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Computer experiments

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?

how do we relate simulators to reality?

how do we estimate tunable parameters?

how do we deal with computational constraints?
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Calibration
For most simulators we specify parameters θ and i.c.s and the
simulator, f (θ), generates output X .
The inverse-problem: observe data D, estimate parameter values θ
which explain the data.

The Bayesian approach
is to find the posterior
distribution

π(θ|D) ∝ π(θ)π(D|θ)

posterior ∝
prior× likelihood

For complex sims, we
often don’t know

π(D|θ)
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Approximate Bayesian Computation (ABC)

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators

they do not require explicit knowledge of the likelihood function

inference is done using simulation from the model - ‘likelihood-free’

ABC methods are popular in biological disciplines, particularly genetics.
They are

Simple to implement

Intuitive

Embarrassingly parallelizable

Can usually be applied



Approximate Bayesian Computation (ABC)

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators

they do not require explicit knowledge of the likelihood function

inference is done using simulation from the model - ‘likelihood-free’

ABC methods are popular in biological disciplines, particularly genetics.
They are

Simple to implement

Intuitive

Embarrassingly parallelizable

Can usually be applied



‘Likelihood-Free’ Inference

Rejection Algorithm

Draw θ from prior π(·)
Accept θ with probability π(D | θ)

Accepted θ are independent draws from the posterior distribution,
π(θ | D).

If the likelihood, π(D|θ), is unknown:

‘Mechanical’ Rejection Algorithm

Draw θ from π(·)
Simulate X ∼ f (θ) from the computer model

Accept θ if D = X , i.e., if computer output equals observation
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Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any θ. Instead,
there is an approximate version:

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D).
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ε = 7.5
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Rejection ABC

If the data are too high dimensional we never observe simulations that are
‘close’ to the data

Reduce the dimension using summary statistics, S(D).

Approximate Rejection Algorithm With Summaries

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(S(D), S(X )) < ε

If S is sufficient this is equivalent to the previous algorithm.

Simple → Popular with non-statisticians



Rejection ABC

If the data are too high dimensional we never observe simulations that are
‘close’ to the data

Reduce the dimension using summary statistics, S(D).

Approximate Rejection Algorithm With Summaries

Draw θ from π(θ)

Simulate X ∼ f (θ)
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Expensive stochastic simulators

Cellular Potts model for a human colon crypt

agent-based models, with proliferation, differentiation and migration
of cells

stem cells generate a compartment of transient amplifying cells that
produce colon cells.

each simulation runs MCMC of Hamiltonian dynamics

want to infer number of stem cells by comparing patterns with real
data

Each simulation takes about an hour, and is stochastic.

Efficient algorithms can take us only so far...

We will continue face situations in which we are limited by computer
power.



Bayesian inference for computer experiments
Emulation/surrogate modelling/meta-modelling

Sacks et al. 1989 introduce the idea of an emulator

if f (x) is an expensive (deterministic) simulator, approximate it by a
cheaper surrogate model

Kennedy and O’Hagan 2001 used emulators to solve a Bayesian inference
problem

Numerical algorithms, e.g. integration, solving O/PDEs, optimization,
estimate some unknown quantity on the basis of function evaluations, ie,
they are inference problems.
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If in doubt, use a Gaussian process

Bayesian quadrature: Diaconis 1988, O’Hagan 1991,∫
f (x)dx

Replace f by a GP - the integral is then Gaussian.

Bayesian optimization: find arg max f (x) with a minimum number of
function calls.

. . .



Synthetic likelihood
Wood 2010 introduced synthetic likelihood:

π(D|θ) = N (θ|µθ,Σθ)

where µθ and Σθ are the mean and covariance of X1, . . . ,Xn which are
outputs from the simulator run at θ. This is then plugged into an MCMC
sampler.

This suggested modelling dependence on θ to mitigate the cost

[...] the forward model may exhibit regularity in its dependence on
the parameters of interest[...]. Replacing the forward model with an
approximation or “surrogate” decouples the required number of
forward model evaluations from the length of the MCMC chain, and
thus can vastly reduce the overall cost of interence. Conrad et al. 2015

Surrogate-model ABC papers

Wilkinson 2014
Meeds and Welling 2014
Gutmann and Corander 2015
+Others



Synthetic likelihood
Wood 2010 introduced synthetic likelihood:

π(D|θ) = N (θ|µθ,Σθ)

where µθ and Σθ are the mean and covariance of X1, . . . ,Xn which are
outputs from the simulator run at θ. This is then plugged into an MCMC
sampler.

This suggested modelling dependence on θ to mitigate the cost

[...] the forward model may exhibit regularity in its dependence on
the parameters of interest[...]. Replacing the forward model with an
approximation or “surrogate” decouples the required number of
forward model evaluations from the length of the MCMC chain, and
thus can vastly reduce the overall cost of interence. Conrad et al. 2015

Surrogate-model ABC papers

Wilkinson 2014
Meeds and Welling 2014
Gutmann and Corander 2015
+Others



GP-ABC

Constituent elements:

Target of approximation

Aim of inference and inference scheme

Choice of surrogate/emulator

Acquisition rule



Target of approximation
What should we approximate with the surrogate model?

Simulator output (Kennedy and O’Hagan 2001, Henderson et al.
2009, Meeds and Welling, 2014), for example, within a synthetic
likelihood approach

µθ = Ef (θ) and Σθ = Varf (θ)

L(θ) = N(D;µθ,Σθ) and model

µθ ∼ GP(·, ·) Σθ ∼ GP(·, ·)

I often easy to work with
I hard if S(X ) is high dimensional
I Often assume Σθ = diag(Σθ) and build independent surrogates
I requires a global approximation, i.e., need to predict f (θ) at all θ of

interest.
I Gaussian likelihood (either of the GP or the synthetic likelihood) often

a poor choice for stochastic simulators
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Target of approximation

What should we approximate with the surrogate model?

(ABC) Likelihood function (Wilkinson 2014), for example

LABC (θ) = EX |θKε[ρ(S(D), S(X ))] ≡ EX |θπε(D|X )

or
LSL(θ) = N (θ|µθ,Σθ)

I 1 dimensional output surface
I allows us to focus on the data, i.e., predict log L(θ) at all θ. The data

D is fixed
I hard to model
I hard to gain physical insights - primarily useful for calibration
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Target of approximation

What should we approximate with the surrogate model?

Discrepancy function (Gutmann and Corander, 2015), for example

J(θ) = Eρ(S(D),S(X ))

I Also 1d, and focused on data
I Doesn’t depend upon kernel, bandwidth/tolerance etc
I Lack of interpretability of output distributions - lose any statistical

model interpretation
I No longer targeting a posterior distribution - what are we doing?



S ∼ N(2(θ + 2)θ(θ − 2), 0.1 + θ
2)

Synthetic likelihood:

ABC likelihood and
discrepancy:
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Aim of the inference

Probabilistic calibration
Find the posterior distribution

πABC (θ|D) ∝ π(θ)π(D|θ)

for likelihood function

πABC (D|θ) =

∫
πε(D|X )π(X |θ)dX

History matching
Find the plausible parameter set

Pθ = {θ : f (θ) ∈ PD}

where PD is some plausible set of
simulation outcomes consistent
with the data and errors

PD = {X : |D −X | ≤ 3(σe + σε)}

Calibration finds a distribution representing plausible parameter values;
History matching classifies parameter space as plausible or implausible.
Other approaches such as Gutmann and Corander 2015 minimize the
discrepancy to find good parameters, with less(?) of a focus on
uncertainty.
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History matching waves
Wilkinson 2014

The ABC log-likelihood l(θ) = log L(θ) typical ranges across a wide range
of values, consequently, most models struggle to accurately approximate
the log-likelihood across the entire parameter space.

Introduce waves of history matching.

In each wave, build a GP model that can rule out regions of space as
implausible.

Choose threshold T so that if l(θ̂)− l(θ) > T then π(θ|y) ≈ 0.

We decide that θ is implausible if

P(l̃(θ) > max
θi

l(θi )− T ) ≤ 0.001

where l̃(θ) is the GP model of log π(D|θ)

Ruling θ to be implausible is to set π(θ|y) = 0

Equivalent to doing inference with log-likelihood L(θ)Il(θ̂)−l(θ)<T

Choice of T is problem specific; start conservatively with T large and
decrease, cf sequential ABC.
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Example: Ricker Model
Wood 2010

The Ricker model is one of the prototypic ecological models.

used to model the fluctuation of the observed number of animals in
some population over time

It has complex dynamics and likelihood, despite its simple
mathematical form.

Ricker Model

Let Nt denote the number of animals at time t.

Nt+1 = rNte
−Nt+er

where et are independent N(0, σ2
e ) process noise

Assume we observe counts yt where

yt ∼ Po(φNt)



Results - Design 1 - 128 pts



Diagnostics for GP 1 modelling log(− log l(θ))
Threshold = 5.6



Results - Design 2 - 314 pts - 38% of space implausible



Diagnostics for GP 2 modelling log l(θ)
threshold = -21.8



Design 3 - 149 pts - 62% of space implausible



Diagnostics for GP 3 modelling log l(θ)
Threshold = -20.7



Design 4 - 400 pts - 95% of space implausible



Diagnostics for GP 4 modelling log l(θ)
Threshold = -16.4



MCMC Results
Comparison with Wood 2010, synthetic likelihood approach
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The Wood MCMC method used 105 × 500 simulator runs
The GP code used (128 + 314 + 149 + 400) = 991× 500 simulator
runs



Acquisition rules
Work with James Hensman

We are classifying space as plausible or not by estimating the probability

p(θ) = PGP(θ ∈ Pθ)

where Pθ = {θ : f (θ) ∈ PD},

The key determinant of emulator accuracy is the design used to train the
GP

Dn = {θi , f (θi )}Ni=1

Usual design choices are space filling designs

Maximin latin hypercubes, Sobol sequences

Calibration doesn’t need a global approximation to the simulator - this is
wasteful
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Entropic designs

Instead build a sequential design θ1, θ2, . . . using the current classification

p(θ) = P(θ ∈ Pθ|Dn)

to guide the choice of design points.

To find the MAP estimate we can use standard acquisition rules such as
the expected improvement. But we want more than a point estimate.

First idea: add design points where we are most uncertain

The entropy of the classification surface is

E (θ) = −p(θ) log p(θ)− (1− p(θ)) log(1− p(θ))

Choose the next design point where we are most uncertain.

θn+1 = arg maxE (θ)
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Toy 1d example f (θ) = sin θ

Add a new design point (simulator evaluation) at the point of greatest
entropy



Toy 1d example f (θ) = sin θ
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Toy 1d example f (θ) = sin θ



Toy 1d example f (θ) = sin θ - After 10 and 20 iterations

This criterion spends too long resolving points at the edge of the
classification region.

not enough exploration



Expected average entropy
Chevalier et al. 2014

Instead, we can find the average entropy of the classification surface

En =

∫
E (θ)dθ

where n denotes it is based on the current design of size n.

Choose the next design point, θn+1, to minimise the expected
average entropy

θn+1 = arg min Jn(θ)

where
Jn(θ) = E(En+1|θn+1 = θ)



Toy 1d example f (θ) = sin θ - Expected entropy
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Toy 1d example f (θ) = sin θ - Expected entropy



Toy 1d: min expected entropy vs max entropy
After 10 iterations, choosing the point of maximum entropy

we have found the plausible region to reasonable accuracy.

Whereas maximizing the entropy has not

In 1d, a simpler space filling criterion would work just as well.
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Solving the optimisation problem

Finding θ which minimises Jn(θ) = E(En+1|θn+1 = θ) is expensive.

Even for 3d problems, grid search is prohibitively expensive

Dynamic grids help

We can use Bayesian optimization to find the optima:

1 Evaluate Jn(θ) at a small number of locations

2 Build a GP model of Jn(·)
3 Choose the next θ at which to evaluate Jn so as to minimise the

expected-improvement (EI) criterion

4 Return to step 2.
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Dynamic grids help

We can use Bayesian optimization to find the optima:

1 Evaluate Jn(θ) at a small number of locations

2 Build a GP model of Jn(·)
3 Choose the next θ at which to evaluate Jn so as to minimise the

expected-improvement (EI) criterion

4 Return to step 2.



History match
Can we learn the following plausible set?

A sample from a GP on R2.
Find x s.t. −2 < f (x) < 0



Iteration 10
Left=p(θ), middle= E(θ), right = J̃(θ)
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Iteration 10
Left=p(θ), middle= E(θ), right = J̃(θ)



Iteration 15
Left=p(θ), middle= E(θ), right = J̃(θ)



Iterations 20 and 24

Video

http://youtu.be/FF3KhKh6NHg


EPm: climate model
Holden et al. 2016

3d problem
DTcrit conv - critical temperature gradient that triggers convection
GAMMA - emissivity parameter for water vapour
Calibrate to global average surface temperature
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Inference

Kennedy and O’Hagan 2001 used the surrogate to calculate the
posterior - over-utilizes the surrogate, sacrificing exact sampling.

Rasmussen 2003 corrected for the use of a surrogate in a HMC
scheme using a Metropolis step, which requires simulator evaluations
at every stage - under-utilizes the surrogate, sacrificing speed-up

Sherlock et al. 2015 use delayed-acceptance MCMC which also
requires one sim run per accepted value.

Conrad et al. 2015 use local approximations to produce a MC sampler
that asymptotically samples from the exact posterior.

experimental design combines guidance from MCMC and local space
filling heuristics, triggered by random refinement and local error
indicators of model quality.

I proposes new θ - if uncertainty in surrogate prediction is such that it is
unclear whether to accept or reject, then rerun simulator, else trust
surrogate.

Allows for rigorous error analysis.



Inference

Kennedy and O’Hagan 2001 used the surrogate to calculate the
posterior - over-utilizes the surrogate, sacrificing exact sampling.

Rasmussen 2003 corrected for the use of a surrogate in a HMC
scheme using a Metropolis step, which requires simulator evaluations
at every stage - under-utilizes the surrogate, sacrificing speed-up

Sherlock et al. 2015 use delayed-acceptance MCMC which also
requires one sim run per accepted value.

Conrad et al. 2015 use local approximations to produce a MC sampler
that asymptotically samples from the exact posterior.

experimental design combines guidance from MCMC and local space
filling heuristics, triggered by random refinement and local error
indicators of model quality.

I proposes new θ - if uncertainty in surrogate prediction is such that it is
unclear whether to accept or reject, then rerun simulator, else trust
surrogate.

Allows for rigorous error analysis.



Inference scheme

Is it really necessary to correct for the surrogate in the inference?

George Box 1976

All models are wrong but some are useful

It is inappropriate to be concerned about mice when there
are tigers abroad

We are missing an understanding of what is importantly wrong

Model error

sampling errors

simulator variance

ABC approximation

summaries



Problems

Error analysis: we don’t want to spend too long achieving accuracy
we don’t need. Given the model error, MC error, stochastic variance
of the simulator, how much effort should we spend on refining the
surrogate?

Design/acquisition: need a batch acquisition rule that accounts for
likelihood-estimate errors and surrogate errors.

Simulator discrepancy

Combining this approach with methods to find good summaries of
the output S(D).



Conclusions

For complex models, surrogate-modelling approaches are often
necessary

Target of approximation: discrepancy vs likelihood vs simulator
output

Good design can lead to substantial improvements in accuracy
I Design needs to be specific to the task required - Space-filling designs

are inefficient for calibration

Still much to do...

Thank you for listening!
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