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Rank Aggregation

* A set of agents provide their ranked preferences over a
fixed set of alternatives

* We wish to aggregate them into a consensus ranking
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Application: Elections

Ballot
1. Labour

2. Liberal Ballot
Democrats . Conservative

* Selecting representatives in . Liberal
elections Ballot Democrats

. Sinn Fein . Labour

. Labour

. Liberal
Democrats

Source: David Williamson, The Rank Aggregation Problem



Application: Competitions

Aggregation
Rank Judge A Judge B Judge C Judge D Judge E sum average rank
item 1 5 o 2 9 1 23 4.6 4
item 2 7 3 6 5 7 28 5.6 8
. . item 3 5 3 2 3 3 16 3.2 2
* Aggregating scores In B 2 s o 39 3 [N
r item 5 7 3 9 1 7 27 54 6
Competltlons item 6 1 9 6 S 6 27 54 6
item 7 2 8 1 5 7 23 4.6 <
item 8 2 6 9 4 10 31 6.2 10
item 9 10 1 2 5 19 3.8 3
item 10 7 1 2 1 14 2.8 1



Application: Search Engines

* Meta-search engines that aggregate rankings from different search
engines
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Source: Aris Gionis, Algorithmic Methods for Data Mining



Rank Aggregation

Has been studied in varied communities

Statistics: Modeling distributions over permutations
e.g. Mallows Mode|

Social Choice/Welfare Theory: Normative Axioms
Theoretical Computer Science: Distance based
procedures e.g. Kemeny Rule using the Kendall-Tau

distance; NP-hardness, approximation results

Information Retrieval: Meta Search



Distributional Rank
Aggregation

e |n real-world, no access to voters

e Access to only the histogram of the ranking preferences

 how many voters for each ranking preference
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Distributional Rank
Aggregation

* In real-world, no access to voters
e Access to only the histogram of the ranking preferences
e how many voters for each preference

 We term this rank aggregation variant that takes as input
only the histogram as Distributional Rank Aggregation.
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Distributional Rank
Aggregation

e We term this rank aggregation variant that takes as input
only the histogram as Distributional Rank Aggregation.

* Note that this is distinct from a statistical assumption: we

do not assume that the ranking preferences of voters are
drawn from any distribution (such as the Mallows model)
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A Normative Approach
(instead of a decision-theoretic approach)

 How do we evaluate a distributional rank aggregation algorithm?
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A Normative Approach
(instead of a decision-theoretic approach)

 How do we evaluate a distributional rank aggregation algorithm?

* As is standard in machine learning, we could use a decision theoretic/utility maximization
approach

A utility function (or on the flip side, a loss function) assigning a score to any
consensus ranking given a target consensus ranking

« But which evaluation metric/utility to use?

« Alternatively, a normative approach: evaluate a rank aggregation algorithm by whether,
and to what extent, it satisfies reasonable axioms

» Results in this vein have been obtained for clustering by Ackerman et al (NIPS 2008,
2010)



Social Weltare Axioms

 \WWhat are good properties that an aggregation procedure
should satisty”

o Dates back to 1700s French philosophers and
mathematicians.

VS

Condorcet



Social Weltare Axioms

e Dates back to 1700s French
philosophers and
mathematicians.

« More modern attempts to
construct an aggregation
system that satisfies a set of
natural axioms

* Impossibility Result
[Arrow(1951)]: reasonable

axioms cannot be Kenneth Arrow
simultaneously satisfied.




Social Weltare Axioms

* Impossibility Results that state reasonable axioms
cannot be simultaneously satistied

 Axioms are typically qualitatively stated, and prone
to mis-interpretation: lack of quantitative
characterization

* |n particular, for any aggregation procedure, notion
of approximate satisfiability of an axiom is missing.



Outline for rest of talk

* Translate social choice axioms to the distributional ranking setting.
» Characterize axioms guantitatively

 Reduce misinterpretation.

e Understand the underlying connections between axioms.

* Relaxed-variants of axioms
* Finesse Impossibility Results:

e Show it is possible to satisfy reasonable axioms simultaneously,
If approximately



Translating Social Choice Axioms
to setting of
Distributional Rank Aggregation



Translating Social Choice Axioms

* (Given distribution P over ranking preferences, what
properties should the consensus ranking op
satisty?



Pareto Efficiency

* For every item pair x and vy, it everyone prefers
X toy, then x is preferred to y in the resulting social
poreference order.



Pareto Efficiency

* For every pair x and y of alternatives, if everyone
porefers x to y, then x is preterred to y in the
resulting social preference order.

If Vo : o(x) < o(y), then o5(x) < op(y).
in the support of P
( Consensus ranking

given distribution P



Independence of Irrelevant
Alternatives (l1A)

 |f voters change their preferences, but keep their
relative positions of x and vy, then the relative
positions of x and y in the aggregation should still
remain the same
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Independence of Irrelevant
Alternatives (l1A)

 |f voters change their preferences, but keep their
relative positions of x and vy, then the relative
positions of x and y in the aggregation should still
remain the same

Let PX.<?/ = Za:a(g)«;(y) P(o) be the marginal
probability of x being preferred over y.

If for any two distributions P and Q, Py, = Q«<,, then

sign [o5(x) — ()] = sign [o5(x) — a5(y)]



Mayjority Rule

* For any set of voters, If an alternative x is ranked In
the top position in strictly more than half the votes,
nen in the final aggregation, x should be ranked at

t
the highest position




Mayjority Rule

* For any set of voters, If an alternative x is ranked In
the top position in strictly more than half the votes,
nen in the final aggregation, x should be ranked at

t
the highest position

Let P1(x)= > P(0) denote the marginal
o:0(x)=1

probability of x being ranked first.

If P1(x) > %, then o(x) = 1.



Condorcet Criterion

* |f there exists an item x that is preferred over every
other item vy, by strictly more than half of the voters,
then x should be ranked at the highest position In
the aggregation.



Condorcet Criterion

* |f there exists an item x that is preferred over every
other item vy, by strictly more than half of the voters,
then x should be ranked at the highest position In
the aggregation.

For any distribution P, if Py, > % Vy e X\{x}, then
op(x) = 1.



Relaxed Variants of
AXIOMS



Independence of Irrelevant Alternatives (l1A)

e Exact Axiom;

Let Pecy = 2 _,.0(x)<o(y) P(0) be the marginal probability of x
being preferred over y.

If for any two distributions P and Q, Py, = Qx<y, then

sign [o5(x) — oh(y)] = sign [o5(x) — 75 (»)]



Independence of Irrelevant Alternatives (l1A)

e Exact Axiom;

Let Pecy = 2 _,.0(x)<o(y) P(0) be the marginal probability of x
being preferred over y.

If for any two distributions P and Q, Py, = Qx<y, then

sign [o5(x) — oh(y)] = sign [o5(x) — 75 (»)]

e epsilon-relaxed Axiom:

If for any two distributions P and Q, Py, = Q«<, = 1y, where
v satisfies:

1
‘7_§‘Z€7€>07

then sign [op(x) — o (y)| = sign [op(x) —ah(y)] -



Majority Rule

* Exact Axiom:
Let P1(x) = > P(0) denote the marginal probability of x

o:0(x)=1

being ranked first.

If PY(x) > %, then op(x) = 1.



Majority Rule

e Exact Axiom:

Let P1(x) = > P(0) denote the marginal probability of x
o:0(x)=1

being ranked first.

If PY(x) > %, then op(x) = 1.

e epsilon-relaxed Axiom:

If P1(x) > % + € ;e >0, then o5(x) = 1.



Condorcet Rule

e Exact Axiom:

For any distribution P, if Py<, > 2 V y € X\{x}, then
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Condorcet Rule

e Exact Axiom:

For any distribution P, if Py<, > 2 V y € X\{x}, then
op(x) =1.

e epsilon-relaxed Axiom:

For any distribution P, if Pycy > 5 +¢€;e>0V y € X\{x},
op(x) = 1.



Distributional Impossibility
Theorem

Any distributional rank aggregation procedure can be represented
as:

op = argmin g(o, P)
oc€Sy

for some g : 5, X P, — R.

Theorem (Distributional Impossibility Theorem)

For n > 2, if g(o, P) is a continuous function of P for each fixed
o, both Universality and Pareto cannot be satisfied simultaneously.

L (unigue, deterministic, complete ranking)



FInessing Impossibility
Theorems

Theorem (Distributional Possibility Theorem)

The set of positional loss functions which admits the following
axioms Is non-empty: exact versions of Pareto and Monotonicity,
relaxed axioms e-1IA, e-Strong Condorcet, €' -Majority Rule



Expected Loss Minimization

Consider rank aggregation procedures which minimize the expected
value of a discrepancy measure (which we denote by ¢) over P:

o, p = argming(o, P) = argminE,.p[l(c,0’)]
, O'ESn O'ESn




Positional Scoring Loss

Consider rank aggregation procedures which minimize the expected
value of a discrepancy measure (which we denote by ¢) over P:

o, p = argmin g(o, P) = arg min
’ O-ESn O-ESI‘I

Positional Scoring Loss.

Lornpll(o,0")]

A loss ¢} is a Positional Scoring Loss iff it can be decomposed
as Ip(o,0’) = > h(o'(x)) o(x), where h: [n] — R.



Positional Scoring Loss

Consider rank aggregation procedures which minimize the expected
value of a discrepancy measure (which we denote by ¢) over P:

o, p = argming(o, P) = argminE,.p[l(c,0’)]
, O'ESn O'ESn

Positional Scoring Loss.
A loss ¢} is a Positional Scoring Loss iff it can be decomposed

as lp(o,0') = EX: h(o'(x)) o(x), where h: [n] — R.

Examples:
Borda Count: h(i) =n—i
Plurality Rule: h(i) =1 if i =1,0 else



Positional Scoring Rules

Name h:[n] — R e for 11A/Cond. e for Maj.
Borda Count h(i)=n— 1/2 —1/n 1/2 —1/n
Plurality Rule h(i)=1if i =1,0 else 1/2 0
Anti-Plurality Rule h(n) = 0; h(i) =1 Vi #n 1/2 1/2
N ) log(n) log(n)

Log Rule h(i) = — log(i) 2log(n2/(n—1))  2log(n2/(n—1))
Squared Rule h(i) = —i? n® —4 n® —4

. - 2(n?+2) 2(n2+2)

* "Axiomatic Characterization” of Positional Scoring Rules



FInessing Impossibility
Theorems

Theorem (Borda Count Optimality Theorem)

For any fixed n, Borda count is optimal w.r.t. the e-Strong
Condorcet condition and e-lIA, i.e. has the least ¢ among all
positional loss functions.



summary

Distributional Rank Aggregation: given access only to histogram of ranking
preferences

We translate classical social choice axioms to the distributional ranking
setting.

Quantitative characterization of axioms:
 Reduce misinterpretation
* Relaxed-variants of axioms

Finesse Impossibility Results:

e Show it is possible to satisty reasonable axioms simultaneously, if
approximately



