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Introduction



Deep Neural Network
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Deep Neural Network
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Mathematically

h; = ¢ (Wix)

hy = ¢ (Wahy)

h3 = ¢ (Wshy)
y=wh;



Overfitting

» Potential problem: if number of nodes in two adjacent
layers is big, corresponding W is also very big and there is
the potential to overfit.

» Proposed solution: “dropout”.
» Alternative solution: parameterize W with its SVD.

W =UAV'

or
W=UV'

where if W € Rf1%k2 then U € RF1X7 and V € RF2XT je. we
have a low rank matrix factorization for the weights.
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input layer
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Mathematically

fi =V]x

h; = ¢ (Uify)
f, = VIh

h; = ¢ (U2fy)
f3=V;hy

h3 = ¢ (Usfs)
y=w,h;



A Cascade of Neural Networks

fi = VlTx
f, =V, ¢ (Uify)
f3 = V; ¢ (Uafr)
y=w,fs



Replace Each Neural Network with a Gaussian Process

f; =£(x)
f = (1)
f5 = £(f)
y = f(f3)

This is equivalent to Gaussian prior over weights and
integrating out all parameters and taking width of each layer to
infinity.



Gaussian Processes: Extremely Short Overview
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Deep Gaussian Process Models



Mathematically

» Composite multivariate function

g(x) = f5(f4(f3(£2(f1(x)))))



Why Deep?

» Gaussian processes give priors over functions.
Elegant properties:

» e.g. Derivatives of process are also Gaussian distributed (if
they exist).

\4

v

For particular covariance functions they are “universal
approximators’, i.e. all functions can have support under
the prior.

v

Gaussian derivatives might ring alarm bells.

» E.g. a priori they don’t believe in function ‘jumps’.



Process Composition

» From a process perspective: process composition.

» A (new?) way of constructing more complex processes
based on simpler components.

Note: To retain Kolmogorov consistency introduce IBP priors over
latent variables in each layer (Zhenwen Dai).



Analysis of Deep GPs

» Duvenaud et al. (2014) Duvenaud et al show that the
derivative distribution of the process becomes more heavy
tailed as number of layers increase.



Difficulty for Probabilistic Approaches

» Propagate a probability distribution through a non-linear

mapping.
» Normalisation of distribution becomes intractable.

X2
=
1
v
~~
%)
N

X1

Figure : A three dimensional manifold formed by mapping from a
two dimensional space to a three dimensional space.



Difficulty for Probabilistic Approaches

v1 = fi(x)

— = %2/
X Y2 = fo(x)

n

Figure : A string in two dimensions, formed by mapping from one
dimension, x, line to a two dimensional space, [y1, y»] using
nonlinear functions fi(-) and f,(-).



Difficulty for Probabilistic Approaches

y:@)+e

p(x) p(y)

Figure : A Gaussian distribution propagated through a non-linear
mapping. y; = f(x;) + €. € ~ N (0,0.22) and £() uses RBF basis, 100
centres between -4 and 4 and ¢ = 0.1. New distribution over y (right)
is multimodal and difficult to normalize.
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Flexible Parametric Approximation



Inducing Variable Approximations

» Date back to (Williams and Seeger, 2001; Smola and Bartlett, 2001; Csat6 and
Opper, 2002; Seeger et al., 2003; Snelson and Ghahramani, 2006). See
Quifionero Candela and Rasmussen (2005) for a review.

» We follow variational perspective of (Titsias, 2009).

» This is an augmented variable method, followed by a
collapsed variational approximation (King and Lawrence, 2006;
Hensman et al., 2012).



Augmented Variable Model: Not Wrong but Useful?

Augment standard model with a set
of m new inducing variables, u.

p) = [ v, wdu &



Augmented Variable Model: Not Wrong but Useful?

Augment standard model with a set
of m new inducing variables, u.

p(y) = f pylu)p(u)du



Augmented Variable Model: Not Wrong but Useful?

Important: Ensure inducing
variables are also Kolmogorov
consistent (we have m"* other inducing
variables we are not yet using.)

pw) = [ plau)dw



Augmented Variable Model: Not Wrong but Useful?

Assume that relationship is through N
f (represents ‘fundamentals’—push \u)
Kolmogorov consistency up to here). /

p(y) = f p(ylf)p(flu)p(u)dfdu



Augmented Variable Model: Not Wrong but Useful?

Convenient to assume factorization
(doesn’t invalidate model—think delta

function as worst case). e

p(y) = f H p(yil f)p(flu)p(u)dfdu
i=1

I
—
N




Augmented Variable Model: Not Wrong but Useful?

(=)
NG

Focus on integral over f.

p(y) = f f ﬁp(yilﬁ)P(flu)dfP(u)du
i=1

I
—
N



Augmented Variable Model: Not Wrong but Useful?

Focus on integral over f.

pyi) = [ ][t
i=1




Variational Bound on p(y|u)

log p(ylu) = logfp(ylf)p(flu)df

fp(f
= f q(f) log %dﬂ KL (9(f) [l p(fly, u))



Variational Bound on p(y|u)

log p(ylu) :logfp(ylf)p(flu)df
fp(f
= f q(f) log %df + KL (q(f) | p(fly, u))

(Titsias, 2009)

» Example, set g(f) = p(flu),

log p(ylu) > logfp(flu) log p(ylf)df.

p(ylu) > exp f p(flu) log p(ylf)df.



Optimal Compression in Inducing Variables

» Maximizing lower bound minimizes the KL divergence
(information gain):

p(flu)
p(ly,u)

KL (p(iw) | p(Ely, ) = f p(flw) log

» This is minimized when the information stored about y is
stored already in u.

» The bound seeks an optimal compression from the
information gain perspective.

» If u = f bound is exact (f d-separates y from u).



Choice of Inducing Variables

» Optimizing the bound directly not always practical.

» Free to choose whatever heuristics for the inducing
variables.

» Can quantify which heuristics perform better through
checking lower bound.



Factorizing Likelihoods

» If the likelihood, p(ylf), factorizes

p(ylu) = exp f p(flu) log Hp(yilﬁ)df.
i=1
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Factorizing Likelihoods

» If the likelihood, p(ylf), factorizes

p(ylu) = exp f p(flu)Z logp(yilfi)df.
i=1



Factorizing Likelihoods

» If the likelihood, p(ylf), factorizes

p(ylu) = exp f p(flu)zlogp(yilﬁ)df.
i=1



Factorizing Likelihoods

» If the likelihood, p(ylf), factorizes

p(ylu) > epofp(filu) log p(yilfi)df.
i=1



Factorizing Likelihoods

» If the likelihood, p(ylf), factorizes

pylu) > exp ) | f p(filw) log p(yilf)df.
i=1



Factorizing Likelihoods

» If the likelihood, p(ylf), factorizes

p(ylw) > [ [ exp f p(filw) log p(yil ).
i=1



Factorizing Likelihoods

» If the likelihood, p(ylf), factorizes

p(yln) > [ Jexp f p(filw) log p(yilf)df.
i=1

» Then the bound factorizes.



Factorizing Likelihoods

» If the likelihood, p(ylf), factorizes

p(yl) > | | exp (log p(yil )Yy si)
i=1

» Then the bound factorizes.



Factorizing Likelihoods

» If the likelihood, p(ylf), factorizes

p(ylu) = Hexp (log p(yil i) 1wy

i=1

» Then the bound factorizes.

» Now need a choice of distributions for f and y|f ...



K¢ K
Kuf Kuu

yIf = HN(f,az)

f,u~N(0,[

)
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Variational Compression



Gaussian p(vyilf;)

For Gaussian likelihoods:

(108 PUI 1y = —% log 2m0?~—— (y; - <ﬁ>)z—§ (£ =AY

202



Gaussian p(vyilf;)

For Gaussian likelihoods:

Qog PNy = 5 0827051 (3 = (FP—55 () — ()

Implying:
p(yilu) > exp (logci) N (il (i}, 0*)



Gaussian Process Over f and u

Define:
i = varygin) () = (f7), 1y ~ bt
We can write:
Ci = exp (—ﬂ)
202
If joint distribution of p(f, u) is Gaussian then:

_ . T -11,..
qdii = ki,z - ki,uKu,ukl,u

¢; is not a function of u but is a function of Xy,.



Total Conditional Variance

» The sum of g;; is the total conditional variance.
» If conditional density p(flu) is Gaussian then it has
covariance
Q = K¢ — K KoKy
» tr (Q) = ).;gi; is known as total variance.

» Because it is on conditional distribution we call it fotal
conditional variance.



Capacity of a Density

» Measure the 'capacity of a density’.
» Determinant of covariance represents 'volume’ of density.

» log determinant is entropy: sum of log eigenvalues of
covariance.

» trace of covariance is total variance: sum of eigenvalues of
covariance.

» A >log A then total conditional variance upper bounds
entropy.



Alternative View

Exponentiated total variance bounds determinant.

QI < exp tr (Q)

Because
k k
H Ai < H exp(A;)
i=1 i=1
where {/\i}i.‘:l are the positive eigenvalues of Q This in turn
implies

k
1Ql < [ [ exp (:1)
i=1



Communication Channel

» Conditional density p(flu) can be seen as a communication
channel.

» Normally we have:

. u f .
Transmitter — P& -5 Receiver

Channel

and we control p(u) (the source density).

» Here we can also control the transmission channel p(f|u).



Lower Bound on Likelihood

Substitute variational bound into marginal likelihood:

py) = [ [ f N (y1¢6),0%1) p(w)du
i=1

Note that:
Epi) = K¢ oKt

is linearly dependent on u.



Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:

p(u) = N (ul0,Ky,u)

n
f pylwp(wdu > [ e f N (1K uKghw, 02) N (ul0, Ky ) du
i=1



Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:
p(a) = N (ul0, Kyu)

f p(ylu)p(u)du > H ciN (le, o’1 + Kf,uK;}uKu,f)

i=1



Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:
p(u) = N (ul0,Ky,u)

n
f plylwp(u)du > | [ el (v10, 0% + KoK Kuy)

i=1
Maximize log of the bound to find covariance function
parameters,

n
L> Z logc; +log N (yIO, o’1 + Kf,uK;}uKulf,)
i=1



Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:
p(u) = N (ul0,Ky,u)

n
f plylwp(u)du > | [ el (v10, 0% + KoK Kuy)

i=1
Maximize log of the bound to find covariance function
parameters,

n
L> Z logc; +log N (yIO, o’1 + Kf,uK;}uKulf,)
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Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:
p(u) = N (ul0, Ky,u)

n
f p(ylw)p(u)du > H ciN (¥10, 0% + K KoL Ko )
i=1
Maximize log of the bound to find covariance function
parameters,

L ~log N (y10, 01 + KoKy K

» If the bound is normalized, the ¢; terms are removed.



Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:
p(u) = N (ul0, Ky4)

f p(ylu)p(u)du > H N (yIO, o1 + Kf’uK;,]uKu,f)
i=1

Maximize log of the bound to find covariance function
parameters,

» If the bound is normalized, the c¢; terms are removed.

» This results in the projected process approximation
(Rasmussen and Williams, 2006) O DTC (Quifionero Candela and
Rasmussen, 2005). Proposed by (Smola and Bartlett, 2001; Seeger et al.,
2003; Csat6 and Opper, 2002; Csat6, 2002).



Selecting Data Dimensionality

v

GP-LVM Provides probabilistic non-linear dimensionality
reduction.

v

How to select the dimensionality?

v

Need to estimate marginal likelihood.

v

In standard GP-LVM it increases with increasing 4.



Integrate Mapping Function and Latent Variables

Bayesian GP-LVM

» Start with a standard
GP-LVM.

4
pOX) = [ [N (y.0.K)
j=1



Integrate Mapping Function and Latent Variables

Bayesian GP-LVM

» Start with a standard
GP-LVM.

» Apply standard latent
variable approach:

» Define Gaussian prior
over latent space, X.

4
pOX) = [ [N (y.0.K)
j=1



Integrate Mapping Function and Latent Variables

Bayesian GP-LVM
» Start with a standard

GP-LVM.

» Apply standard latent
variable approach:
» Define Gaussian prior

over latent space, X.
> Integrate out latent

variables.

r
p () = [[ N (y:10.K)

i1

-

q
p(X) = H N(x:,]-IO, acl._zl)



Integrate Mapping Function and Latent Variables

Bayesian GP-LVM

» Start with a standard
GP-LVM.

» Apply standard latent 52
variable approach:

» Define Gaussian prior
over latent space, X.

r
» Integrate out latent p(YIX) = H N (y.10,K)
variables. j=1
» Unfortunately
. . q
integration is -2
. X) = N (x,il0,a; "1
intractable. P9 g ( ! )

p(Yla) =22



Standard Variational Approach Fails

» Standard variational bound has the form:

L = (log p(ylX)),x) + KL ((X) [ p(X))



Standard Variational Approach Fails

» Standard variational bound has the form:

L = (log p(ylX)),x) + KL ((X) [ p(X))

» Requires expectation of log p(y|X) under g(X).

1 -1 1 n
log p(ylX) = —EYT (Kf,f + GZI) y=3 log |Kf/f + 021|—§ log 27



Standard Variational Approach Fails

» Standard variational bound has the form:
£ = (log p(yIX)), x, + KL (40X | p(0)
» Requires expectation of log p(y|X) under g(X).
log p(ylIX) = —%YT (Kf,f + 021)_1 y—% log |Kf’f + GZI|—g log2m

» Extremely difficult to compute because K¢ is dependent
on X and appears in the inverse.



Variational Bayesian GP-LVM

» Consider collapsed variational bound,

p=[[a [ N (10, 1)pwdu
i=1



Variational Bayesian GP-LVM

» Consider collapsed variational bound,

p20 > [ [or [ (51 Epiaur o°1) pludu
i=1



Variational Bayesian GP-LVM

» Consider collapsed variational bound,

[ popooax> [ TTen (v By, 1) p00aXpw
i=1



Variational Bayesian GP-LVM

» Consider collapsed variational bound,

[ popooax> [ TTen (v By, 1) p00aXpw
i=1

» Apply variational lower bound to the inner integral.



Variational Bayesian GP-LVM
» Consider collapsed variational bound,
[ popooax> [ TTen (v By 1) p00aXpwd
i=1

» Apply variational lower bound to the inner integral.
f TTeN (71 ®piauno - P1)p00EX
i=1

> <Z log ci>
i=1 9(X)

+ (log N (y1E)ytiu o “2I)>q(x>
+KL (g(X) | p(X))



Variational Bayesian GP-LVM

» Consider collapsed variational bound,

[ popooax> [ TTen (v By 1) p00aXpwd
i=1

» Apply variational lower bound to the inner integral.
f TTeN (71 ®piauno - P1)p00EX
i=1

> <Z log Ci>
i=1 q(X)
+ (log N (y1E)ytiu o “2I)>q(x>
+ KL (9(X) [ p(X))

» Which is analytically tractable for Gaussian g(X) and some
covariance functions.



Required Expectations
» Need expectations under g(X) of:

1 _
logci = 5= [kii — k[ Kgukiu
202 '

and
2 1 , 1 1.\2
logN(yI Epifu,y) 0 I) =-3 log 2o ~552 (yi - Kf,uKu,uu)

» This requires the expectations

<Kf’“ >q(X)

and
(KeuKoiKug) o

which can be computed analytically for some covariance
functions.



Variational Compression

a7

S ]

(Damianou and Lawrence, 2013)

» Augment each layer with inducing variables u;.
» Apply variational compression,

T
X

p(y, (2w, X) >p(ylae, fo1) | | plEilws, £i20)p(f1lws, X)

1

14
X exp (Z —2L02tr (Zi)) (1)

i=1 i

Il
N

where
plEilus, 1) = N (£Kg0, Ky wi, 071).



Nested Variational Compression

(Hensman and Lawrence, 2014)

» By sustaining explicity distributions over inducing
variables James Hensman has developed a nested variatnt
of variational compression.

» Exciting thing: it mathematically looks like a deep neural
network, but with inducing variables in the place of basis
functions.

» Additional complexity control term in the objective
function.
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Nested Bound

(v

2012 -t ((DiK‘_lfl“i))

¢
log p(ylX) = - —ztr (Z1) - Z

i=2
KL (q w;) || P(uz))

1
202
1

- 1D

tr ((cpz- ST, () G )

u;u;

||
N

[k

+ log N (yIW Ky, m, o21) @)



Nested Bound

¢
log pyX) > = —5tr(Z0) = ), = (v - (@KL, )
i=2 i

KL (9(u;) I p(u))

1
202
1

- 1D

tr (@ - W WK, (wl) KL

u;u;

||
N

[}

+ log N (yI\If[Ku[u[m[, G%I) (2)



Required Expectations

logN(y|\I’gK_1 my, o?l)

usue

where



Required Expectations

log N (y|‘I’,gK_1 my, G%I)

ugue

where
W; = <Kfiui>

where elements of K¢, are

kpu (fiz1, 27)

q(fi-1)



Required Expectations

log N (y|‘11,gK_1 my, a%l)

usue

where
W, = <Kf,vui>

where elements of K, are

kpu (fi-1, 27)

q(fi-1)

a(6) = f P(fafur, X)q(ur)duy,

q(f;) = f p(filu;, £i-1)g(w;)q(f;-1)dw;df;,



Required Expectations

log N (y|‘I’gK_1 my, O%I)

usuy
where
Wi= <Kff“f>q<f,f1>

where elements of K¢, are

kpu (fio1, 27)
q(f1) = fﬁ(fllul,x)q(ul)dul,
q(f;) = f p(filw;, £i_1)q(u;)g(f;—1)du;df;,

cf wake sleep algorithm. recognition network and generation
network (Hinton et al., 1995).



Derivative Tails Increase with Layers: Step Function

s : s
1 -
(a) GP (b) 2 layers
|pmemm—s RN

(c) 4 layers



Values in Hidden Layers

hy |

ho

h3

hy

$

hs



Loop Detection in Robotics

(d) True path (e) Hidden layer 1 (f) Hidden layer 2

. Dynamically constrained model
. Correctly detects the loop

. Learns temporal continuity and corner-like features in
different layers



Data fit for Loop Closure

0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0

Figure : Example data fits for 2 of the 30 output dimensions



Motion Capture

» ‘High five’ data.

» Model learns structure between two interacting subjects.



Deep hierarchies — motion capture

Y(l)

Deep Gaussian processes 38



Digits Data Set

» Are deep hierarchies justified for small data sets?
» We can lower bound the evidence for different depths.

» For 150 6s, Os and 1s from MNIST we found at least 5
layers are required.



Deep hierarchies — MNIST

Optimised
weights

R S

Outputs obtained
after sampling
from (certain nodes)
of layers 5,4,2,1

X Generic
P EEMANMNIN
1 encoding

’1‘4 A [A [A [A [A [&) [&)

X: [MAAIArArAMA

Local

:}Xl mmmmm@@ feature

N4 encoding

Deep Gaussian processes 37



Deep Health

c§ T2
© B A
s T2
S 9 g 'c
m B n ©
Y s
OR=
<IN
S
= @
) - s
Q. o
2 Z
9] =
=
3
<19
)
Q.
9]
-
o
£ 5
\ R\ 0
< «w .l..o‘»v w\n'lf.“..o‘
S X&)
= A vl
& —r
m % (A(v'l.%/”
)
o
2
o)
=1
9)
o0

gene ex-
pression

A

clinical mea-
surements

d treatment

an

data



Summary

» Deep Gaussian Processes allow unsupervised and
supervised deep learning.

» They can be easily adapted to handle multitask learning.

» Data dimensionality turns out to not be a computational
bottleneck.

» Variational compression algorithms show promise for
scaling these models to massive data sets.
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