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Rank Aggregation 
• A set of agents provide their ranked preferences over a 

fixed set of alternatives 

• We wish to aggregate them into a consensus ranking



Application: Elections

• Selecting representatives in 
elections

Source: David Williamson, The Rank Aggregation Problem 



Application: Competitions

• Aggregating scores in 
competitions 



Application: Search Engines
• Meta-search engines that aggregate rankings from different search 

engines 

Source: Aris Gionis, Algorithmic Methods for Data Mining 



Rank Aggregation
• Has been studied in varied communities  

• Statistics: Modeling distributions over permutations 
e.g. Mallows Model 

• Social Choice/Welfare Theory: Normative Axioms  

• Theoretical Computer Science: Distance based 
procedures e.g. Kemeny Rule using the Kendall-Tau 
distance; NP-hardness, approximation results 

• Information Retrieval: Meta Search  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Aggregation 

• In real-world, no access to voters  

• Access to only the histogram of the ranking preferences 

• how many voters for each ranking preference



Distributional Rank 
Aggregation 

• In real-world, no access to voters  

• Access to only the histogram of the ranking preferences 

• how many voters for each preference 

• We term this rank aggregation variant that takes as input 
only the histogram as Distributional Rank Aggregation. 



Distributional Rank 
Aggregation 

• We term this rank aggregation variant that takes as input 
only the histogram as Distributional Rank Aggregation.  

• Note that this is distinct from a statistical assumption: we 
do not assume that the ranking preferences of voters are 
drawn from any distribution (such as the Mallows model)
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A Normative Approach  
(instead of a decision-theoretic approach) 

• How do we evaluate a distributional rank aggregation algorithm?  

• As is standard in machine learning, we could use a decision theoretic/utility maximization 
approach

• A utility function (or on the flip side, a loss function) assigning a score to any 
consensus ranking given a target consensus ranking

• But which evaluation metric/utility to use?  

• Alternatively, a normative approach: evaluate a rank aggregation algorithm by whether, 
and to what extent, it satisfies reasonable axioms  

• Results in this vein have been obtained for clustering by Ackerman et al (NIPS 2008, 
2010) 



Social Welfare Axioms
• What are good properties that an aggregation procedure 

should satisfy?  

• Dates back to 1700s French philosophers and 
mathematicians. 



Social Welfare Axioms
• Dates back to 1700s French 

philosophers and 
mathematicians.  

• More modern attempts to 
construct an aggregation 
system that satisfies a set of 
natural axioms  

• Impossibility Result 
[Arrow(1951)]: reasonable 
axioms cannot be 
simultaneously satisfied. Kenneth Arrow



Social Welfare Axioms
• Impossibility Results that state reasonable axioms 

cannot be simultaneously satisfied  

• Axioms are typically qualitatively stated, and prone 
to mis-interpretation: lack of quantitative 
characterization  

• In particular, for any aggregation procedure, notion 
of approximate satisfiability of an axiom is missing. 



Outline for rest of talk
• Translate social choice axioms to the distributional ranking setting.  

• Characterize axioms quantitatively 

• Reduce misinterpretation. 

• Understand the underlying connections between axioms. 

•  Relaxed-variants of axioms  

• Finesse Impossibility Results: 

• Show it is possible to satisfy reasonable axioms simultaneously, 
if approximately 



Translating Social Choice Axioms  
to setting of 
Distributional Rank Aggregation



Translating Social Choice Axioms 

• Given distribution P over ranking preferences, what 
properties should the consensus ranking  
satisfy?

Translating Axioms

Majority rule:

(S4) For any set of voters, if an alternative x is ranked in the
top position in strictly more than half the votes, then in
the final aggregation, x should be ranked at the highest
position.

(D4) Let P1(x) =
P

�:�(x)=1

P(�) denote the marginal

probability of x being ranked first.

If P1(x) > 1
2 , then �⇤

P

(x) = 1.
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Pareto Efficiency
• For every item pair x and y, if everyone prefers  

x to y, then x is preferred to y in the resulting social 
preference order. 



Pareto Efficiency
• For every pair x and y of alternatives, if everyone 

prefers x to y, then x is preferred to y in the 
resulting social preference order. 

Translating Axioms

Pareto-e�ciency:

(S1) For every pair x and y of alternatives, if everyone prefers
x to y , then x is preferred to y in the resulting social
preference order.

(D1) If 8� : �(x) < �(y), then �⇤
P

(x) < �⇤
P

(y).
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Consensus ranking 
given distribution P

in the support of P
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Independence of Irrelevant 
Alternatives (IIA)

• If voters change their preferences, but keep their 
relative positions of x and y, then the relative 
positions of x and y in the aggregation should still 
remain the same

Translating Axioms

Independence of irrelevant alternatives (IIA):

(S2) The social preference between x and y should depend
only on the individual preferences between x and y . i.e. if
one or more voters change their preferences, but no one
changes their relative positions of x and y , then the
relative positions of x and y in the aggregation should
still remain the same.

(D2) Let P
x<y

=
P

�:�(x)<�(y) P(�) be the marginal
probability of x being preferred over y .

If for any two distributions P and Q, P
x<y

= Q

x<y

, then

sign [�⇤
P

(x)� �⇤
P

(y)] = sign

⇥
�⇤
Q

(x)� �⇤
Q

(y)
⇤
.
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(S4) For any set of voters, if an alternative x is ranked in the
top position in strictly more than half the votes, then in
the final aggregation, x should be ranked at the highest
position.

(D4) Let P1(x) =
P

�:�(x)=1

P(�) denote the marginal

probability of x being ranked first.

If P1(x) > 1
2 , then �⇤

P

(x) = 1.

Adarsh Prasad, Harsh Pareek*, Pradeep Ravikumar Distributional Rank Aggregation, and an Axiomatic Analysis



Condorcet Criterion
• If there exists an item x that is preferred over every 

other item y, by strictly more than half of the voters, 
then x should be ranked at the highest position in 
the aggregation. 



Condorcet Criterion
• If there exists an item x that is preferred over every 

other item y, by strictly more than half of the voters, 
then x should be ranked at the highest position in 
the aggregation. 

Translating Axioms

Condorcet Criterion:

(S5) If there exists an alternative say x , such that for every
other alternative y , x is preferred over y , by strictly more
than half of the voters, then x should be ranked at the
highest position in the aggregation.

(D5) For any distribution P , if P
x<y

> 1
2 8 y 2 X\{x}, then

�⇤
P

(x) = 1.
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Relaxed Variants of 
Axioms



Independence of Irrelevant Alternatives (IIA)

• Exact Axiom: 
Relaxed Variants of Axioms

Relaxed Variants of Axioms II
• IIA
Let P

x<y

=
P

�:�(x)<�(y) P(�) be the marginal probability of x
being preferred over y .

If for any two distributions P and Q, P
x<y

= Q

x<y

, then

sign [�⇤
P

(x)� �⇤
P

(y)] = sign

⇥
�⇤
Q

(x)� �⇤
Q

(y)
⇤
.

• ✏-IIA
If for any two distributions P and Q, P

x<y

= Q

x<y

= �, where
� satisfies:

|� � 1

2
| � ✏, ✏ > 0,

then sign

⇥
�⇤
P

(x)� �⇤
Q

(y)
⇤
= sign

⇥
�⇤
P

(x)� �⇤
Q

(y)
⇤
.

Note that ✏ = 0 corresponds to the usual IIA.
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Independence of Irrelevant Alternatives (IIA)

• Exact Axiom: 
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Relaxed Variants of Axioms
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Majority Rule
• Exact Axiom: 

Relaxed Variants of Axioms

Relaxed Variants of Axioms III

• Majority Rule
Let P1(x) =

P
�:�(x)=1

P(�) denote the marginal probability of x

being ranked first.

If P1(x) > 1
2 , then �⇤

P

(x) = 1.

• ✏-Majority Rule
If P1(x) � 1

2 + ✏ ; ✏ > 0, then �⇤
P

(x) = 1.
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Condorcet Rule
• Exact Axiom: 

Relaxed Variants of Axioms

Relaxed Variants of Axioms IV

• Condorcet Rule
For any distribution P , if P

x<y

> 1
2 8 y 2 X\{x}, then

�⇤
P

(x) = 1.

• ✏-Condorcet Rule
For any distribution P , if P

x<y

� 1
2 + ✏ ; ✏ > 0 8 y 2 X\{x},

�⇤
P

(x) = 1.

• ✏-Strong Condorcet Rule For any distribution P , if
P

x<y

� 1
2 + ✏ ; ✏ > 0, then �⇤

P

(x) < �⇤
P

(y).
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Distributional Impossibility 
Theorem

Relaxed Variants of Axioms

Distributional Impossibility Theorem

Any distributional rank aggregation procedure can be represented
as:

�⇤
P

= argmin
�2S

n

g(�,P)

for some g : S
n

⇥ P
n

7! R.

Theorem (Distributional Impossibility Theorem)

For n � 2, if g(�,P) is a continuous function of P for each fixed

�, both Universality and Pareto cannot be satisfied simultaneously.
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(unique, deterministic, complete ranking)



Finessing Impossibility 
Theorems

Positional Scoring Losses Finessing Impossibility Results

Finessing Impossibility Results

Theorem (Distributional Possibility Theorem)

The set of positional loss functions which admits the following

axioms is non-empty: exact versions of Pareto and Monotonicity,

relaxed axioms ✏-IIA, ✏-Strong Condorcet, ✏0-Majority Rule

Theorem (Borda Count Optimality Theorem)

For any fixed n, Borda count is optimal w.r.t. the ✏-Strong
Condorcet condition and ✏-IIA, i.e. has the least ✏ among all

positional loss functions.
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Expected Loss Minimization
Positional Scoring Losses

Positional Scoring Losses

Consider rank aggregation procedures which minimize the expected
value of a discrepancy measure (which we denote by `) over P :

�⇤
`,P = argmin

�2S
n

g(�,P) = argmin
�2S

n

E�0⇠P

[`(�,�0)]

• Positional Scoring Loss.
A loss `

h

is a Positional Scoring Loss i↵ it can be decomposed
as `

h

(�,�0) =
P
x

h(�0(x)) �(x), where h : [n] 7! R.

Examples:

Borda Count: h(i) = n � i

Plurality Rule: h(i) = 1 if i = 1, 0 else
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Positional Scoring Rules

• “Axiomatic Characterization” of Positional Scoring Rules

Positional Scoring Losses

• For the class of positional scoring distributional rank
aggregation procedures, we provide a detailed characterization
of the extent of relaxation required for the relaxed variants of
axioms to be satisfied

Name h : [n] 7! R ✏ for IIA/Cond. ✏ for Maj.

Borda Count h(i) = n � i 1/2 � 1/n 1/2 � 1/n
Plurality Rule h(i) = 1 if i = 1, 0 else 1/2 0
Anti-Plurality Rule h(n) = 0; h(i) = 1 8i 6= n 1/2 1/2

Log Rule h(i) = � log(i)
log(n)

2 log(n2/(n�1))

log(n)

2 log(n2/(n�1))

Squared Rule h(i) = �i

2 n

2�4

2(n2+2)

n

2�4

2(n2+2)

Table: Di↵erent Positional Scoring Rules
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Finessing Impossibility 
Theorems

Positional Scoring Losses Finessing Impossibility Results

Finessing Impossibility Results

Theorem (Distributional Possibility Theorem)

The set of positional loss functions which admits the following

axioms is non-empty: exact versions of Pareto and Monotonicity,

relaxed axioms ✏-IIA, ✏-Strong Condorcet, ✏0-Majority Rule

Theorem (Borda Count Optimality Theorem)

For any fixed n, Borda count is optimal w.r.t. the ✏-Strong
Condorcet condition and ✏-IIA, i.e. has the least ✏ among all

positional loss functions.
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Summary
• Distributional Rank Aggregation: given access only to histogram of ranking 

preferences 

• We translate classical social choice axioms to the distributional ranking 
setting.  

• Quantitative characterization of axioms:  

• Reduce misinterpretation 

• Relaxed-variants of axioms  

• Finesse Impossibility Results: 

• Show it is possible to satisfy reasonable axioms simultaneously, if 
approximately 


