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Introduction and Problem Setup



Filtering with a state-space model
We deal with time-series data consisting of

▶ state:
x1, x2, . . . , xt , · · · ∈ X

▶ observation:
y1, y2, . . . , yt , · · · ∈ Y

State-space model: these data are generated by
▶ transition model p(xt |xt−1):

xt ∼ p(xt |xt−1)

▶ observation model p(yt |xt):

yt ∼ p(yt |xt)



Filtering with a state-space model

Filtering: For each time t, we observe yt .
Then estimate the posterior distribution on state xt , given a
history y1:t := y1, . . . , yt :

p(xt |y1:t).

Make use of Bayes’ rule:

p(xt |y1:t) ∝ p(yt |xt)︸ ︷︷ ︸
likelihood

p(xt |y1:t−1)︸ ︷︷ ︸
prior

= p(yt |xt)
∫

p(xt |xt−1) p(xt−1|y1:t−1)︸ ︷︷ ︸
posterior at t−1

dxt−1.

Posterior estimation is to be done recursively.



Basics of filtering algorithms

Suppose p(xt−1|y1:t−1) was already estimated.

At time t, decompose posterior estimation into two steps:

1. Prediction: Estimate the prior

p(xt |y1:t−1) =

∫
p(xt |xt−1)︸ ︷︷ ︸

transition model

p(xt−1|y1:t−1)dxt−1.

2. Correction: Given yt , estimate the posterior with Bayes’ rule

p(xt |y1:t) ∝ p(yt |xt)︸ ︷︷ ︸
observation model

p(xt |y1:t−1)︸ ︷︷ ︸
prior

p(xt |xt−1) and p(yt |xt) are assumed to be known.



Existing filtering methods

Kalman filters:

▶ p(xt |xt−1) and p(yt |xt) are assumed to be linear-Gaussian.

▶ Nonlinear approximation: extended/unscented kalman filters.

Particle filters (Doucet et al., 2001):

▶ p(xt |xt−1) and p(yt |xt) can be nonlinear-nonGaussian.

▶ Posterior is estimated as a weighted empirical distribution:

p̂(xt |y1:t) =
n∑

i=1

wt,iδXt,i
,

▶ wt,1, . . .wt,n ≥ 0 are importance weights.

▶ Xt,1, . . . ,Xt,n ∈ X are called particles.



Particle filters (PF) (Doucet et al., 2001)

Suppose p(xt−1|y1:t−1) was already estimated as

p̂(xt−1|y1:t−1) =
n∑

i=1

wt−1,iδXt−1,i

At time t, PF estimates p(xt |y1:t) by the following steps:

1. Prediction step：estimate p(xt |y1:t−1) by sampling:

Xt,i ∼ p(xt |xt−1 = Xt−1,i )︸ ︷︷ ︸
transition model

, (i = 1, ..., n),

p̂(xt |y1:t−1) :=
n∑

i=1

wt−1,iδXt,i
.



2. Correction step：given yt , estimate p(xt |y1:t) by importance
weighting:

wt,i ∝ p(yt |xt = Xt,i )︸ ︷︷ ︸
observation model

wt−1,i , (i = 1, ..., n)

p̂(xt |y1:t) =
n∑

i=1

wt,iδXt,i
.

3. Resampling step: resample particles from p̂(xt |y1:t) to collapse
small weight particles.



Limitation of particle filters

PF requires evaluation of the observation model p(yt |xt):

wt,i ∝ p(yt |xt = Xt,i )︸ ︷︷ ︸
observation model

wt−1,i .

But this may not be possible if

▶ p(yt |xt) is unknown: e.g. robot localization
(Vlassis et al., 2002), brain computer interface
(Wang et al., 2011).

▶ p(yt |xt) is intractable: e.g. econometrics (Jasra et al., 2012).



Example 1: vision-based mobile robot localization

Problem: estimate a mobile robot’s position xt for each time t,
only given its vision images y1, . . . , yt .

Figure: COLD database (Pronobis and Caputo, 2009)



Example 1: vision-based mobile robot localization

State-space formulation:

▶ state xt : position (2/3-dim location + angle).

▶ observation yt : vision image (high-dimensional).

▶ Problem reduces to filtering: estimation of p(xt |y1:t).

Observation model p(yt |xt): conditional distribution on
vision-images given a position:

▶ unknown: parametric models cannot be easily defined.

▶ But, training samples {(Xi ,Yi )}ni=1 are available (collected in
training phase).

Transition model p(xt |xt−1): robot motion model; many available
models (Thrun et al., 2005).



Example 2: brain-computer interface

Problem: decoding subject’s finger flexion xt from ECoG signals
y1, . . . , yt .

Figure: Experimental setup (Wang et al., 2011)



Example 2: brain-computer interface

State-space modeling is possible for BCI tasks
(Pistohl et al., 2008; Wang et al., 2011):

▶ state xt : finger positons (5 dim)

▶ observation yt : ECoG signals (64 dim)

▶ Decoding can be formulated as filtering: p(xt |y1:t)
Observation model p(yt |xt): conditional distribution on ECoG
signals given finger positions:

▶ unknown: parametric models cannot be easily defined.

▶ But, training samples {(Xi ,Yi )}ni=1 are available (collected in
training phase).

Transition model p(xt |xt−1): can be modeled using prior
knowledge (Wang et al., 2011)



Problem setting

Filtering under the following assumptions:

▶ transition model p(xt |xt−1)：known (same as PF).

▶ observation model p(yt |xt)：unknown．But training samples
are given:

(X1,Y1), . . . , (Xn,Yn) ⊂ X × Y.

We develop a filter based on kernel embedding of distributions.



Preliminaries: Kernel Embedding of Distributions



Positive definite kernel

Let k : X × X → R be a positive definite kernel.

e.g. for X = Rd

▶ Gaussian kernel: k(x , x ′) = exp(−∥x − x ′∥2/γ2).
▶ Polynomial kernel: k(x , x ′) = (⟨x , x ′⟩+ c)m.

X can be a set of structured data, such as image, text and graph,
once an appropriate kernel is defined (Schölkopf and Smola, 2002).



Reproducing Kernel Hilbert space (RKHS)

Any positive definite kernel k defines an RKHS H, such that

▶ For all x ∈ X ,
k(·, x) ∈ H.

▶ For all f ∈ H and x ∈ X (reproducing property),

f (x) = ⟨f , k(·, x)⟩H .

Function k(·, x) ∈ H is called the feature of x .

▶ Kernel is the inner-product between the features:

k(x , x ′) =
⟨
k(·, x), k(·, x ′)

⟩
H , x , x ′ ∈ X .



Kernel embedding of distributions (Smola et al., 2007)

Represent any probability distribution P on X as the mean of
features:

mP :=

∫
k(·, x)dP(x) ∈ H,

which will be referred to as the kernel mean of P .

▶ If k is characteristic, e.g. the Gaussian kernel on Rd ,
mP uniquely identifies P (Fukumizu et al., 2008):

mP = mQ ⇒ P = Q

▶ Estimation of P can be cast as estimation of mP .



Empirical estimate

Given i.i.d. sample X1, . . . ,Xn from P , one can estimate mP by

m̂P :=
1

n

n∑
i=1

k(·,Xi ).

Convergence rate: ∥m̂P −mP∥H = OP(n
−1/2)

(Smola et al., 2007).
Other popular estimators:

▶ Conditional mean embedding (Song et al., 2009).

▶ Kernel Bayes’ rule (Fukumizu et al., 2011).

These provide estimates in the form of a weighted sum

m̂P =
n∑

i=1

wik(·,Xi )

with some w1, . . . ,wn ∈ R and X1, . . . ,Xn ∈ X .



Proposed Method



Filtering by kernel embedding

Filtering can be cast as estimation of posterior kernel mean:

mxt |y1:t :=

∫
kX (·, xt)p(xt |y1:t)dxt .

This is to be done under the following assumptions:

▶ transition model p(xt |xt−1)：known (same as PF).

▶ observation model p(yt |xt)：unknown．But training samples
are given:

(X1,Y1), . . . , (Xn,Yn) ⊂ X × Y.

Define kernels kX and kY on X and Y, respectively.

(X and Y can be any spaces, once kernels are defined.)



Proposed method

Suppose the posterior kernel mean at time t − 1

mxt−1|y1:t−1
:=

∫
kX (·, xt−1)p(xt−1|y1:t−1)dxt−1.

was already estimate.

At time t, do the following steps:

1. Prediction: estimate the prior kernel mean:

mxt |y1:t−1
:=

∫
kX (·, xt)p(xt |y1:t−1)dxt

2. Correction: given yt , estimate the posterior kernel mean:

mxt |y1:t :=

∫
kX (·, xt)p(xt |y1:t)dxt .



1. Prediction step

Suppose mxt−1|y1:t−1
was estimated as

m̂xt−1|y1:t−1
:=

n∑
i=1

wt−1,ikX (·,Xt−1,i ).

Estimate the prior kernel mean mxt |y1:t−1
by sampling:

Xt,i ∼ p(xt |xt−1 = Xt−1,i )︸ ︷︷ ︸
transition model

, (i = 1, ..., n),

m̂xt |y1:t−1
:=

n∑
i=1

wt−1,ikX (·,Xt,i ).



1. Prediction step: theoretical analysis

Under some assumptions, the error of the prediction step is

∥mxt |yt−1
− m̂xt |y1:t−1

∥2HX

= O(∥mxt−1|y1:t−1
− m̂xt−1|y1:t−1

∥2HX︸ ︷︷ ︸
(a)

+
n∑

i=1

w2
t−1,i︸ ︷︷ ︸

(b)

)

(a): error at t − 1.

(b): inverse of effective sample size: close to 0 when the variance
of the weights are small.

e.g. if wt−1,i = 1/n, (b) = 1/n.



2. Correction step

Given yt , estimate the posterior kernel mean mxt |y1:t by the kernel
Bayes’ rule (Fukumizu et al., 2011):

m̂xt |y1:t :=
n∑

i=1

wt,ikX (·,Xi ),

where wt,i are calculated from yt , m̂xt |y1:t−1︸ ︷︷ ︸
prior

and {(Xi ,Yi )}ni=1︸ ︷︷ ︸
trainings samples

:

m := (m̂xt |y1:t−1
(Xj)) ∈ Rn, kY := (kY(yt ,Yj)) ∈ Rn

GX = (kX (Xi ,Xj)) ∈ Rn×n, GY = (kY(Yi ,Yj)) ∈ Rn×n

Λ := diag((GX + nεIn)
−1m) ∈ Rn×n

wt := ΛGY ((ΛGY )
2 + δIn)

−1ΛkY ∈ Rn,

This is a consistent estimator of mxt |y1:t (Fukumizu et al., 2013).



State estimation

The estimate m̂xt |y1:t =
∑n

i=1 wt,ikX (·,Xi ) can be used for
estimating the expectation of a smooth function
(Kanagawa and Fukumizu, 2014):∫

f (xt)p(xt |y1:t)dxt .

This is done by
n∑

i=1

wt,i f (Xi ).

e.g. posterior mean
∫

xtp(xt |y1:t)dxt can be estimated by

n∑
i=1

wt,iXi .



Experiments



Setup

We compare with the following methods:

kNN-PF (Vlassis et al., 2002): 　 the observation model is learned
with k-NN approach, and then combined with a
particle filter.

GP-PF (Ferris et al., 2006): 　 the observation model is learned
with with Gaussian process regression, and then
combined with a particle filter.

KBR filter (Fukumizu et al., 2011): kernel embedding-based filter
that also learns the transition model from data as
well as the observation model. Used as baseline.

State estimation is done by estimation of posterior mean.



Synthetic experiment 1

transition model:

x1 = v1, v1 ∼ N(0, 1/(1− 0.92)).

xt = 0.9xt−1 + 0.5ut + 0.5vt , vt ∼ N(0, 1).

observation model:

yt = xt + wt , wt ∼ N(0, 1).

▶ Linear Gaussian model.

▶ Control ut are generated randomly generated from Gaussian
N(0, 1).

▶ Training samples {(Xi ,Yi )} are generated by running the
model.



Synthetic experiment 1

▶ GP-PF performed the best, since the noise is Gaussian.

Figure: RMSE of state estimation, varying the training data size.（KMC)
proposed method.（KBR）KBR filter.（NN）kNN-PF.（GP）GP-PF.



Synthetic experiment 2

transition model:

x1 = v1, v1 ∼ N(0, 1/(1− 0.92)).

xt = 0.9xt−1 + 0.5ut + 0.5vt , vt ∼ N(0, 1).

observation model:

yt = 0.5 exp(xt/2)wt , wt ∼ N(0, 1).

▶ Transition model is the same as Experiment 1.

▶ Observation model is nonlinear-transformation +
multiplicative noise．

▶ Control ut are generated randomly generated from Gaussian
N(0, 1).



Synthetic experiment 2
▶ Proposed method performed the best, due to strong

nonlinearity of the observation model.

Figure: RMSE of state estimation, varying the training data size.（KMC)
proposed method.（KBR）KBR filter.（NN）kNN-PF.（GP）GP-PF.



Vision-based mobile robot localization

Problem: estimate a mobile robot’s position xt for each time t,
only given its vision images y1, . . . , yt .

Figure: COLD database (Pronobis and Caputo, 2009)



Vision-based mobile robot localization

Experiment using the COLD database
(Pronobis and Caputo, 2009).

▶ state xt (position): Gaussian kernel kX .

▶ observation yt (image): Spatial pyramid kernel kY
(Lazebnik et al., 2006).

▶ Training samples {(Xi ,Yi )}ni=1: position-image pairs.

▶ Transition model p(xt |xt−1, ut): odometry motion model
(Thrun et al., 2005).

Position is estimated as a sample point with maximum weight:

argmax
Xi

wt,i



Result

▶ Proposed method performed best: even superior to kNN-PF,
which was originally proposed to this task.

Figure: RMSE of state estimation, varying the training data size.（KMC）
Proposed method,（KBR) KBR filter,（NN）kNN PF,（NAI）Baseline



Conclusion

We developed a filter for the setting where

▶ transition model p(xt |xt−1) is known.

▶ observation model p(yt |xt) is unknown, but training samples

(X1,Y1), . . . , (Xn,Yn)

are given.

Our method can be applied if

▶ kernels are defined on X and Y.
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