dieluevet ’15 – R. Villa ’15)

I Computational regularization: principles to control statistics, time
and space complexity

Computational Regularization Arises

I Computational regularization: iterations control statistics and
time complexity

I Built-in regularization path

I Is there an advantage going for on-line learning? Not much, maybe
n2 log n? (Bach Dieluevet ’15 – R. Villa ’15)

I Computational regularization: principles to control statistics, time
and space complexity

Computational Regularization Arises

I Computational regularization: iterations control statistics and
time complexity

I Built-in regularization path

I Is there an advantage going for on-line learning?

Not much, maybe
n2 log n? (Bach Dieluevet ’15 – R. Villa ’15)

I Computational regularization: principles to control statistics, time
and space complexity

Computational Regularization Arises

I Computational regularization: iterations control statistics and
time complexity

I Built-in regularization path

I Is there an advantage going for on-line learning? Not much, maybe
n2 log n? (Bach Dieluevet ’15 – R. Villa ’15)

I Computational regularization: principles to control statistics, time
and space complexity

Computational Regularization Arises

I Computational regularization: iterations control statistics and
time complexity

I Built-in regularization path

I Is there an advantage going for on-line learning? Not much, maybe
n2 log n? (Bach Dieluevet ’15 – R. Villa ’15)

I Computational regularization: principles to control statistics, time
and space complexity

Outline

Learning with dictionaries and kernels

Data Dependent Subsampling

Data Independent Subsampling

Subsampling

1. pick wi at random...

from training set
(Smola, Scholköpf ’00)

w̃1, . . . , w̃M ⊂ x1, . . . xn M � n

2. perform KRR on

HM = {f | f(x) =
M∑

i=1

ciq(x, w̃i), ci ∈ R,����wi ∈ Rd ,����M ∈ N}.

Linear System

by

c

=
bQM

Complexity

I Space ���O(n2) → O(nM)

I Time �
��O(n3) → O(nM2)

What about statistics? What’s the price for efficient computations?

Subsampling

1. pick wi at random... from training set
(Smola, Scholköpf ’00)

w̃1, . . . , w̃M ⊂ x1, . . . xn M � n

2. perform KRR on

HM = {f | f(x) =
M∑

i=1

ciq(x, w̃i), ci ∈ R,����wi ∈ Rd ,����M ∈ N}.

Linear System

by

c

=
bQM

Complexity

I Space ���O(n2) → O(nM)

I Time �
��O(n3) → O(nM2)

What about statistics? What’s the price for efficient computations?

Subsampling

1. pick wi at random... from training set
(Smola, Scholköpf ’00)

w̃1, . . . , w̃M ⊂ x1, . . . xn M � n

2. perform KRR on

HM = {f | f(x) =
M∑

i=1

ciq(x, w̃i), ci ∈ R,����wi ∈ Rd ,����M ∈ N}.

Linear System

by

c

=
bQM

Complexity

I Space ���O(n2) → O(nM)

I Time �
��O(n3) → O(nM2)

What about statistics? What’s the price for efficient computations?

Subsampling

1. pick wi at random... from training set
(Smola, Scholköpf ’00)

w̃1, . . . , w̃M ⊂ x1, . . . xn M � n

2. perform KRR on

HM = {f | f(x) =
M∑

i=1

ciq(x, w̃i), ci ∈ R,����wi ∈ Rd ,����M ∈ N}.

Linear System

by

c

=
bQM

Complexity

I Space ���O(n2) → O(nM)

I Time �
��O(n3) → O(nM2)

What about statistics? What’s the price for efficient computations?

Subsampling

1. pick wi at random... from training set
(Smola, Scholköpf ’00)

w̃1, . . . , w̃M ⊂ x1, . . . xn M � n

2. perform KRR on

HM = {f | f(x) =
M∑

i=1

ciq(x, w̃i), ci ∈ R,����wi ∈ Rd ,����M ∈ N}.

Linear System

by

c

=
bQM

Complexity

I Space ���O(n2) → O(nM)

I Time �
��O(n3) → O(nM2)

What about statistics? What’s the price for efficient computations?

Putting our Result in Context

I *Many* different subsampling schemes
(Smola, Scholkopf ’00; Williams, Seeger ’01; . . . 20+)

I Theoretical guarantees mainly on matrix approximation
(Mahoney and Drineas ’09; Cortes et al ’10, Kumar et al.’12 . . . 10+)

‖Q̂− Q̂M‖ .
1√
M

I Few prediction guarantees either suboptimal or in restricted
setting (Cortes et al. ’10; Jin et al. ’11, Bach ’13, Alaoui, Mahoney ’14)

Putting our Result in Context

I *Many* different subsampling schemes
(Smola, Scholkopf ’00; Williams, Seeger ’01; . . . 20+)

I Theoretical guarantees mainly on matrix approximation
(Mahoney and Drineas ’09; Cortes et al ’10, Kumar et al.’12 . . . 10+)

‖Q̂− Q̂M‖ .
1√
M

I Few prediction guarantees either suboptimal or in restricted
setting (Cortes et al. ’10; Jin et al. ’11, Bach ’13, Alaoui, Mahoney ’14)

Putting our Result in Context

I *Many* different subsampling schemes
(Smola, Scholkopf ’00; Williams, Seeger ’01; . . . 20+)

I Theoretical guarantees mainly on matrix approximation
(Mahoney and Drineas ’09; Cortes et al ’10, Kumar et al.’12 . . . 10+)

‖Q̂− Q̂M‖ .
1√
M

I Few prediction guarantees either suboptimal or in restricted
setting (Cortes et al. ’10; Jin et al. ’11, Bach ’13, Alaoui, Mahoney ’14)

Main Result

(Rudi, Camoriano, Rosasco, ’15)

Theorem
If f∗ ∈ H, then

λ∗ =
1√
n

,M∗ =
1

λ∗
, E (f̂λ∗,M∗(x)− f∗(x))2 .

1√
n

Remarks

1. Subsampling achives optimal bound. . .

2. . . . with M∗ ∼
√
n !!

3. More generally,

λ∗ = n−
1

2s+1 , M∗ =
1

λ∗
, Ex (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

Note: An interesting insight is obtained rewriting the result. . .

Main Result

(Rudi, Camoriano, Rosasco, ’15)

Theorem
If f∗ ∈ H, then

λ∗ =
1√
n

,M∗ =
1

λ∗
, E (f̂λ∗,M∗(x)− f∗(x))2 .

1√
n

Remarks

1. Subsampling achives optimal bound. . .

2. . . . with M∗ ∼
√
n !!

3. More generally,

λ∗ = n−
1

2s+1 , M∗ =
1

λ∗
, Ex (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

Note: An interesting insight is obtained rewriting the result. . .

Main Result

(Rudi, Camoriano, Rosasco, ’15)

Theorem
If f∗ ∈ H, then

λ∗ =
1√
n

,M∗ =
1

λ∗
, E (f̂λ∗,M∗(x)− f∗(x))2 .

1√
n

Remarks

1. Subsampling achives optimal bound. . .

2. . . . with M∗ ∼
√
n !!

3. More generally,

λ∗ = n−
1

2s+1 , M∗ =
1

λ∗
, Ex (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

Note: An interesting insight is obtained rewriting the result. . .

Main Result

(Rudi, Camoriano, Rosasco, ’15)

Theorem
If f∗ ∈ H, then

λ∗ =
1√
n

,M∗ =
1

λ∗
, E (f̂λ∗,M∗(x)− f∗(x))2 .

1√
n

Remarks

1. Subsampling achives optimal bound. . .

2. . . . with M∗ ∼
√
n !!

3. More generally,

λ∗ = n−
1

2s+1 , M∗ =
1

λ∗
, Ex (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

Note: An interesting insight is obtained rewriting the result. . .

Main Result

(Rudi, Camoriano, Rosasco, ’15)

Theorem
If f∗ ∈ H, then

λ∗ =
1√
n

,M∗ =
1

λ∗
, E (f̂λ∗,M∗(x)− f∗(x))2 .

1√
n

Remarks

1. Subsampling achives optimal bound. . .

2. . . . with M∗ ∼
√
n !!

3. More generally,

λ∗ = n−
1

2s+1 , M∗ =
1

λ∗
, Ex (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

Note: An interesting insight is obtained rewriting the result. . .

Main Result

(Rudi, Camoriano, Rosasco, ’15)

Theorem
If f∗ ∈ H, then

λ∗ =
1√
n

,M∗ =
1

λ∗
, E (f̂λ∗,M∗(x)− f∗(x))2 .

1√
n

Remarks

1. Subsampling achives optimal bound. . .

2. . . . with M∗ ∼
√
n !!

3. More generally,

λ∗ = n−
1

2s+1 , M∗ =
1

λ∗
, Ex (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

Note: An interesting insight is obtained rewriting the result. . .

Computational Regularization by Subsampling

(Rudi, Camoriano, Rosasco, ’15)

A simple idea: “swap” the role of λ and M . . .

Theorem
If f∗ ∈ H, then

M∗ = n
1

2s+1 , λ∗ =
1

M∗
, Ex (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

I λ and M play the same role. . .
. . . new interpretation: subsampling regularizes!

I New natural incremental algorithm...

Algorithm

1. Pick a center + compute solution

2. Pick another center + rank one update

3. Pick another center . . .

Computational Regularization by Subsampling

(Rudi, Camoriano, Rosasco, ’15)

A simple idea: “swap” the role of λ and M . . .

Theorem
If f∗ ∈ H, then

M∗ = n
1

2s+1 , λ∗ =
1

M∗
, Ex (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

I λ and M play the same role. . .
. . . new interpretation: subsampling regularizes!

I New natural incremental algorithm...

Algorithm

1. Pick a center + compute solution

2. Pick another center + rank one update

3. Pick another center . . .

Computational Regularization by Subsampling

(Rudi, Camoriano, Rosasco, ’15)

A simple idea: “swap” the role of λ and M . . .

Theorem
If f∗ ∈ H, then

M∗ = n
1

2s+1 , λ∗ =
1

M∗
, Ex (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

I λ and M play the same role. . .
. . . new interpretation: subsampling regularizes!

I New natural incremental algorithm...

Algorithm

1. Pick a center + compute solution

2. Pick another center + rank one update

3. Pick another center . . .

Computational Regularization by Subsampling

(Rudi, Camoriano, Rosasco, ’15)

A simple idea: “swap” the role of λ and M . . .

Theorem
If f∗ ∈ H, then

M∗ = n
1

2s+1 , λ∗ =
1

M∗
, Ex (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

I λ and M play the same role. . .
. . . new interpretation: subsampling regularizes!

I New natural incremental algorithm...

Algorithm

1. Pick a center + compute solution

2. Pick another center + rank one update

3. Pick another center . . .

Computational Regularization by Subsampling

(Rudi, Camoriano, Rosasco, ’15)

A simple idea: “swap” the role of λ and M . . .

Theorem
If f∗ ∈ H, then

M∗ = n
1

2s+1 , λ∗ =
1

M∗
, Ex (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

I λ and M play the same role. . .
. . . new interpretation: subsampling regularizes!

I New natural incremental algorithm...

Algorithm

1. Pick a center + compute solution

2. Pick another center + rank one update

3. Pick another center . . .

Computational Regularization by Subsampling

(Rudi, Camoriano, Rosasco, ’15)

A simple idea: “swap” the role of λ and M . . .

Theorem
If f∗ ∈ H, then

M∗ = n
1

2s+1 , λ∗ =
1

M∗
, Ex (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

I λ and M play the same role. . .
. . . new interpretation: subsampling regularizes!

I New natural incremental algorithm...

Algorithm

1. Pick a center + compute solution

2. Pick another center + rank one update

3. Pick another center . . .

Computational Regularization by Subsampling

(Rudi, Camoriano, Rosasco, ’15)

A simple idea: “swap” the role of λ and M . . .

Theorem
If f∗ ∈ H, then

M∗ = n
1

2s+1 , λ∗ =
1

M∗
, Ex (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

I λ and M play the same role. . .
. . . new interpretation: subsampling regularizes!

I New natural incremental algorithm...

Algorithm

1. Pick a center + compute solution

2. Pick another center + rank one update

3. Pick another center . . .

CoRe Illustrated

n, λ are fixed

0 50 100 150 200 250 300

V
a

li
d

a
ti
o

n
 E

rr
o

r

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Computation controls stability!

Time/space requirement tailored to generalization

Experiments

comparable/better w.r.t. the state of the art

Dataset ntr d Incremental Standard Standard Random Fastfood
CoRe KRLS Nyström Features RF

Ins. Co. 5822 85 0.23180± 4× 10−5 0.231 0.232 0.266 0.264
CPU 6554 21 2.8466± 0.0497 7.271 6.758 7.103 7.366

CT slices 42800 384 7.1106± 0.0772 NA 60.683 49.491 43.858
Year Pred. 463715 90 0.10470± 5× 10−5 NA 0.113 0.123 0.115

Forest 522910 54 0.9638± 0.0186 NA 0.837 0.840 0.840

I Random Features (Rahimi, Recht ’07)

I Fastfood (Le et al. ’13)

Summary so far

I Optimal learning with data dependent subsampling

I Computational regularization: subsampling regularizes!

Few more questions:

I Can one do better than uniform sampling?

I What about data independent sampling?

Summary so far

I Optimal learning with data dependent subsampling

I Computational regularization: subsampling regularizes!

Few more questions:

I Can one do better than uniform sampling?

I What about data independent sampling?

(Approximate) Leverage scores

Leverage scores
li(t) = (Q̂(Q̂+ tnI)−1)ii

ALS
With probability at least 1− δ,

1

T
li(t) ≤ l̃i(t) ≤ T li(t)

ALS subsampling
Pick w̃1, . . . , w̃M ⊂ x1, . . . xn with replacement, and probability

Pt(i) = l̃i(t)/
∑

j

l̃j(t).

(Approximate) Leverage scores

Leverage scores
li(t) = (Q̂(Q̂+ tnI)−1)ii

ALS
With probability at least 1− δ,

1

T
li(t) ≤ l̃i(t) ≤ T li(t)

ALS subsampling
Pick w̃1, . . . , w̃M ⊂ x1, . . . xn with replacement, and probability

Pt(i) = l̃i(t)/
∑

j

l̃j(t).

(Approximate) Leverage scores

Leverage scores
li(t) = (Q̂(Q̂+ tnI)−1)ii

ALS
With probability at least 1− δ,

1

T
li(t) ≤ l̃i(t) ≤ T li(t)

ALS subsampling
Pick w̃1, . . . , w̃M ⊂ x1, . . . xn with replacement, and probability

Pt(i) = l̃i(t)/
∑

j

l̃j(t).

Learning with ALS Subsampling

(Rudi, Camoriano, Rosasco, ’15)

Theorem
If f∗ ∈ H and the integral operator associated to q has eigenvalue decay

i−
1
γ , γ ∈ (0, 1) then

λ∗ = n−
1

1+γ , M∗ =
1

λγ∗
, E (f̂λ∗,M∗(x)− f∗(x))2 . n−

1
1+γ

I Non uniform subsampling achieves optimal bound

I Most importantly: potentially much fewer samples needed

I Need efficient ALS computation (. . .)

I Extensions to more general sampling schemes are possible

Learning with ALS Subsampling

(Rudi, Camoriano, Rosasco, ’15)

Theorem
If f∗ ∈ H and the integral operator associated to q has eigenvalue decay

i−
1
γ , γ ∈ (0, 1) then

λ∗ = n−
1

1+γ , M∗ =
1

λγ∗
, E (f̂λ∗,M∗(x)− f∗(x))2 . n−

1
1+γ

I Non uniform subsampling achieves optimal bound

I Most importantly: potentially much fewer samples needed

I Need efficient ALS computation (. . .)

I Extensions to more general sampling schemes are possible

Learning with ALS Subsampling

(Rudi, Camoriano, Rosasco, ’15)

Theorem
If f∗ ∈ H and the integral operator associated to q has eigenvalue decay

i−
1
γ , γ ∈ (0, 1) then

λ∗ = n−
1

1+γ , M∗ =
1

λγ∗
, E (f̂λ∗,M∗(x)− f∗(x))2 . n−

1
1+γ

I Non uniform subsampling achieves optimal bound

I Most importantly: potentially much fewer samples needed

I Need efficient ALS computation (. . .)

I Extensions to more general sampling schemes are possible

Learning with ALS Subsampling

(Rudi, Camoriano, Rosasco, ’15)

Theorem
If f∗ ∈ H and the integral operator associated to q has eigenvalue decay

i−
1
γ , γ ∈ (0, 1) then

λ∗ = n−
1

1+γ , M∗ =
1

λγ∗
, E (f̂λ∗,M∗(x)− f∗(x))2 . n−

1
1+γ

I Non uniform subsampling achieves optimal bound

I Most importantly: potentially much fewer samples needed

I Need efficient ALS computation (. . .)

I Extensions to more general sampling schemes are possible

Learning with ALS Subsampling

(Rudi, Camoriano, Rosasco, ’15)

Theorem
If f∗ ∈ H and the integral operator associated to q has eigenvalue decay

i−
1
γ , γ ∈ (0, 1) then

λ∗ = n−
1

1+γ , M∗ =
1

λγ∗
, E (f̂λ∗,M∗(x)− f∗(x))2 . n−

1
1+γ

I Non uniform subsampling achieves optimal bound

I Most importantly: potentially much fewer samples needed

I Need efficient ALS computation (. . .)

I Extensions to more general sampling schemes are possible

Outline

Learning with dictionaries and kernels

Data Dependent Subsampling

Data Independent Subsampling

Random Features

f̂(x) =
M∑

i=1

ci q(x,wi)

I q general non linear function

I pick w̃i at random according to a distribution µ

w̃1, . . . , w̃M ∼ µ

I perform KRR on

HM = {f | f(x) =
M∑

i=1

ciq(x, w̃i), ci ∈ R}.

Random Features

f̂(x) =

M∑

i=1

ci q(x,wi)

I q general non linear function

I pick w̃i at random according to a distribution µ

w̃1, . . . , w̃M ∼ µ

I perform KRR on

HM = {f | f(x) =
M∑

i=1

ciq(x, w̃i), ci ∈ R}.

Random Features

f̂(x) =

M∑

i=1

ci q(x,wi)

I q general non linear function

I pick w̃i at random according to a distribution µ

w̃1, . . . , w̃M ∼ µ

I perform KRR on

HM = {f | f(x) =
M∑

i=1

ciq(x, w̃i), ci ∈ R}.

Random Features

f̂(x) =

M∑

i=1

ci q(x,wi)

I q general non linear function

I pick w̃i at random according to a distribution µ

w̃1, . . . , w̃M ∼ µ

I perform KRR on

HM = {f | f(x) =
M∑

i=1

ciq(x, w̃i), ci ∈ R}.

Random Fourier Features

(Rahimi, Recht ’07)

Consider

q(x,w) = eiw
T x,

w ∼ µ(w) = N (0, I)

Then
Ew [q(x,w)q(x′, w)] = e−‖x−x

′‖2γ = K(x, x′)

By sampling w̃1, . . . , w̃M we are considering the approximating kernel

1

M

M∑

i=1

[q(x, w̃i)q(x
′, w̃i)] = K̃(x, x′)

Random Fourier Features

(Rahimi, Recht ’07)

Consider

q(x,w) = eiw
T x, w ∼ µ(w) = N (0, I)

Then
Ew [q(x,w)q(x′, w)] = e−‖x−x

′‖2γ = K(x, x′)

By sampling w̃1, . . . , w̃M we are considering the approximating kernel

1

M

M∑

i=1

[q(x, w̃i)q(x
′, w̃i)] = K̃(x, x′)

Random Fourier Features

(Rahimi, Recht ’07)

Consider

q(x,w) = eiw
T x, w ∼ µ(w) = N (0, I)

Then
Ew [q(x,w)q(x′, w)] = e−‖x−x

′‖2γ = K(x, x′)

By sampling w̃1, . . . , w̃M we are considering the approximating kernel

1

M

M∑

i=1

[q(x, w̃i)q(x
′, w̃i)] = K̃(x, x′)

Random Fourier Features

(Rahimi, Recht ’07)

Consider

q(x,w) = eiw
T x, w ∼ µ(w) = N (0, I)

Then
Ew [q(x,w)q(x′, w)] = e−‖x−x

′‖2γ = K(x, x′)

By sampling w̃1, . . . , w̃M we are considering the approximating kernel

1

M

M∑

i=1

[q(x, w̃i)q(x
′, w̃i)] = K̃(x, x′)

More Random Features

I translation invariant kernels K(x, x′) = H(x− x′),

q(x,w) = eiw
T x, w ∼ µ = F(H)

I infinite neural nets kernels

q(x,w) = |wTx+ b|+, (w, b) ∼ µ = U [Sd]

I infinite dot product kernels

I homogeneous additive kernels

I group invariant kernels

I . . .

Note: Connections with hashing and sketching techniques.

More Random Features

I translation invariant kernels K(x, x′) = H(x− x′),

q(x,w) = eiw
T x,

w ∼ µ = F(H)

I infinite neural nets kernels

q(x,w) = |wTx+ b|+, (w, b) ∼ µ = U [Sd]

I infinite dot product kernels

I homogeneous additive kernels

I group invariant kernels

I . . .

Note: Connections with hashing and sketching techniques.

More Random Features

I translation invariant kernels K(x, x′) = H(x− x′),

q(x,w) = eiw
T x, w ∼ µ = F(H)

I infinite neural nets kernels

q(x,w) = |wTx+ b|+, (w, b) ∼ µ = U [Sd]

I infinite dot product kernels

I homogeneous additive kernels

I group invariant kernels

I . . .

Note: Connections with hashing and sketching techniques.

More Random Features

I translation invariant kernels K(x, x′) = H(x− x′),

q(x,w) = eiw
T x, w ∼ µ = F(H)

I infinite neural nets kernels

q(x,w) = |wTx+ b|+, (w, b) ∼ µ = U [Sd]

I infinite dot product kernels

I homogeneous additive kernels

I group invariant kernels

I . . .

Note: Connections with hashing and sketching techniques.

More Random Features

I translation invariant kernels K(x, x′) = H(x− x′),

q(x,w) = eiw
T x, w ∼ µ = F(H)

I infinite neural nets kernels

q(x,w) = |wTx+ b|+,

(w, b) ∼ µ = U [Sd]

I infinite dot product kernels

I homogeneous additive kernels

I group invariant kernels

I . . .

Note: Connections with hashing and sketching techniques.

More Random Features

I translation invariant kernels K(x, x′) = H(x− x′),

q(x,w) = eiw
T x, w ∼ µ = F(H)

I infinite neural nets kernels

q(x,w) = |wTx+ b|+, (w, b) ∼ µ = U [Sd]

I infinite dot product kernels

I homogeneous additive kernels

I group invariant kernels

I . . .

Note: Connections with hashing and sketching techniques.

More Random Features

I translation invariant kernels K(x, x′) = H(x− x′),

q(x,w) = eiw
T x, w ∼ µ = F(H)

I infinite neural nets kernels

q(x,w) = |wTx+ b|+, (w, b) ∼ µ = U [Sd]

I infinite dot product kernels

I homogeneous additive kernels

I group invariant kernels

I . . .

Note: Connections with hashing and sketching techniques.

Properties of Random Features

Optimization

I Time: �
��O(n3) O(nM2)

I Space: ���O(n2) O(nM)

Statistics
As before: do we pay a price for efficient computations?

Properties of Random Features

Optimization

I Time: �
��O(n3) O(nM2)

I Space: ���O(n2) O(nM)

Statistics
As before: do we pay a price for efficient computations?

Properties of Random Features

Optimization

I Time: �
��O(n3) O(nM2)

I Space: ���O(n2) O(nM)

Statistics
As before: do we pay a price for efficient computations?

Previous works

I *Many* different random features for different kernels
(Rahimi, Recht ’07, Vedaldi, Zisserman, . . . 10+)

I Theoretical guarantees: mainly kernel approximation
(Rahimi, Recht ’07, . . . , Sriperumbudur and Szabo ’15)

|K(x, x′)− K̃(x, x′)| . 1√
M

I Statistical guarantees suboptimal or in restricted setting
(Rahimi, Recht ’09, Yang et al. ’13 . . . ,Bach ’15)

Previous works

I *Many* different random features for different kernels
(Rahimi, Recht ’07, Vedaldi, Zisserman, . . . 10+)

I Theoretical guarantees: mainly kernel approximation
(Rahimi, Recht ’07, . . . , Sriperumbudur and Szabo ’15)

|K(x, x′)− K̃(x, x′)| . 1√
M

I Statistical guarantees suboptimal or in restricted setting
(Rahimi, Recht ’09, Yang et al. ’13 . . . ,Bach ’15)

Previous works

I *Many* different random features for different kernels
(Rahimi, Recht ’07, Vedaldi, Zisserman, . . . 10+)

I Theoretical guarantees: mainly kernel approximation
(Rahimi, Recht ’07, . . . , Sriperumbudur and Szabo ’15)

|K(x, x′)− K̃(x, x′)| . 1√
M

I Statistical guarantees suboptimal or in restricted setting
(Rahimi, Recht ’09, Yang et al. ’13 . . . ,Bach ’15)

Previous works

I *Many* different random features for different kernels
(Rahimi, Recht ’07, Vedaldi, Zisserman, . . . 10+)

I Theoretical guarantees: mainly kernel approximation
(Rahimi, Recht ’07, . . . , Sriperumbudur and Szabo ’15)

|K(x, x′)− K̃(x, x′)| . 1√
M

I Statistical guarantees suboptimal or in restricted setting
(Rahimi, Recht ’09, Yang et al. ’13 . . . ,Bach ’15)

Main Result

Let

q(x,w) = eiw
T x,

w ∼ µ(w) = cd

(
1

1 + ‖w‖2

) d+1
2

Theorem
If f∗ ∈ Hs Sobolev space, then

λ∗ = n−
1

2s+1 , M∗ =
1

λ2s∗
, E (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

I Random feature achieves optimal bound!

I Efficient worst case subsampling M∗ ∼
√
n, but cannot exploit

smoothness.

Main Result

Let

q(x,w) = eiw
T x, w ∼ µ(w) = cd

(
1

1 + ‖w‖2

) d+1
2

Theorem
If f∗ ∈ Hs Sobolev space, then

λ∗ = n−
1

2s+1 , M∗ =
1

λ2s∗
, E (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

I Random feature achieves optimal bound!

I Efficient worst case subsampling M∗ ∼
√
n, but cannot exploit

smoothness.

Main Result

Let

q(x,w) = eiw
T x, w ∼ µ(w) = cd

(
1

1 + ‖w‖2

) d+1
2

Theorem
If f∗ ∈ Hs Sobolev space, then

λ∗ = n−
1

2s+1 , M∗ =
1

λ2s∗
, E (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

I Random feature achieves optimal bound!

I Efficient worst case subsampling M∗ ∼
√
n, but cannot exploit

smoothness.

Main Result

Let

q(x,w) = eiw
T x, w ∼ µ(w) = cd

(
1

1 + ‖w‖2

) d+1
2

Theorem
If f∗ ∈ Hs Sobolev space, then

λ∗ = n−
1

2s+1 , M∗ =
1

λ2s∗
, E (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

I Random feature achieves optimal bound!

I Efficient worst case subsampling M∗ ∼
√
n, but cannot exploit

smoothness.

Main Result

Let

q(x,w) = eiw
T x, w ∼ µ(w) = cd

(
1

1 + ‖w‖2

) d+1
2

Theorem
If f∗ ∈ Hs Sobolev space, then

λ∗ = n−
1

2s+1 , M∗ =
1

λ2s∗
, E (f̂λ∗,M∗(x)− f∗(x))2 . n−

2s
2s+1

I Random feature achieves optimal bound!

I Efficient worst case subsampling M∗ ∼
√
n, but cannot exploit

smoothness.

Remarks & Extensions

Nÿstrom vs Random features

I Both achieve optimal rates

I Nÿstrom seems to need fewer samples (random centers)

How tight are the results?

log λ Test Error logM

2 4 6 8 10 12 14

8

7.5

7

6.5

6

5.5

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

2 4 6 8 10 12 14

te
s
t

e
rr

o
r

0

1

2

3

4

5

2 4 6 8 10 12 14

Remarks & Extensions

Nÿstrom vs Random features

I Both achieve optimal rates

I Nÿstrom seems to need fewer samples (random centers)

How tight are the results?

log λ Test Error logM

2 4 6 8 10 12 14

8

7.5

7

6.5

6

5.5

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

2 4 6 8 10 12 14

te
s
t

e
rr

o
r

0

1

2

3

4

5

2 4 6 8 10 12 14

Remarks & Extensions

Nÿstrom vs Random features

I Both achieve optimal rates

I Nÿstrom seems to need fewer samples (random centers)

How tight are the results?

log λ Test Error logM

2 4 6 8 10 12 14

8

7.5

7

6.5

6

5.5

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

2 4 6 8 10 12 14

te
s
t

e
rr

o
r

0

1

2

3

4

5

2 4 6 8 10 12 14

Contributions

I Optimal bounds for data dependent/independent subsampling

I Subsampling: Nÿstrom vs Random features

I Beyond ridge regression: early stopping and multiple passes SGD
(coming up in AISTATS!)

Some questions:

I Quest for the best sampling

I Regularization by projection: inverse problems and preconditioning

I Beyond randomization: non convex optimization?

Some perspectives:

I Computational regularization: subsampling regularizes

I Algorithm design: Control stability with computations

Contributions

I Optimal bounds for data dependent/independent subsampling

I Subsampling: Nÿstrom vs Random features

I Beyond ridge regression: early stopping and multiple passes SGD
(coming up in AISTATS!)

Some questions:

I Quest for the best sampling

I Regularization by projection: inverse problems and preconditioning

I Beyond randomization: non convex optimization?

Some perspectives:

I Computational regularization: subsampling regularizes

I Algorithm design: Control stability with computations

Contributions

I Optimal bounds for data dependent/independent subsampling

I Subsampling: Nÿstrom vs Random features

I Beyond ridge regression: early stopping and multiple passes SGD
(coming up in AISTATS!)

Some questions:

I Quest for the best sampling

I Regularization by projection: inverse problems and preconditioning

I Beyond randomization: non convex optimization?

Some perspectives:

I Computational regularization: subsampling regularizes

I Algorithm design: Control stability with computations

	Learning with dictionaries and kernels
	Data Dependent Subsampling
	Data Independent Subsampling

