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Estimating probability densities by Score Matching

Let qθ(·) be a family of probability densities. Try to estimate p(x) by
finding ’best’ θ. using samples xi ∼ p(x) for i = 1, . . . , n.

Maximum likelihood (and Bayes) estimation often suffers from

normalisation problem qθ(x) = q̃θ(x)
Zθ

with intractable Zθ.

Score matching: the basic identity (Hyvärinen, 2005)

J(p‖qθ)
.

=
1

2

∫
p(x) ‖∇ ln p(x)−∇ ln qθ(x)‖2

=

∫
p(x)

{
1

2
‖∇ ln qθ(x)‖2 +∇2 ln qθ(x)

}
+ const
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Use minimisation of empirical loss

n∑
i=1

{
1

2
‖∇ ln qθ(xi )‖2 +∇2 ln qθ(xi )

}
independent of Zθ !

Nonparametric extension (Sriperumbudur, Fukumizu, Kumar, Gretton
and Hyvärinen, 2014). Set ψ(x)

.
= ln q̃(x)

n∑
i=1

{
1

2
‖∇ψ(xi )‖2 +∇2ψ(xi )

}
+

1

2
‖ψ(·)‖2

RKHS

yields estimate of ∇ ln p(x) !
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Some applications of score matching

Learning structure of graphical models

Finding modes of probability densities

Gradient free Hamiltonian Monte Carlo

Sequential importance sampling

...
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Outline

Problem of learning drift functions for stochastic differential equations

Nonparametric estimates using a generalisation of score matching

Applications to Langevin models

Relation to Maximum likelihood and Bayes

Kullback–Leibler divergence, control and a normalizer

Future work and open problems
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Stochastic differential equations

Dynamics defined by SDEs for Z ∈ Rd .

dZt = g(Zt)︸ ︷︷ ︸
Drift

dt + σ(Zt)︸ ︷︷ ︸
Diffusion

× dWt︸︷︷︸
Wiener process

Limit of discrete time process

Zt+∆ − Zt = g(Zt)∆ + σ(Zt)
√

∆ εt .

with εt i.i.d. Gaussian for ∆→ 0.

Learn the function g(·) from a set of (noise free) observations
z(t1), z(t2), . . . , z(tn).
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Nonparametric (Gaussian process) approach

Use a Gaussian Process prior g(·) ∼ GP(0,K (z , z ′)) over drift functions.
(Papaspilioupoulis, Pokern, Roberts and Stuart 2012).
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Likelihood for densely observed path

In Euler discretization the SDE looks like
Zt+∆t − Zt = g(Zt)∆ +

√
∆ εt , for ∆→ 0.

Hence the likelihood for the drift is

p(Z0:T |g) ∝ exp

[
− 1

2∆

∑
t

||Zt+∆ − Zt ||2
]
×

exp

[
−1

2

∑
t

||g(Zt)||2 ∆ +
∑

t

g(Zt) · (Zt+∆ − Zt)

]
.

allows for simple GP based estimation of the function g(·).

This essentially leads to the estimate

g(z) ≈ E
[

Zt+∆−Zt

∆ |Zt = z
]
. Works well for ∆→ 0.
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For not so small ∆ it does not work well ! Data from
dz = (z − z3)dt + dW .
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Estimation from sparse observations in time not trivial ! Approximation
using imputation of hidden process possible (Ruttor, Batz and Opper,
2013).
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Drift estimation from empirical density only

Given stationary density p(z) of the process. Determine the drift g ?
Assume that σ(·) is known and g(z) = r(z) + f (z), with r(z) known.

Partial answer:
’minimal’ solution minimising a quadratic functional

1

2

∫
p(z) f (z) · A−1(z)f (z) dz

Lagrange–functional

1

2

∫
f (z) · A−1(z)f (z) dz −

∫
ψ(z) {Lp(z)−∇ · (f (z)p(z))} dz

with Fokker–Planck operator corresponding to r(z)

Lp(z) = −∇ · (r(z)p(z)) +
1

2
tr
[
∇∇>(D(z)p(z))

]
with D(z)

.
= σ(z)σ(z)>.
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Variation yields f (z) = A(z)∇ψ(z). Inserting back into Lagrangean yields
dual functional

ε[ψ] =

∫ {
1

2
∇ψ(z) · A(z) ∇ψ(z) + L∗ψ(z)

}
p(z)dz

with L∗ adjoint operator which fulfils
∫
ψ(z)Lp(z)dz =

∫
p(z)L∗ψ(z)dz

and is given by

L∗ψ(z) = r(z) · ∇ψ(z) +
1

2
tr
[
D(z)∇∇>ψ(z)

]
For ’thermal equilibrium’ A = I and D = 2I and r = 0 this corresponds to
score matching ! Stationary density p(z) ∝ e2ψ(z) and f (z) = ∇ψ(x)
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Regularized empirical loss

Given ergodic sample {zi}n
i=1 replace

p(z)→ p̂(z) =
1

n

n∑
i=1

δ(z − zi )

Results in empirical functional

C
n∑

i=1

{
1

2
∇ψ(zi ) · A(zi ) ∇ψ(zi ) + L∗ψ(zi )

}

+
1

2

∫ ∫
ψ(z)K−1(z , z ′)ψ(z ′) dzdz ′

regularised by kernel K .
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Variation wrt ψ yields

ψ(z) + C
n∑

j=1

L∗z ′ [ψ] K (z , z ′)z ′=zj
= 0

regularised version of equation (valid for any function h(·))∫
p(z ′)L∗z ′ [ψ]h(z ′)dz ′ =

∫
h(z ′)Lz ′ [ψ]p(z ′)dz ′ = 0

applied to p → p̂ and hz (z ′) = K (z , z ′).

If ∇ψ(z) known at all sample points z = zi , get ψ(z) for all z .

Take gradient

∇ψ(zi ) + C
n∑

j=1

L∗z ′ [ψ]∇zK (z , z ′)z=zi ,z ′=zj
= 0
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Langevin dynamics

Classical mechanics in terms of (generalized) coordinates and
velocities X ,V ∈ Rd

dXt = Vtdt, dVt = gv (Xt ,Vt)dt + σv (Xt ,Vt)dWt .

If drift is of the form gv (x , v) = rv (x , y) +∇vψ(x , v) use functional
for estimation

ε[ψ] =

∫
p(x , v)

{
L∗ψ(x , v) +

1

2
(∇vψ(x , v))2

}
dx dv

where

L∗ψ(x , v) =

(
v · ∇x + rv (x , v) · ∇v +

1

2
tr(Dv (x , v)∇>v ∇v )

)
ψ(x , v) .
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Condition fv (x , v) = ∇vφ(x , v) restricts the velocity dependency!

Possible choice

fv (x , v) = f (x)− Λv = ∇v

{
v · f (x)− 1

2
v · Λv

}
,

Note: If rv = −Λv then L∗ψ(x , v) = L∗(v · f (x)) is independent of
the diffusion term Dv (x , v):
→ Estimate f (x) without knowing the diffusion.
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Example: Double well

f (x , v) = 4(x − x3)− λv
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Example: Nonconservative force

f (1)(x) = x (1)(1− (x (1))2 − (x (2))2)− x (2)

f (2)(x) = x (2)(1− (x (1))2 − (x (2))2)− x (1)

Polynomial kernel with p = 4 and n = 2000

−3 −2 −1 0 1 2 3

−
3

−
1

0
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2
3
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Cart and Pole model

q

f (x) = a sin x and r(v) = −λv and diffusion Dv = (σ cos(x))2.
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Kernel density estimators as alternative ?

Explicit solutions to drift for Langevin models

f (i)(x) =
d∑

j=1

∂E [v (i)v (j)|x ]

∂x (j)
+

d∑
j=1

E [v (i)v (j)|x ]
∂ ln p(x)

∂x (j)
− E [r (i)|x ] ,

Simplifies only for ’thermal equilibrium’ f (x) = ∇φ and Dv ∝ Σ, r = −Λv
where Λ and Σ are diagonal with 2λi

σ2
i

= β. One has then

E [v (i)v (j)|x ] = 1
2β δij and E [r (i)|x ] = 0.
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Extension: Other evolution equations

Replace white noise σv (X ,V )dW → U(t)dt where U(t) Markovian.

Include noise in state variable Z = (X ,V ,U)

Example: U(t) = ±1 random telegraph process and x , v , u ∈ R with
drift gv (x , v) = −λv + f (x)

Fokker Planck → Master equation

0 = −∂x (vp(x , v , u)− ∂v [(f (x)− λv + u)p(x , v , u)]

+γ (p(x , v ,−u)− p(x , v , u))

Adjoint operator

L∗ψ = {v∂x + (u − λv)∂v}ψ + γ (ψ(x , v ,−1)− ψ(x , v , 1))

Parametrisation ψ(x , v) = vf (x) leads to functional

ε[f ] =
1

2

∑
u=±1

∫
p(x , v , u)

{
f 2(x) + 2f ′(x)v2 + 2f (x)(u − λv)

}
dxdv
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The case A = D: Likelihood for densely observed path

− ln p(Z0:T |g) =
1

2

∑
t

{
||g(Zt)||2∆t − 2〈g(Zt), (Zt+∆t − Zt)〉

}
+ const

with 〈u, v〉 .= u>D−1v .

Assume g = r + D∇ψ take ∆t → 0 and apply Ito
formula

= const +
1

2

∫ T

0
{∇ψ · D ∇ψ dt + 2r · ∇ψ dt − 2∇ψ · dZt}

=
1

2

∫ T

0

{
∇ψ · D ∇ψ + 2r · ∇ψ + tr(D∇∇>ψ)

}
dt − ψ(ZT ) + ψ(Z0)

' T

2

∫ {
∇ψ · D ∇ψ + 2r · ∇ψ + tr(D∇∇>ψ)

}
p(z)dz
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Back to the optimisation problem

We considered minimisation of

1

2

∫
p(z) f (z) · A−1(z)f (z) dz

under the linear constraint that

−∇ · (r(z)p(z)) +
1

2
tr
[
∇∇>(D(z)p(z))

]
= 0
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The case A = D: Kullback Leibler divergence

Kullback-Leibler (KL) divergence between the path probabilities for
diffusion processes with drifts g(z) = r(z) + f (z) and r(z):

D(p(Z0:T |r + f )||p(Z0:T |r)) =
1

2

∫ T

0
dt

∫
pt(z)f (z) · D−1(z)f (z)dz

assuming equal diffusions D(z).

For T →∞ the relative entropy rate is

lim
T→∞

1

T
D(p(Zr+f 0 : T )||pr (Z0:T |r) =

1

2

∫
p(z)f (z) · D−1(z)f (z)dz .

Hence, the choice A = D may be understood as a generalized as
minimum relative entropy solution where the stationary density is
given as a constraint.
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KL control problem and normalizer

Find extra drift (control) f (·) such that the cost rate

C [f ]
.

= lim
T→∞

1

T
D(pr+f (Z0:T )||pr (Z0:T ) +

∫
pr+f (z)U(z)dz

is minimized ! U(z) are state costs.

Note that for the finite T problem the controlled path probabilities
satisfies

pr+f (Z0:T =
1

ζT
pr (Z0:T )e−

∫ T
0 U(Zt )dt

where the normaliser is given by

ζT = Er

[
e−

∫ T
0 U(Zt )dt

]
(1)
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KL control problem contd

If the stationary controlled density p is known (or we can sample from it)
we can compute

the log–normalizer in the limit via

− lim
T→∞

1

T
ln ζT =

∫
p(z)U(z)dz −

min
ψ

∫ {
1

2
∇ψ(z) · A(z) ∇ψ(z) + L∗ψ(z)

}
p(z)dz

and the control via
f (z) = D(z)∇ lnψ(z)
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Could this be helpful to solve the control problem ?

Sampling from the ’smoothing density’ p(z) is not easy.

Sampling from the ’filtering density’ pfilt
t (z)

.
= p(z |U(Zτ ), τ ≤ t) is

possible using particle filters.

In certain cases estimates of ∇ ln pfilt
t (z) can be related to ∇ ln p(z)
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Analytically solvable example: Uncontrolled drift r(z) = 4z(1− z2) and
path costs U(z) = βr(z).
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Future work and open problems

Generalisation to dynamics

Other Markov processes

Relation to Bayes and hyper parameter selection

Convergence rates for non i.i.d. data

Inclusion of noise in data ?

Unobserved variables ?

Inclusion of information from time order of data ?
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