Score matching and nonparametric estimators of drift functions for stochastic differential equations

Manfred Opper

joint work with Philip Batz, Andreas Ruttor,

April 13, 2016

Estimating probability densities by Score Matching

Let q_θ(·) be a family of probability densities. Try to estimate p(x) by finding 'best' θ. using samples x_i ~ p(x) for i = 1,..., n.

Estimating probability densities by Score Matching

- Let q_θ(·) be a family of probability densities. Try to estimate p(x) by finding 'best' θ. using samples x_i ~ p(x) for i = 1,..., n.
- Maximum likelihood (and Bayes) estimation often suffers from normalisation problem $q_{\theta}(x) = \frac{\tilde{q}_{\theta}(x)}{Z_{\theta}}$ with intractable Z_{θ} .

Estimating probability densities by Score Matching

- Let q_θ(·) be a family of probability densities. Try to estimate p(x) by finding 'best' θ. using samples x_i ~ p(x) for i = 1,..., n.
- Maximum likelihood (and Bayes) estimation often suffers from normalisation problem $q_{\theta}(x) = \frac{\tilde{q}_{\theta}(x)}{Z_{\theta}}$ with intractable Z_{θ} .
- Score matching: the basic identity (Hyvärinen, 2005)

$$J(p \| q_{\theta}) \doteq \frac{1}{2} \int p(x) \| \nabla \ln p(x) - \nabla \ln q_{\theta}(x) \|^{2}$$
$$= \int p(x) \left\{ \frac{1}{2} \| \nabla \ln q_{\theta}(x) \|^{2} + \nabla^{2} \ln q_{\theta}(x) \right\} + \text{const}$$

• Use minimisation of empirical loss

$$\sum_{i=1}^n \left\{ \frac{1}{2} \|\nabla \ln q_\theta(x_i)\|^2 + \nabla^2 \ln q_\theta(x_i) \right\}$$

independent of Z_{θ} !

• Use minimisation of empirical loss

$$\sum_{i=1}^n \left\{ \frac{1}{2} \|\nabla \ln q_\theta(x_i)\|^2 + \nabla^2 \ln q_\theta(x_i) \right\}$$

independent of Z_{θ} !

 Nonparametric extension (Sriperumbudur, Fukumizu, Kumar, Gretton and Hyvärinen, 2014). Set ψ(x) = ln q̃(x)

$$\sum_{i=1}^{n} \left\{ \frac{1}{2} \| \nabla \psi(x_i) \|^2 + \nabla^2 \psi(x_i) \right\} + \frac{1}{2} \| \psi(\cdot) \|_{\mathsf{RKHS}}^2$$

• Use minimisation of empirical loss

$$\sum_{i=1}^n \left\{ \frac{1}{2} \|\nabla \ln q_\theta(x_i)\|^2 + \nabla^2 \ln q_\theta(x_i) \right\}$$

independent of Z_{θ} !

 Nonparametric extension (Sriperumbudur, Fukumizu, Kumar, Gretton and Hyvärinen, 2014). Set ψ(x) = ln q̃(x)

$$\sum_{i=1}^{n} \left\{ \frac{1}{2} \| \nabla \psi(x_i) \|^2 + \nabla^2 \psi(x_i) \right\} + \frac{1}{2} \| \psi(\cdot) \|_{\mathsf{RKHS}}^2$$

• yields estimate of $\nabla \ln p(x)$!

- Learning structure of graphical models
- Finding modes of probability densities
- Gradient free Hamiltonian Monte Carlo
- Sequential importance sampling

• ...

- Problem of learning drift functions for stochastic differential equations
- Nonparametric estimates using a generalisation of score matching
- Applications to Langevin models
- Relation to Maximum likelihood and Bayes
- Kullback-Leibler divergence, control and a normalizer
- Future work and open problems

• Dynamics defined by SDEs for $Z \in R^d$.

• Limit of discrete time process

$$Z_{t+\Delta} - Z_t = g(Z_t)\Delta + \sigma(Z_t)\sqrt{\Delta} \epsilon_t$$
.

with ϵ_t i.i.d. Gaussian for $\Delta \rightarrow 0$.

• Dynamics defined by SDEs for $Z \in R^d$.

• Limit of discrete time process

$$Z_{t+\Delta} - Z_t = g(Z_t)\Delta + \sigma(Z_t)\sqrt{\Delta} \ \epsilon_t \ .$$

with ϵ_t i.i.d. Gaussian for $\Delta \rightarrow 0$.

• Learn the function $g(\cdot)$ from a set of (noise free) observations $z(t_1), z(t_2), \ldots, z(t_n)$.

Use a Gaussian Process prior $g(\cdot) \sim \mathcal{GP}(0, \mathcal{K}(z, z'))$ over drift functions. (Papaspilioupoulis, Pokern, Roberts and Stuart 2012).

Likelihood for densely observed path

• In Euler discretization the SDE looks like $Z_{t+\Delta t} - Z_t = g(Z_t)\Delta + \sqrt{\Delta} \epsilon_t$, for $\Delta \to 0$.

Likelihood for densely observed path

• In Euler discretization the SDE looks like $Z_{t+\Delta t} - Z_t = g(Z_t)\Delta + \sqrt{\Delta} \epsilon_t$, for $\Delta \to 0$.

• Hence the likelihood for the drift is

$$p(Z_{0:T}|g) \propto \exp\left[-rac{1}{2\Delta}\sum_{t}||Z_{t+\Delta}-Z_{t}||^{2}
ight] imes$$
 $\exp\left[-rac{1}{2}\sum_{t}||g(Z_{t})||^{2}\Delta + \sum_{t}g(Z_{t})\cdot(Z_{t+\Delta}-Z_{t})
ight].$

allows for simple GP based estimation of the function $g(\cdot)$.

Likelihood for densely observed path

• In Euler discretization the SDE looks like $Z_{t+\Delta t} - Z_t = g(Z_t)\Delta + \sqrt{\Delta} \epsilon_t$, for $\Delta \to 0$.

• Hence the likelihood for the drift is

$$p(Z_{0:T}|g) \propto \exp\left[-rac{1}{2\Delta}\sum_{t}||Z_{t+\Delta}-Z_{t}||^{2}
ight] imes$$
 $\exp\left[-rac{1}{2}\sum_{t}||g(Z_{t})||^{2}\Delta + \sum_{t}g(Z_{t})\cdot(Z_{t+\Delta}-Z_{t})
ight].$

allows for simple GP based estimation of the function $g(\cdot)$.

• This essentially leads to the estimate $g(z) \approx E\left[\frac{Z_{t+\Delta}-Z_t}{\Delta}|Z_t=z\right]$. Works well for $\Delta \to 0$.

For not so small Δ it does not work well ! Data from $dz = (z - z^3)dt + dW$.

Estimation from sparse observations in time not trivial ! Approximation using imputation of hidden process possible (Ruttor, Batz and Opper, 2013).

Drift estimation from empirical density only

• Given stationary density p(z) of the process. Determine the drift g? Assume that $\sigma(\cdot)$ is known and g(z) = r(z) + f(z), with r(z) known.

Drift estimation from empirical density only

- Given stationary density p(z) of the process. Determine the drift g? Assume that $\sigma(\cdot)$ is known and g(z) = r(z) + f(z), with r(z) known.
- Partial answer:

'minimal' solution minimising a quadratic functional

$$\frac{1}{2}\int p(z) f(z) \cdot A^{-1}(z)f(z) dz$$

Drift estimation from empirical density only

- Given stationary density p(z) of the process. Determine the drift g? Assume that $\sigma(\cdot)$ is known and g(z) = r(z) + f(z), with r(z) known.
- Partial answer:

'minimal' solution minimising a quadratic functional

$$\frac{1}{2}\int p(z) f(z) \cdot A^{-1}(z)f(z) dz$$

Lagrange–functional

$$\frac{1}{2}\int f(z)\cdot A^{-1}(z)f(z) dz - \int \psi(z) \left\{ \mathcal{L}p(z) - \nabla \cdot (f(z)p(z)) \right\} dz$$

with Fokker–Planck operator corresponding to r(z)

$$\mathcal{L}p(z) = -
abla \cdot (r(z)p(z)) + rac{1}{2}\mathrm{tr}\left[
abla
abla^ op (D(z)p(z))
ight]$$

with $D(z) \doteq \sigma(z)\sigma(z)^{\top}$.

Variation yields $f(z) = A(z)\nabla\psi(z)$. Inserting back into Lagrangean yields dual functional

$$\varepsilon[\psi] = \int \left\{ \frac{1}{2} \nabla \psi(z) \cdot A(z) \nabla \psi(z) + \mathcal{L}^* \psi(z) \right\} p(z) dz$$

with \mathcal{L}^* adjoint operator which fulfils $\int \psi(z)\mathcal{L}p(z)dz = \int p(z)\mathcal{L}^*\psi(z)dz$ and is given by

$$\mathcal{L}^*\psi(z) = r(z)\cdot
abla \psi(z) + rac{1}{2}\mathrm{tr}\left[D(z)
abla
abla
abla^ op\psi(z)
ight]$$

For 'thermal equilibrium' A = I and D = 2I and r = 0 this corresponds to score matching ! Stationary density $p(z) \propto e^{2\psi(z)}$ and $f(z) = \nabla \psi(x)$

Regularized empirical loss

• Given ergodic sample $\{z_i\}_{i=1}^n$ replace

$$p(z) \rightarrow \hat{p}(z) = \frac{1}{n} \sum_{i=1}^{n} \delta(z-z_i)$$

• Results in empirical functional

$$C\sum_{i=1}^{n}\left\{\frac{1}{2}\nabla\psi(z_{i})\cdot A(z_{i})\nabla\psi(z_{i})+\mathcal{L}^{*}\psi(z_{i})\right\}$$

Regularized empirical loss

• Given ergodic sample $\{z_i\}_{i=1}^n$ replace

$$p(z) \rightarrow \hat{p}(z) = \frac{1}{n} \sum_{i=1}^{n} \delta(z - z_i)$$

• Results in empirical functional

$$C\sum_{i=1}^{n} \left\{ \frac{1}{2} \nabla \psi(z_i) \cdot A(z_i) \nabla \psi(z_i) + \mathcal{L}^* \psi(z_i) \right\} \\ + \frac{1}{2} \int \int \psi(z) \mathcal{K}^{-1}(z, z') \psi(z') \, dz dz'$$

regularised by kernel K.

• Variation wrt ψ yields

$$\psi(z) + C \sum_{j=1}^{n} \mathcal{L}_{z'}^{*}[\psi] \ \mathcal{K}(z, z')_{z'=z_{j}} = 0$$

• Variation wrt ψ yields

$$\psi(z) + C \sum_{j=1}^{n} \mathcal{L}_{z'}^{*}[\psi] \ K(z, z')_{z'=z_{j}} = 0$$

• regularised version of equation (valid for any function $h(\cdot)$)

$$\int p(z')\mathcal{L}_{z'}^*[\psi]h(z')dz' = \int h(z')\mathcal{L}_{z'}[\psi]p(z')dz' = 0$$

applied to $p \rightarrow \hat{p}$ and $h_z(z') = K(z, z')$.

• Variation wrt ψ yields

$$\psi(z) + C \sum_{j=1}^{n} \mathcal{L}_{z'}^{*}[\psi] \ K(z, z')_{z'=z_{j}} = 0$$

• regularised version of equation (valid for any function $h(\cdot)$)

$$\int p(z')\mathcal{L}_{z'}^*[\psi]h(z')dz' = \int h(z')\mathcal{L}_{z'}[\psi]p(z')dz' = 0$$

applied to $p \rightarrow \hat{p}$ and $h_z(z') = K(z, z')$.

- If $\nabla \psi(z)$ known at all sample points $z = z_i$, get $\psi(z)$ for all z.
- Take gradient

$$abla \psi(z_i) + C \sum_{j=1}^n \mathcal{L}^*_{z'}[\psi]
abla_z K(z,z')_{z=z_i,z'=z_j} = 0$$

Langevin dynamics

• Classical mechanics in terms of (generalized) coordinates and velocities $X, V \in \mathbb{R}^d$

$$dX_t = V_t dt, \qquad dV_t = g_v(X_t, V_t) dt + \sigma_v(X_t, V_t) dW_t.$$

Langevin dynamics

• Classical mechanics in terms of (generalized) coordinates and velocities $X, V \in \mathbb{R}^d$

$$dX_t = V_t dt, \qquad dV_t = g_v(X_t, V_t) dt + \sigma_v(X_t, V_t) dW_t$$

• If drift is of the form $g_v(x,v) = r_v(x,y) + \nabla_v \psi(x,v)$ use functional for estimation

$$\varepsilon[\psi] = \int p(x,v) \left\{ \mathcal{L}^* \psi(x,v) + \frac{1}{2} (\nabla_v \psi(x,v))^2 \right\} dx \, dv$$

where

$$\mathcal{L}^*\psi(x,v) = \left(v\cdot
abla_x + r_v(x,v)\cdot
abla_v + rac{1}{2}\mathrm{tr}(D_v(x,v)
abla_v^\top
abla_v)
ight)\psi(x,v) \ .$$

• Condition $f_v(x, v) = \nabla_v \phi(x, v)$ restricts the velocity dependency!

Condition f_v(x, v) = ∇_vφ(x, v) restricts the velocity dependency!
Possible choice

$$f_{v}(x,v) = f(x) - \Lambda v =
abla_{v} \left\{ v \cdot f(x) - rac{1}{2} v \cdot \Lambda v
ight\} \; ,$$

Condition f_v(x, v) = ∇_vφ(x, v) restricts the velocity dependency!
Possible choice

$$f_{v}(x,v) = f(x) - \Lambda v =
abla_{v} \left\{ v \cdot f(x) - \frac{1}{2} v \cdot \Lambda v
ight\} ,$$

- Note: If r_ν = −Λν then L^{*}ψ(x, v) = L^{*}(v · f(x)) is independent of the diffusion term D_ν(x, v):
 - \rightarrow Estimate f(x) without knowing the diffusion.

Example: Double well

$$f(x,v) = 4(x-x^3) - \lambda v$$

Example: Nonconservative force

$$f^{(1)}(x) = x^{(1)}(1 - (x^{(1)})^2 - (x^{(2)})^2) - x^{(2)}$$

$$f^{(2)}(x) = x^{(2)}(1 - (x^{(1)})^2 - (x^{(2)})^2) - x^{(1)}$$

Polynomial kernel with p = 4 and n = 2000

Cart and Pole model

 $f(x) = a \sin x$ and $r(v) = -\lambda v$ and diffusion $D_v = (\sigma \cos(x))^2$.

Explicit solutions to drift for Langevin models

$$f^{(i)}(x) = \sum_{j=1}^{d} \frac{\partial E[v^{(i)}v^{(j)}|x]}{\partial x^{(j)}} + \sum_{j=1}^{d} E[v^{(i)}v^{(j)}|x] \frac{\partial \ln p(x)}{\partial x^{(j)}} - E[r^{(i)}|x] ,$$

Explicit solutions to drift for Langevin models

$$f^{(i)}(x) = \sum_{j=1}^{d} \frac{\partial E[v^{(i)}v^{(j)}|x]}{\partial x^{(j)}} + \sum_{j=1}^{d} E[v^{(i)}v^{(j)}|x] \frac{\partial \ln p(x)}{\partial x^{(j)}} - E[r^{(i)}|x] ,$$

Simplifies only for 'thermal equilibrium' $f(x) = \nabla \phi$ and $D_v \propto \Sigma$, $r = -\Lambda v$ where Λ and Σ are diagonal with $\frac{2\lambda_i}{\sigma_i^2} = \beta$. One has then $E[v^{(i)}v^{(j)}|x] = \frac{1}{2\beta}\delta_{ij}$ and $E[r^{(i)}|x] = 0$.

- Replace white noise $\sigma_v(X,V)dW o U(t)dt$ where U(t) Markovian.
- Include noise in state variable Z = (X, V, U)
- Example: $U(t) = \pm 1$ random telegraph process and $x, v, u \in R$ with drift $g_v(x, v) = -\lambda v + f(x)$

- Replace white noise $\sigma_v(X,V)dW o U(t)dt$ where U(t) Markovian.
- Include noise in state variable Z = (X, V, U)
- Example: $U(t) = \pm 1$ random telegraph process and $x, v, u \in R$ with drift $g_v(x, v) = -\lambda v + f(x)$
- Fokker Planck \rightarrow Master equation

$$0 = -\partial_x (vp(x, v, u) - \partial_v [(f(x) - \lambda v + u)p(x, v, u)] +\gamma (p(x, v, -u) - p(x, v, u))$$

- Replace white noise $\sigma_v(X, V)dW \rightarrow U(t)dt$ where U(t) Markovian.
- Include noise in state variable Z = (X, V, U)
- Example: U(t) = ±1 random telegraph process and x, v, u ∈ R with drift g_v(x, v) = −λv + f(x)
- Fokker Planck \rightarrow Master equation

$$0 = -\partial_x (vp(x, v, u) - \partial_v [(f(x) - \lambda v + u)p(x, v, u)] +\gamma (p(x, v, -u) - p(x, v, u))$$

Adjoint operator

$$\mathcal{L}^{*}\psi = \{ v\partial_{x} + (u - \lambda v)\partial_{v} \} \psi + \gamma (\psi(x, v, -1) - \psi(x, v, 1))$$

- Replace white noise $\sigma_v(X, V)dW \rightarrow U(t)dt$ where U(t) Markovian.
- Include noise in state variable Z = (X, V, U)
- Example: $U(t) = \pm 1$ random telegraph process and $x, v, u \in R$ with drift $g_v(x, v) = -\lambda v + f(x)$
- Fokker Planck \rightarrow Master equation

$$0 = -\partial_x (vp(x, v, u) - \partial_v [(f(x) - \lambda v + u)p(x, v, u)] +\gamma (p(x, v, -u) - p(x, v, u))$$

Adjoint operator

$$\mathcal{L}^*\psi = \{ v\partial_x + (u - \lambda v)\partial_v \} \psi + \gamma (\psi(x, v, -1) - \psi(x, v, 1))$$

• Parametrisation $\psi(x, v) = vf(x)$ leads to functional

$$\varepsilon[f] = \frac{1}{2} \sum_{u=\pm 1} \int p(x, v, u) \left\{ f^2(x) + 2f'(x)v^2 + 2f(x)(u - \lambda v) \right\} dx dv$$

$$-\ln p(Z_{0:T}|g) = \frac{1}{2} \sum_{t} \left\{ ||g(Z_t)||^2 \Delta t - 2\langle g(Z_t), (Z_{t+\Delta t} - Z_t) \rangle \right\} + \text{const}$$

with $\langle u, v \rangle \doteq u^{\top} D^{-1} v$.

$$-\ln p(Z_{0:T}|g) = \frac{1}{2} \sum_{t} \left\{ ||g(Z_t)||^2 \Delta t - 2\langle g(Z_t), (Z_{t+\Delta t} - Z_t) \rangle \right\} + \text{const}$$

with $\langle u,v
angle\doteq u^{ op}D^{-1}v$. Assume $g=r+D
abla\psi$ take $\Delta t o 0$ and apply Ito formula

$$= \operatorname{const} + \frac{1}{2} \int_0^T \left\{ \nabla \psi \cdot D \, \nabla \psi \, dt + 2r \cdot \nabla \psi \, dt - 2\nabla \psi \cdot dZ_t \right\}$$

$$-\ln p(Z_{0:T}|g) = \frac{1}{2} \sum_{t} \left\{ ||g(Z_t)||^2 \Delta t - 2\langle g(Z_t), (Z_{t+\Delta t} - Z_t) \rangle \right\} + \text{const}$$

with $\langle u,v
angle\doteq u^{ op}D^{-1}v$. Assume $g=r+D
abla\psi$ take $\Delta t o 0$ and apply Ito formula

$$= \operatorname{const} + \frac{1}{2} \int_0^T \left\{ \nabla \psi \cdot D \ \nabla \psi \ dt + 2r \cdot \nabla \psi \ dt - 2\nabla \psi \cdot dZ_t \right\}$$
$$= \frac{1}{2} \int_0^T \left\{ \nabla \psi \cdot D \ \nabla \psi + 2r \cdot \nabla \psi + \operatorname{tr}(D \nabla \nabla^\top \psi) \right\} dt - \psi(Z_T) + \psi(Z_0)$$

$$-\ln p(Z_{0:T}|g) = \frac{1}{2}\sum_{t} \left\{ ||g(Z_t)||^2 \Delta t - 2\langle g(Z_t), (Z_{t+\Delta t} - Z_t) \rangle \right\} + \text{const}$$

with $\langle u,v
angle\doteq u^{ op}D^{-1}v$. Assume $g=r+D
abla\psi$ take $\Delta t o 0$ and apply Ito formula

$$= \operatorname{const} + \frac{1}{2} \int_0^T \left\{ \nabla \psi \cdot D \ \nabla \psi \ dt + 2r \cdot \nabla \psi \ dt - 2\nabla \psi \cdot dZ_t \right\}$$

$$= \frac{1}{2} \int_0^T \left\{ \nabla \psi \cdot D \ \nabla \psi + 2r \cdot \nabla \psi + \operatorname{tr}(D \nabla \nabla^\top \psi) \right\} dt - \psi(Z_T) + \psi(Z_0)$$

$$\simeq \frac{T}{2} \int \left\{ \nabla \psi \cdot D \ \nabla \psi + 2r \cdot \nabla \psi + \operatorname{tr}(D \nabla \nabla^\top \psi) \right\} p(z) dz$$

We considered minimisation of

$$\frac{1}{2}\int p(z) f(z) \cdot A^{-1}(z)f(z) dz$$

under the linear constraint that

$$-\nabla \cdot (r(z)p(z)) + \frac{1}{2} \operatorname{tr} \left[\nabla \nabla^{\top} (D(z)p(z)) \right] = 0$$

The case A = D: Kullback Leibler divergence

• Kullback-Leibler (KL) divergence between the path probabilities for diffusion processes with drifts g(z) = r(z) + f(z) and r(z):

$$D(p(Z_{0:T}|r+f)||p(Z_{0:T}|r)) = \frac{1}{2} \int_0^T dt \int p_t(z)f(z) \cdot D^{-1}(z)f(z)dz$$

assuming equal diffusions D(z).

The case A = D: Kullback Leibler divergence

• Kullback-Leibler (KL) divergence between the path probabilities for diffusion processes with drifts g(z) = r(z) + f(z) and r(z):

$$D(p(Z_{0:T}|r+f)||p(Z_{0:T}|r)) = \frac{1}{2} \int_0^T dt \int p_t(z)f(z) \cdot D^{-1}(z)f(z)dz$$

assuming equal diffusions D(z).

• For $T \to \infty$ the relative entropy rate is

$$\lim_{T\to\infty}\frac{1}{T}D(p(Z_{r+f}0:T)||p_r(Z_{0:T}|r) = \frac{1}{2}\int p(z)f(z)\cdot D^{-1}(z)f(z)dz.$$

Hence, the choice A = D may be understood as a generalized as **minimum relative entropy** solution where the stationary density is given as a constraint.

KL control problem and normalizer

• Find extra drift (control) $f(\cdot)$ such that the cost rate

$$C[f] \doteq \lim_{T \to \infty} \frac{1}{T} D(p_{r+f}(Z_{0:T}) || p_r(Z_{0:T}) + \int p_{r+f}(z) U(z) dz$$

is minimized ! U(z) are state costs.

• Find extra drift (control) $f(\cdot)$ such that the cost rate

$$C[f] \doteq \lim_{T \to \infty} \frac{1}{T} D(p_{r+f}(Z_{0:T}) || p_r(Z_{0:T}) + \int p_{r+f}(z) U(z) dz$$

is minimized ! U(z) are state costs.

• Note that for the finite *T* problem the controlled path probabilities satisfies

$$p_{r+f}(Z_{0:T} = \frac{1}{\zeta_T}p_r(Z_{0:T})e^{-\int_0^T U(Z_t)dt}$$

where the normaliser is given by

$$\zeta_T = E_r \left[e^{-\int_0^T U(Z_t) dt} \right] \tag{1}$$

If the stationary controlled density p is known (or we can sample from it) we can compute

• the log-normalizer in the limit via

$$-\lim_{T \to \infty} \frac{1}{T} \ln \zeta_T = \int p(z) U(z) dz - \\ \min_{\psi} \int \left\{ \frac{1}{2} \nabla \psi(z) \cdot A(z) \nabla \psi(z) + \mathcal{L}^* \psi(z) \right\} p(z) dz$$

If the stationary controlled density p is known (or we can sample from it) we can compute

• the log-normalizer in the limit via

$$-\lim_{T \to \infty} \frac{1}{T} \ln \zeta_T = \int p(z) U(z) dz - \\ \min_{\psi} \int \left\{ \frac{1}{2} \nabla \psi(z) \cdot A(z) \nabla \psi(z) + \mathcal{L}^* \psi(z) \right\} p(z) dz$$

and the control via

$$f(z) = D(z)\nabla \ln \psi(z)$$

- Sampling from the 'smoothing density' p(z) is not easy.
- Sampling from the 'filtering density' $p_t^{filt}(z) \doteq p(z|U(Z_{\tau}), \tau \leq t)$ is possible using particle filters.
- In certain cases estimates of $\nabla \ln p_t^{filt}(z)$ can be related to $\nabla \ln p(z)$

Analytically solvable example: Uncontrolled drift $r(z) = 4z(1 - z^2)$ and path costs $U(z) = \beta r(z)$.

- Generalisation to dynamics
- Other Markov processes
- Relation to Bayes and hyper parameter selection
- Convergence rates for non i.i.d. data
- Inclusion of noise in data ?
- Unobserved variables ?
- Inclusion of information from time order of data ?