
Learning Submodular Functions

Maria-Florina Balcan

Carnegie Mellon University

2-Minute Version
Submodular fns: important objects (combinatorial fns
satisfying diminishing returns) that come up in many areas.

Traditionally: Optimization, operations research

This talk: learning submodular fns from data.

• Algorithmic Game Theory

• Machine Learning

[Lehman-Lehman-Nisan’01], ….

[Bilmes’03] [Guestrin-Krause’07], …

Most recently

• Social Networks [Kleinberg-Kempe-Tardos’03]

2-Minute Version
This talk: learning submodular functions from data.

Novel structural results

Alg. Game Theory
Economics

Matroid
Theory

Discrete
Optimization

• Much better upper bounds in cases with more structure,
coming from social networks & algorithmic game theory.

• Application for learning influence fnc in diffusion networks.

• General learnability results in a statistical setting;
surprising lower bounds showing unexpected structure.

• Can model pbs of interest to many areas,
e.g., social networks & alg. game theory.

Structure of the talk

• Submodular functions. Why are they important.

• Learning submodular functions.

With connections and applications to Algorithmic
Game Theory, Economics, Social Networks.

Submodular functions

• First of all, it’s a function over sets.

• e.g., value on some set of items in a store.

• Ground set V={1,2, …, n}.

Submodular functions

x S T

x

+

+

Large improvement

Small improvement

For T µ S, xS, f(T [{x}) – f(T) ¸ f(S [{x}) – f(S)

T S S [T

SÅT

+ + ¸

• Equivalent decreasing marginal return:

 For all S,T µ V: f(S)+f(T) ¸ f(S Å T)+f(S [T)

• V={1,2, …, n}; set-function f : 2V ! R submodular if

Submodular functions

For T µ S, xS, f(T [{x}) – f(T) ¸ f(S [{x}) – f(S)

• V={1,2, …, n}; set-function f : 2V ! R submodular if

E.g.,

+

x

x

+

+

Large improvement

Small improvement S

T

Coverage and Reachability Functions

𝑠1

𝑠2

• Reachability function:

𝐴𝑠1

𝐴𝑠2

• Coverage function: Let 𝐴1, … , 𝐴𝑛 be sets.
For each S ⊆V, let f(S) = | 𝐴𝑗𝑗∈𝑆 |

E.g., in a network, 𝐴𝑠 nodes reachable from s

 𝑓 𝑆 = # nodes reachable from 𝑆.

Coverage and Reachability Functions
• Reachability function:

E.g., in a network, 𝐴𝑠 nodes reachable from s

 𝑓 𝑆 = # nodes reachable from 𝑆.

• Marginal value of x given S is # number of new nodes that x can
reach, but cannot be reached from any of the nodes in S.

• 𝑇 ⊂ 𝑆, 𝑥 ∉ 𝑆, more chance reach new nodes when adding x to T, than
when adding x to S.

𝑠1

𝑠2

𝐴𝑠1

𝐴𝑠2

Diminishing Returns

Reachability function is submodular

𝑇 = 𝑠2 ,

𝑠1

𝑆 = 𝑠1, 𝑠2 ,

𝑠2
𝑠2

𝑥 𝑥

𝑓 𝑇 ∪ 𝑥 − 𝑓 𝑇 ≥ 𝑓 𝑆 ∪ 𝑥 − 𝑓 𝑆

Marginal value of 𝑥 = # new nodes reachable from 𝑥.

𝑓 𝑇 = 5 𝑓 𝑆 = 8

3 ≥ 2

Probabilistic Reachability Functions

𝑠1

𝑠2

𝐴𝑠1

𝐴𝑠2

• Given a distribution over graphs

f S = EG[# reachable from S|G] also submodular.

Submodular functions

• Vector Spaces Let V={v1,,vn}, each v
i
 2 Rn.

For each S µ V, let f(S) = rank(V[S])

More examples:

• Cut Function in a Graph Let f(S) = # of
edges between S and V\S.

f(S) · f(T) , 8 S µ T

f(S) ¸ 0, 8 S µ V

 Monotone:

This talk: focus on

 Non-negative:

• Concave Functions Let h : R ! R be concave.
 For each S µ V, let f(S) = h(|S|)

Submodular functions
• A lot of work on Optimization Problems involving

Submodular Functions.

Traditionally: Optimization, operations research

• This talk: learning them from data.

• Algorithmic Game Theory

• Machine Learning

[Lehman-Lehman-Nisan’01], ….

[Bilmes’03] [Guestrin-Krause’07], …

Most recently

• Social Networks [Kleinberg-Kempe-Tardos’03]

Learning submodular functions

Supermarket chain
• V = all the items you sell.

• f(S) = valuation on set of items S.

Valuation Functions in Economics

f(,) ! R

Learning submodular functions
Influence Function in Social Networks

• V = set of nodes.

• f(S) = expected number of nodes S will influence.

f is a probabilistic reachability fnc in classic diffusion
models (e.g., independent cascade model, random threshold model)

Assume an explicit model on how
info spreads ; use it to estimate
the influence fnc.

Past Work Our Work

Learn the influence function
directly from data

Could be mis-specified….

[Kleinberg-Kempe-Tardos’03]

Learning submodular functions
Influence Function in Networks

virus
report

cybersecurity:
computer virus spread

epidemiology: influenza spread

biology:
gene expression cascade

Learning Submodular Functions

General Learnability Results

• Highlights importance of beyond worst case analysis.

• Upper & lower bounds on their intrinsic complexity.

Large Scale Application to Social Networks

• Implications to Alg. Game Theory, Economics, Discrete
Optimization, Matroid Theory.

Better Results for Cases with More Structure

 Labeled Examples

Statistical learning model

Learning
Algorithm

Expert / Oracle

Data Source

Alg.outputs

Distribution
D on 2[n]

f : 2[n]  R+

(S1,f(S1)),…, (Sk,f(Sk))

g :2[n]  R+

PMAC model for learning real valued functions

Distribution
D on 2[n]

 Labeled Examples

Learning
Algorithm

Expert / Oracle

Data Source

Alg.outputs f : 2[n]  R+
g :2[n]  R+

(S1,f(S1)),…, (Sk,f(Sk))

• Algo sees (S1,f(S1)),…, (Sk,f(Sk)), Si i.i.d. from D, produces g.

Probably Mostly Approximately Correct

• With probability ¸ 1-± we have PrS[g(S) · f(S)· ® g(S)]¸ 1-²

[Balcan&Harvey, STOC 2011 & Nectar Track, ECML-PKDD 2012]

PMAC model for learning real valued functions

Distribution
D on 2[n]

 Labeled Examples

Learning
Algorithm

Expert / Oracle

Data Source

Alg.outputs f : 2[n]  R+
g :2[n]  R+

(S1,f(S1)),…, (Sk,f(Sk))

• Algo sees (S1,f(S1)),…, (Sk,f(Sk)), Si i.i.d. from D, produces g.

• With probability ¸ 1-± we have PrS[g(S) · f(S)· ® g(S)]¸ 1-²

[Balcan&Harvey, STOC 2011 & Nectar Track, ECML-PKDD 2012]

𝛼 = 1 , recover PAC model.

Learning submodular functions

 No algo can PMAC learn the class of submodular fns with
approx. factor õ(n1/3).

Theorem: (General lower bound)

Corollary: Matroid rank fns do not have a concise,
approximate representation.

Surprising answer to open question
in Economics of

Theorem: (General upper bound)
 Poly time alg. for PMAC-learning (w.r.t. an arbitrary

distribution) with an approx. factor ®=O(n1/2).

• Even if value queries allowed; even for rank fns of matroids.

Noam Nisan Paul Milgrom

[Balcan&Harvey, STOC 2011 & Necktar Track, ECML-PKDD 2012]

Moral: Exploit Additional Structure

• Product distribution.
[Balcan-Harvey,STOC’11]

• Learning valuation fns from AGT and Economics.

• Learning influence fns in information diffusion networks

[Balcan-Constantin-Iwata-Wang, COLT ‘12]

[Du, Liang, Balcan, Song, ICML’14; NIPS’14]

• Bounded Curvature (i.e., almost linear)

[Badanidiyuru-Dobzinski-Fu- Kleinberg-Nisan-Roughgarden, SODA’12]

[Feldman-Vondrak,FOCS’13]

[Iyer-Jegelka-Bilmes, NIPS’13]

• Learning values of coalitions in cooperative game theory
[Balcan, Procacia, Zick, IJCAI’15]

Learning submodular functions

 No algo can PMAC learn the class of submodular fns with
approx. factor õ(n1/3).

Theorem: (General lower bound)

Surprising answer to open question
in Economics of

Theorem: (General upper bound)
 Poly time alg. for PMAC-learning (w.r.t. an arbitrary

distribution) with an approx. factor ®=O(n1/2).

• Even if value queries allowed; even for rank fns of matroids.

Noam Nisan Paul Milgrom

[Balcan&Harvey, STOC 2011 & Necktar Track, ECML-PKDD 2012]

A General Upper Bound

Theorem:
9 an alg. for PMAC-learning the class of non-negative,
monotone, submodular fns (w.r.t. an arbitrary
distribution) with an approx. factor O(n1/2).

Subadditive Fns are Approximately Linear

• Let f be non-negative, monotone and subadditive

• Claim: f can be approximated to within factor n
by a linear function g.

 Subadditive: f(S)+f(T) ¸ f(S[T) 8 S,T µ V

 Monotonicity: f(S) · f(T) 8 Sµ T
 Non-negativity: f(S) ¸ 0 8 S µ V

• Proof Sketch: Let g(S) = x in S f({x}).
Then f(S) · g(S) · n ¢ f(S).

V

Subaddtive Fns are Approximately Linear

f

n¢f

g

f(S) · g(S) · n¢f(S)

g (S) =w ¢ Â (S)

• Labeled examples ((Â(S), f(S)), +) and ((Â(S), n¢f(S)), -) are
linearly separable in Rn+1.

• Idea: reduction to learning a linear separator.

Problem: data not i.i.d.

Solution: create a related distib. P. Sample S from D; flip a coin.
If heads add ((Â(S), f(S)), +). Else add ((Â(S), n¢f(S)), -).

+

+

- -
+
+ - -

-

f(S) · g(S) · n¢f(S) where

features

• Claim: A linear separator with low error on P induces a linear
function with an approx. factor of n on the original data.

PMAC Learning Subadditive Valuations

Input: (S1, f(S1)) …, (Sm, f(Sm))

• For each Si, flip a coin.

Algorithm:

PMAC Learning Subadditive Valuations

• If heads add ((Â(S), f(Si)), +).

• Else add ((Â(S), n¢f(Si)), -).

• Theorem: For m = £(n/²), g approximates f to within a
factor n on a 1-² fraction of the distribution.

• Learn a linear separator u=(w,-z) in Rn+1.

Output: g(S)=1/(n+1) w ¢ Â (S).

Input: (S1, f(S1)) …, (Sm, f(Sm))

• For each Si, flip a coin.

Algorithm:

PMAC Learning Submodular Fns

• If heads add ((Â(S), f2(Si)), +).

• Else add ((Â(S), n f2(Si)), -).

• Learn a linear separator u=(w,-z) in Rn+1.

Output: g(S)=1/(n+1)1/2 w ¢ Â (S)

• Theorem: For m = £(n/²), g approximates f to within a
factor n1/2 on a 1-² fraction of the distribution.

 Proof idea: f non-negative, monotone, submodular can be
approximated within n1/2 by a \sqrt{linear function}. [GHIM, 09]

Input: (S1, f(S1)) …, (Sm, f(Sm))

• For each Si, flip a coin.

Algorithm:

PMAC Learning Submodular Fns

• If heads add ((Â(S), f2(Si)), +).

• Else add ((Â(S), n f2(Si)), -).

• Learn a linear separator u=(w,-z) in Rn+1.

Output: g(S)=1/(n+1)1/2 w ¢ Â (S)

• Theorem: For m = £(n/²), g approximates f to within a
factor n1/2 on a 1-² fraction of the distribution.

 Proof idea: f non-negative, monotone, submodular can be
approximated within n1/2 by a \sqrt{linear function}. [GHIM, 09]

A General Lower Bound

Use the fact that any matroid rank fnc is submodular.

Construct a hard family of matroid rank functions.

A1 A2 AL A3

X

X X

Low=log2n

High=n1/3

X

… … …. ….

L=nlog log n

Plan:

No algorithm can PMAC learn the class of non-neg.,
monotone, submodular fns with an approx. factor õ(n1/3).

Theorem

Vast generalization of partition matroids.

Ind={I: |I Å Aj| · uj, for all j }

Partition Matroids

• E.g., n=5, A1={1,2,3}, A2={3,4,5},

A1, A2, …, Ak µ V={1,2, …, n}, all disjoint; ui · |Ai|-1

Then (V, Ind) is a matroid.

If sets Ai are not disjoint, then (V,Ind) might not be a matroid.

• {1,2,4,5} and {2,3,4} both maximal sets in Ind; do not have
the same cardinality.

u1 = u2=2.

Almost partition matroids

k=2, A1, A2 µ V (not necessarily disjoint); ui · |Ai|-1

Then (V,Ind) is a matroid.

Ind={I: |I Å Aj| · uj , |I Å (A1 [A2)| · u1 +u2 - |A1 Å A2|}

Almost partition matroids

More generally

Ind= { I: |I Å A(J)| · f(J), 8 J µ [k] }

f(J)= j 2 J uj +|A(J)|-j 2 J|Aj|, 8 J µ [k]

f : 2[k] ! Z

Then (V, Ind) is a matroid (if nonempty).

Rewrite f, f(J)=|A(J)|-j 2 J(|Aj| - uj), 8 J µ [k]

=<0
A1, A2, …, Ak µ V={1,2, …, n}, ui · |Ai|-1;

Almost partition matroids

More generally

Ind= { I: |I Å A(J)| · f(J), 8 J µ [k] }

f(J)=|A(J)|-j 2 J(|Aj| - uj), 8 J µ [k]

f : 2[k] ! Z

Then (V, Ind) is a matroid (if nonempty).

Note: This requires k· n (for k > n, f becomes negative)

f(J)=|A(J)|-j 2 J(|Aj| -uj), 8 J µ [k]; ui · |Ai|-1 f : 2[k] ! Z,

More tricks to allow k=nlog log n.

Learning submodular valuations

A1 A2 AL A3

X

X X

Low=log2n

High=n1/3

X

… … …. ….

L=nlog log n

No algorithm can PMAC learn the class of non-neg.,
monotone, submodular fns with an approx. factor õ(n1/3).

Theorem

Worst Case Analysis 

Moral: Exploit Additional Structure

• Product distribution.
[Balcan-Harvey,STOC’11]

• Learning valuation fns from AGT and Economics.

• Learning influence fns in information diffusion networks

[Balcan-Constantin-Iwata-Wang, COLT ‘12]

[Du, Liang, Balcan, Song, ICML’14; NIPS’14]

• Bounded Curvature (i.e., almost linear)

[Badanidiyuru-Dobzinski-Fu- Kleinberg-Nisan-Roughgarden, SODA’12]

[Feldman-Vondrak,FOCS’13]

[Iyer-Jegelka-Bilmes, NIPS’13]

• Learning values of coalitions in cooperative game theory
[Balcan, Procacia, Zick, IJCAI’15]

Learning Valuation Functions

Additive µ OXS µ Submodular µ XOS µ Subadditive

Well-studied subclasses of subadditive valuations.

[Sandholm’99] [Lehman-Lehman-Nisan’01]

[Algorithmic game theory and Economics]

• Target dependent learnability for classes of valuation
fns have a succinct description.

[Balcan-Constantin-Iwata-Wang, COLT 2012]

g({1,2}) = $16

XOS valuations

Functions that can be represented as a MAX of SUMs.

g({1,2,3}) = $16

Max

Sum

({1}, $2) ({2}, $5)

Romania Switzerland Sum

({2}, $6) ({1}, $10)
({3}, $5)

g({2,3}) = $10

Target dependent Upper Bound for XOS

Theorem: (Polynomial number of Sum trees)
 O(R²) approximation in time O(n1/²).

Main Idea:

• Target approx within O(R²) by a linear
function over O(n1/²) feature space (one
feature for each n1/²-tuple of items).

Max

Sum Sum Sum

… …

• Reduction to learning a linear separator
in a higher dim. feature space.

Highlights importance of considering the
complexity of the target function.

R

Learning Influence Functions in
Information Diffusion Networks
[Du, Liang, Balcan, Song, ICML 2014 , NIPS’14]

𝑠1

𝑠2

𝐴𝑠1

𝐴𝑠2

f S = EG[# reachable from S|G]
probabilistic reachability fnc

Fact: in classic diffusion models (discrete time independent
cascade model/random threshold model, continuous time analogues,
etc), the influence function is coverage function.

Influence Function in Networks
• V = set of nodes.

• f(S) = expected number of nodes S will influence.

[Kleinberg-Kempe-Tardos’03]

Discrete-time independent cascade model

• Each edge has a weight 𝑤 ∈ [0,1]

𝑤1

𝑤2

𝑆 𝑆

sample

• Cascade generative process for a source set 𝑆
– presence of edge is sampled independently according to 𝑤

– influenced nodes are those reachable from at least one of
the source nodes in the resulting “live edge graph”

• Influence of S is expected number of nodes
influenced under this random process

Learning Influence Functions in
Information Diffusion Networks
[Du, Liang, Balcan, Song, ICML 2014 , NIPS’14]

𝑠1

𝑠2

𝐴𝑠1

𝐴𝑠2

f S = EG[# reachable from S|G]
probabilistic reachability fnc

Fact: in classic diffusion models, the influence function is a
coverage function.

• Note 2: Do better theoretically and empirically, if have
access to information diffusion traces or cascades.

• Note 1: Do not know better guarantees for efficient
algorithms if access only to value queries.

Learning Influence Functions based on information
propagation traces (cascades)

44

Mary

David

Another cascade

45

Mary

David

Learning the influence function

I.e., there is a distribution 𝑝𝑅 over reachability matrices R s.t.:

Assumption: f 𝑆 is a probabilistic coverage function.

𝑅𝑠𝑗 𝑠

𝑗

𝑅𝑠𝑗 = 1 if 𝑠 can reach 𝑗,
𝑅𝑠𝑗 = 0 otherwise.

f 𝑆 = 𝐸𝑅∼𝑝𝑅
[#influenced(𝑆|𝑅)]

| {𝑗: 𝑅𝑠𝑗 = 1 for some s∈ 𝑆} |

Goal: learn Influence function f S = E[#influenced(S)].

Input: past influence cascades { S1, I1 , S2, I2 , … , Sm, Im }.

Learning the influence function

Idea: 𝑓 𝑆 = 𝑓𝑗 (𝑆)𝑗 , where 𝑓𝑗 𝑆 = Pr
𝑅∼𝑝𝑅

(𝑗 is influenced by 𝑆).

Goal: learn Influence function f S = E[#influenced(S)].

Input: past influence cascades { S1, I1 , S2, I2 , … , Sm, Im }.

For each j, will learn f j(S). Output f j(S)j .

Use “random kitchen sink” approach:

• choose random binary vectors v1, v2, … , vK from q.

• Parametrize f j(S) as wi ⋅ I[IS, vi ≥ 1i] (wi ≤ 1, wi≥ 0)i

Learn weights via maximum conditional likelihood.

Algorithm for learning 𝑓𝑗

Influence estimation in real data

• Memetracker Dataset, blog data cascades : “apple and jobs”,
“tsunami earthquake”, “william kate marriage”

[Du, Liang, Balcan, Song, ICML 2014 , NIPS’14]

Conclusions

• Very strong lower bounds in the worst case.

Learnability of submodular, other combinatorial fns

• Much better learnability results for classes with additional
structure.

Max

Sum

({1}, $2) ({2}, $5)

Sum

({2}, $6) ({1}, $10)
({3}, $5)

• Can model problems of interest to many areas.

Conclusions

• Very strong lower bounds in the worst case.

Learnability of submodular functions

• Highlight the importance of considering the
complexity of the target function.

Open Questions:

• Exploit complexity of target for better approx
guarantees.

• What is a natural description language for
submodular fns?

[for learning and optimization]

• Other interesting applications.

51

