The Distributional Rank Aggregation Problem, and an Axiomatic Analysis

Pradeep Ravikumar University of Texas at Austin On leave at Vatic Labs

Joint work with Adarsh Prasad, Harsh Pareek

Rank Aggregation

- A set of agents provide their ranked preferences over a fixed set of alternatives
- We wish to aggregate them into a consensus ranking

Application: Elections

• Selecting representatives in elections

Source: David Williamson, The Rank Aggregation Problem

Application: Competitions

Aggregating scores in competitions

			Aggre					ggregatio	gation	
Rank		Judge A	Judge B	Judge C	Judge D	Judge E	sum	average	rank	
item	1	5	6	2	9	1	23	4.6	4	
item	2	7	3	6	5	7	28	5.6	8	
item	3	5	3	2	3	3	16	3.2	2	
item	4	2	9	6	9	3	29	5.8	9	
item	5	7	3	9	1	7	27	5.4	6	
item	6	1	9	6	5	6	27	5.4	6	
item	7	2	8	1	5	7	23	4.6	4	
item	8	2	6	9	4	10	31	6.2	10	
item	9	10	1	2	5	1	19	3.8	3	
item	10	7	1	2	1	3	14	2.8	1	

Application: Search Engines

Meta-search engines that aggregate rankings from different search engines

Source: Aris Gionis, Algorithmic Methods for Data Mining

Rank Aggregation

- Has been studied in varied communities
- Statistics: Modeling distributions over permutations e.g. Mallows Model
- Social Choice/Welfare Theory: Normative Axioms
- Theoretical Computer Science: Distance based procedures e.g. Kemeny Rule using the Kendall-Tau distance; NP-hardness, approximation results
- Information Retrieval: Meta Search

Distributional Rank Aggregation

- In real-world, no access to voters
- Access to only the **histogram** of the ranking preferences
 - how many voters for each ranking preference

Distributional Rank Aggregation

- In real-world, no access to voters
- Access to only the **histogram** of the ranking preferences
 - how many voters for each preference
- We term this rank aggregation variant that takes as input only the histogram as **Distributional Rank Aggregation**.

Distributional Rank Aggregation

- We term this rank aggregation variant that takes as input only the histogram as **Distributional Rank Aggregation**.
- Note that this is distinct from a statistical assumption: we do not assume that the ranking preferences of voters are drawn from any distribution (such as the Mallows model)

A Normative Approach (instead of a decision-theoretic approach)

• How do we evaluate a distributional rank aggregation algorithm?

A Normative Approach (instead of a decision-theoretic approach)

- How do we evaluate a distributional rank aggregation algorithm?
- As is standard in machine learning, we could use a decision theoretic/utility maximization approach

A Normative Approach (instead of a decision-theoretic approach)

- How do we evaluate a distributional rank aggregation algorithm?
- As is standard in machine learning, we could use a decision theoretic/utility maximization approach
 - A **utility function** (or on the flip side, a **loss function**) assigning a score to any consensus ranking given a target consensus ranking

A Normative Approach (instead of a decision-theoretic approach)

- How do we evaluate a distributional rank aggregation algorithm?
- As is standard in machine learning, we could use a decision theoretic/utility maximization approach
 - A **utility function** (or on the flip side, a **loss function**) assigning a score to any consensus ranking given a target consensus ranking
 - But which evaluation metric/utility to use?

A Normative Approach (instead of a decision-theoretic approach)

- How do we evaluate a distributional rank aggregation algorithm?
- As is standard in machine learning, we could use a decision theoretic/utility maximization approach
 - A **utility function** (or on the flip side, a **loss function**) assigning a score to any consensus ranking given a target consensus ranking
 - But which evaluation metric/utility to use?
- Alternatively, a normative approach: evaluate a rank aggregation algorithm by whether, and to what extent, it satisfies reasonable axioms

A Normative Approach (instead of a decision-theoretic approach)

- How do we evaluate a distributional rank aggregation algorithm?
- As is standard in machine learning, we could use a decision theoretic/utility maximization approach
 - A **utility function** (or on the flip side, a **loss function**) assigning a score to any consensus ranking given a target consensus ranking
 - But which evaluation metric/utility to use?
- Alternatively, a normative approach: evaluate a rank aggregation algorithm by whether, and to what extent, it satisfies reasonable axioms
- Results in this vein have been obtained for clustering by Ackerman et al (NIPS 2008, 2010)

Social Welfare Axioms

What are good properties that an aggregation procedure should satisfy?

VS

• Dates back to 1700s French philosophers and mathematicians.

Condorcet

Borda

Social Welfare Axioms

- Dates back to 1700s French philosophers and mathematicians.
- More modern attempts to construct an aggregation system that satisfies a set of natural axioms
- Impossibility Result
 [Arrow(1951)]: reasonable
 axioms cannot be
 simultaneously satisfied.

Kenneth Arrow

Social Welfare Axioms

 Impossibility Results that state reasonable axioms cannot be simultaneously satisfied

 Axioms are typically qualitatively stated, and prone to mis-interpretation: lack of quantitative characterization

• In particular, for any aggregation procedure, notion of approximate satisfiability of an axiom is missing.

Outline for rest of talk

- Translate social choice axioms to the distributional ranking setting.
- Characterize axioms quantitatively
 - Reduce misinterpretation.
 - Understand the underlying connections between axioms.
 - Relaxed-variants of axioms
- Finesse Impossibility Results:
 - Show it is possible to satisfy reasonable axioms simultaneously, if approximately

Translating Social Choice Axioms to setting of Distributional Rank Aggregation

Translating Social Choice Axioms

• Given distribution P over ranking preferences, what properties should the consensus ranking σ_P^* satisfy?

Pareto Efficiency

 For every item pair x and y, if everyone prefers x to y, then x is preferred to y in the resulting social preference order.

Pareto Efficiency

 For every pair x and y of alternatives, if everyone prefers x to y, then x is preferred to y in the resulting social preference order.

If
$$\forall \sigma : \sigma(x) < \sigma(y)$$
, then $\sigma_P^*(x) < \sigma_P^*(y)$.
in the support of P
Consensus ranking
given distribution P

Independence of Irrelevant Alternatives (IIA)

 If voters change their preferences, but keep their relative positions of x and y, then the relative positions of x and y in the aggregation should still remain the same

Independence of Irrelevant Alternatives (IIA)

 If voters change their preferences, but keep their relative positions of x and y, then the relative positions of x and y in the aggregation should still remain the same

Let $P_{x < y} = \sum_{\sigma:\sigma(x) < \sigma(y)} P(\sigma)$ be the marginal probability of x being preferred over y.

If for any two distributions P and Q, $P_{x < y} = Q_{x < y}$, then

Independence of Irrelevant Alternatives (IIA)

 If voters change their preferences, but keep their relative positions of x and y, then the relative positions of x and y in the aggregation should still remain the same

Let $P_{x < y} = \sum_{\sigma:\sigma(x) < \sigma(y)} P(\sigma)$ be the marginal probability of x being preferred over y.

If for any two distributions P and Q, $P_{x < y} = Q_{x < y}$, then

$$sign\left[\sigma_P^*(x) - \sigma_P^*(y)\right] = sign\left[\sigma_Q^*(x) - \sigma_Q^*(y)\right].$$

Majority Rule

• For any set of voters, if an alternative x is ranked in the top position in strictly more than half the votes, then in the final aggregation, x should be ranked at the highest position

Majority Rule

• For any set of voters, if an alternative x is ranked in the top position in strictly more than half the votes, then in the final aggregation, x should be ranked at the highest position

Let $P^1(x) = \sum_{\sigma:\sigma(x)=1} P(\sigma)$ denote the marginal probability of x being ranked first.

If $P^1(x) > \frac{1}{2}$, then $\sigma_P^*(x) = 1$.

Condorcet Criterion

 If there exists an item x that is preferred over every other item y, by strictly more than half of the voters, then x should be ranked at the highest position in the aggregation.

Condorcet Criterion

 If there exists an item x that is preferred over every other item y, by strictly more than half of the voters, then x should be ranked at the highest position in the aggregation.

For any distribution P, if $P_{x < y} > \frac{1}{2} \forall y \in \mathcal{X} \setminus \{x\}$, then $\sigma_P^*(x) = 1$.

Relaxed Variants of Axioms

Independence of Irrelevant Alternatives (IIA)

• Exact Axiom:

Let $P_{x < y} = \sum_{\sigma: \sigma(x) < \sigma(y)} P(\sigma)$ be the marginal probability of x being preferred over y.

If for any two distributions P and Q, $P_{x < y} = Q_{x < y}$, then

$$sign\left[\sigma_P^*(x) - \sigma_P^*(y)\right] = sign\left[\sigma_Q^*(x) - \sigma_Q^*(y)\right].$$

Independence of Irrelevant Alternatives (IIA)

• Exact Axiom:

Let $P_{x < y} = \sum_{\sigma: \sigma(x) < \sigma(y)} P(\sigma)$ be the marginal probability of x being preferred over y.

If for any two distributions P and Q, $P_{x < y} = Q_{x < y}$, then

$$sign\left[\sigma_P^*(x) - \sigma_P^*(y)\right] = sign\left[\sigma_Q^*(x) - \sigma_Q^*(y)\right].$$

• epsilon-relaxed Axiom:

If for any two distributions P and Q, $P_{x < y} = Q_{x < y} = \gamma$, where γ satisfies:

$$|\gamma - \frac{1}{2}| \ge \epsilon, \epsilon > 0,$$

then sign $\left[\sigma_P^*(x) - \sigma_Q^*(y)\right] = sign \left[\sigma_P^*(x) - \sigma_Q^*(y)\right]$.

Majority Rule

• Exact Axiom:

Let $P^1(x) = \sum_{\sigma:\sigma(x)=1} P(\sigma)$ denote the marginal probability of x being ranked first.

If
$$P^1(x) > \frac{1}{2}$$
, then $\sigma^*_P(x) = 1$.

Majority Rule

• Exact Axiom:

Let $P^1(x) = \sum_{\sigma:\sigma(x)=1} P(\sigma)$ denote the marginal probability of x being ranked first.

If
$$P^1(x) > \frac{1}{2}$$
, then $\sigma^*_P(x) = 1$.

• epsilon-relaxed Axiom:

If $P^1(x) \geq \frac{1}{2} + \epsilon$; $\epsilon > 0$, then $\sigma^*_P(x) = 1$.

Condorcet Rule

• Exact Axiom:

For any distribution P, if $P_{x < y} > \frac{1}{2} \forall y \in \mathcal{X} \setminus \{x\}$, then $\sigma_P^*(x) = 1$.

Condorcet Rule

• Exact Axiom:

For any distribution P, if $P_{x < y} > \frac{1}{2} \forall y \in \mathcal{X} \setminus \{x\}$, then $\sigma_P^*(x) = 1$.

• epsilon-relaxed Axiom:

For any distribution P, if $P_{x < y} \ge \frac{1}{2} + \epsilon$; $\epsilon > 0 \forall y \in X \setminus \{x\}$, $\sigma_P^*(x) = 1$.

Distributional Impossibility Theorem

Any distributional rank aggregation procedure can be represented as:

$$\sigma_P^* = \arg\min_{\sigma \in S_n} g(\sigma, P)$$

for some $g : S_n \times \mathcal{P}_n \mapsto \mathbb{R}$.

Theorem (**Distributional Impossibility Theorem**)

For $n \ge 2$, if $g(\sigma, P)$ is a continuous function of P for each fixed σ , both Universality and Pareto cannot be satisfied simultaneously.

(unique, deterministic, complete ranking)

Finessing Impossibility Theorems

Theorem (**Distributional Possibility Theorem**)

The set of positional loss functions which admits the following axioms is non-empty: exact versions of Pareto and Monotonicity, relaxed axioms ϵ -IIA, ϵ -Strong Condorcet, ϵ' -Majority Rule

Expected Loss Minimization

Consider rank aggregation procedures which minimize the expected value of a discrepancy measure (which we denote by ℓ) over *P*:

$$\sigma_{\ell,P}^* = \arg\min_{\sigma \in S_n} g(\sigma, P) = \arg\min_{\sigma \in S_n} \mathbb{E}_{\sigma' \sim P}[\ell(\sigma, \sigma')]$$

Positional Scoring Loss

Consider rank aggregation procedures which minimize the expected value of a discrepancy measure (which we denote by ℓ) over P:

$$\sigma_{\ell,P}^* = \arg\min_{\sigma \in S_n} g(\sigma, P) = \arg\min_{\sigma \in S_n} \mathbb{E}_{\sigma' \sim P}[\ell(\sigma, \sigma')]$$

Positional Scoring Loss.

A loss ℓ_h is a Positional Scoring Loss iff it can be decomposed as $\ell_h(\sigma, \sigma') = \sum_x h(\sigma'(x)) \sigma(x)$, where $h : [n] \mapsto \mathbb{R}$.

Positional Scoring Loss

Consider rank aggregation procedures which minimize the expected value of a discrepancy measure (which we denote by ℓ) over P:

$$\sigma_{\ell,P}^* = \arg\min_{\sigma \in S_n} g(\sigma, P) = \arg\min_{\sigma \in S_n} \mathbb{E}_{\sigma' \sim P}[\ell(\sigma, \sigma')]$$

Positional Scoring Loss.

A loss ℓ_h is a Positional Scoring Loss iff it can be decomposed as $\ell_h(\sigma, \sigma') = \sum_x h(\sigma'(x)) \sigma(x)$, where $h : [n] \mapsto \mathbb{R}$.

Examples:

Borda Count: h(i) = n - iPlurality Rule: h(i) = 1 if i = 1, 0 else

Positional Scoring Rules

Name	$h:[n]\mapsto \mathbb{R}$	ϵ for IIA/Cond.	ϵ for Maj.
Borda Count Plurality Rule Anti-Plurality Rule	$egin{aligned} h(i) &= n - i \ h(i) &= 1 \ if \ i &= 1, 0 \ else \ h(n) &= 0; \ h(i) &= 1 \ orall i eq n \end{aligned}$	$\frac{1/2 - 1/n}{1/2}$ 1/2	1/2 - 1/n 0 1/2
Log Rule	$h(i) = -\log(i)$	$\frac{\log(n)}{2\log(n^2/(n-1))}$	$\frac{\log(n)}{2\log(n^2/(n-1))}$
Squared Rule	$h(i) = -i^2$	$\frac{n^2-4}{2(n^2+2)}$	$\frac{n^2-4}{2(n^2+2)}$

• "Axiomatic Characterization" of Positional Scoring Rules

Finessing Impossibility Theorems

Theorem (**Borda Count Optimality Theorem**)

For any fixed n, Borda count is optimal w.r.t. the ϵ -Strong Condorcet condition and ϵ -IIA, i.e. has the least ϵ among all positional loss functions.

Summary

- Distributional Rank Aggregation: given access only to histogram of ranking preferences
- We translate classical social choice axioms to the distributional ranking setting.
- Quantitative characterization of axioms:
 - Reduce misinterpretation
 - Relaxed-variants of axioms
- Finesse Impossibility Results:
 - Show it is possible to satisfy reasonable axioms simultaneously, if approximately