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Composite minimization

Motivation
Problem (P) covers many practical problems: 

    - Unconstrained basic LASSO / logistic regression

    - Graphical model selection / latent variable graphical model selection

    - Poisson imaging reconstruction / LASSO problem with unknown variance

    - Low-rank recovery / clustering

    - Atomic norm regularization / off-the-grid array processing

g
convex and possibly nonsmooth

(P)

f
convex and smooth

g: `1-norm, nuclear norm or indicator functions

min
x2Rn

{�(x) := f(x) + g(x)}



Composite minimization

Motivation
Problem (P) covers many practical LARGE SCALE problems: 

    - Unconstrained basic LASSO / logistic regression

    - Graphical model selection / latent variable graphical model selection

    - Poisson imaging reconstruction / LASSO problem with unknown variance

    - Low-rank recovery / clustering

    - Atomic norm regularization / off-the-grid array processing

(P)

g: `1-norm, nuclear norm or indicator functions

min
x2Rn

{�(x) := f(x) + g(x)}

need scalable algorithms

g
convex and possibly nonsmooth

f
convex and smooth



Composite minimization: modus operandi

(P)

Classes of smooth functions (f)

FL

Fµ
F : smooth

min
x2Rn

{�(x) := f(x) + g(x)}

µI � r2
f(x) � LI

krf(x)�rf(y)k  Lky � xk

g
convex and possibly nonsmooth

f
convex and smooth

• FL - L-Lipschitz gradient

• Fµ - µ-strongly convex
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Composite minimization: modus operandi

(P)

FL

Fµ
F : smooth

min
x2Rn

{�(x) := f(x) + g(x)}

Following prox computation is tractable:

prox�g(s) := argmin

x

⇢
g(x) +

1

2�
kx� sk22

�

g
convex and possibly nonsmooth

f
convex and smooth

Classes of smooth functions (f)

µI � r2
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Composite minimization: modus operandi

(P)

FL

Fµ
F : smooth

min
x2Rn

{�(x) := f(x) + g(x)}

Following prox computation is tractable:

prox�g(s) := argmin

x

⇢
g(x) +

1

2�
kx� sk22

�

g
convex and possibly nonsmooth

f
convex and smooth

Classes of smooth functions (f)

µI � r2
f(x) � LI

krf(x)�rf(y)k  Lky � xk

• FL - L-Lipschitz gradient

• Fµ - µ-strongly convex

if g(x) = kxk1, then
prox�g(s) = SoftThresh(s, �)

Example:



g
convex and possibly nonsmooth 

with “tractable” prox

Fast gradient schemes (Nesterov’s methods)

Newton/quasi Newton schemes

Composite minimization: modus operandi

(P)

well-understood

FL

Fµ
F : smooth

min
x2Rn

{�(x) := f(x) + g(x)}

Classes of smooth functions (f)

µI � r2
f(x) � LI

krf(x)�rf(y)k  Lky � xk

f
convex and smooth

• FL - L-Lipschitz gradient

• Fµ - µ-strongly convex



g
convex and possibly nonsmooth 

with “tractable” prox

µI � r2
f(x) � LI

krf(x)�rf(y)k  Lky � xk

Fast gradient schemes (Nesterov’s methods)

Newton/quasi Newton schemes

Composite minimization: an uncharted region

(P)

Scalability is NOT great

FL

Fµ
F : smooth

min
x2Rn

{�(x) := f(x) + g(x)}

Classes of smooth functions (f)

f
convex and smooth

• FL - L-Lipschitz gradient

• Fµ - µ-strongly convex



g
convex and possibly nonsmooth 

with “tractable” prox

Composite self-concordant minimization

(P)

f
convex and self-concordant

f is self-concordant if '(t) := f(x+ td) satisfies |'000
(t)|  2'00

(t)3/2 for all x and d.

FL

Fµ
F : smooth

min
x2Rn

{�(x) := f(x) + g(x)}

F2

Classes of smooth functions (f)

• FL - L-Lipschitz gradient

• Fµ - µ-strongly convex

• F2 - self-concordant

Key structure for the interior point method



Example: Log-determinant for LMIs

• Application: Graphical model selection

Given a data set D := {x1, . . . ,xN}, where xi is a Gaussian random variable.

Let ⌃ be the covariance matrix corresponding to the graphical model of

the Gausian Markov random field. The aim is to learn a sparse matrix ⇥ that

approximates the inverse ⌃

�1
.

Optimization problem

min
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8
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>:
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g(x)

9
>=

>;

x2

x3

x4
x5

x1

x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

⇥ =



Log-barrier for linear/quadratic inequalities

• Poisson imaging reconstruction via TV regularization

• Basic pursuit denoising problem (BPDP): Barrier formulation

• LASSO problem with unknown variance

x

⇤ ⌘ (�⇤, �⇤
) = argmin

�,�

n

�log(�) +
1

2n
k�y �X�k22
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=:f(x)

+�k�k1
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o

x

⇤
t = argmin

x

n

�tlog
�

�2 � kAx� yk22
�
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+g(x)
o
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⇤ 2 argmin

x

n

m

X
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o

• Quantum tomography ML estimator (another presentation!) 



g
convex and possibly nonsmooth 

with “tractable” prox

Composite self-concordant minimization

(P)

FL

Fµ
F : smooth

min
x2Rn

{�(x) := f(x) + g(x)}

F2

Classes of smooth functions (f)

f
convex and self-concordant

f is self-concordant if '(t) := f(x+ td) satisfies |'000
(t)|  2'00

(t)3/2 for all x and d.

Our contributions:
  i) a variable metric (path 
following) forward-backward 
framework
 ii) convergence theory without the 
Lipschitz gradient assumption
iii) novel variants and extensions for 

several applications & SCOPT



Basic algorithmic framework



A basic composite minimization framework

• Main properties of Fµ,L

f(y) � f(x) +rf(x)T (y � x) +
µ

2
ky � xk22

f(y)  f(x) +rf(x)T (y � x) +
L

2
ky � xk22

Lower surrogate

Upper surrogate

Hessian surrogates µI � r2f(x) � LI

x,y 2 dom(f)

x,y 2 dom(f)

x 2 dom(f)

f(x)

x

x

k

f(xk) +rf(xk)T (x� x

k) +
µ

2
kx� x

kk22  f(x)

f(xk) +rf(xk)T (x� x

k) +
L

2
kx� x

kk22 � f(x)
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x

{f(x) + g(x)}
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rf(xk
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A basic composite minimization framework
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acceleration is possible

FISTA
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To adapt or not to adapt? 

L is a global worst-case constant

krf(x)�rf(y)k  Lky � xk

f(x)

�f(xk)

x

k+1 := argmin
x

⇢
f(xk) +rf(xk)T (x� x

k) +
L

2
kx� x

kk22 + g(x)

�
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To adapt or not to adapt? 

Variable metric proximal point operator

proxH�1g(s) := argmin
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if g(x) = kxk1, then
prox�g(s) = SoftThresh(s, �)
proxH�1g(s) = LASSO



• Proximal point scheme with variable metric [Bonnans, 1993]

Proximal point scheme with variable metric

PPA)

• Additional accuracy vs. computation trade-offs

Variable metric proximal point operator

Given x0
, generate a sequence {xk}k�0 such that

xk+1
= proxH�1

k

�
xk �Hk

�1rf(xk
)

�

where Hk is symmetric positive definite

A basic variable metric minimization framework

proxH�1g(s) := argmin

x

n

g(x) +

1

2

kx� sk2H�1

o

Order | Example | Components | k

1-st | Accelerated gradient | rf, prox1/LIn | O(✏�1/2)

1+-th | BFGS | Hk,rf, proxH�1
k

| O(log ✏�1) or faster

2-nd | Proximal Newton, IPM | r2f,rf, proxr2f�1 | O(log log ✏�1)



Self-concordance vs. Lipschitz gradient + SC

• Main properties of Fµ,L

x,y 2 dom(f)

x,y 2 dom(f)

x 2 dom(f)

Lower surrogate

Upper surrogate

Hessian surrogates

f(y) � f(x) +rf(x)T (y � x) +
µ

2
ky � xk22

f(y)  f(x) +rf(x)T (y � x) +
L

2
ky � xk22

µI � r2f(x) � LI
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Global



Self-concordance vs. Lipschitz gradient + SC

• Main properties of 

x,y 2 dom(f)Lower surrogate

Upper surrogate

Hessian surrogates (1� ky � xk
x

)2r2f(x) � r2f(y) � (1� ky � xk
x

)�2r2f(x)

f(y)  f(x) +rf(x)T (y � x) + !⇤ (ky � xk
x

)

f(y) � f(x) +rf(x)T (y � x) + ! (ky � xk
x

)

ky � xk
x

< 1

ky � xk
x

< 1

F2

Local norm:   

Utility functions:   

kuk
x

:=
⇥
u

Tr2f(x)u
⇤1/2

!⇤(⌧) = �⌧ � ln(1� ⌧), ⌧ 2 [0, 1) !(⌧) = ⌧ � ln(1 + ⌧), ⌧ � 0

f is self-concordant if '(t) := f(x+ td) satisfies |'000
(t)|  2'00

(t)3/2 for all x and d.

ky � xk2
x

1 + ky � xk
x

 (rf(y)�rf(x))T (y�x)  ky � xk2
x

1� ky � xk
x| {z }

ky�xk
x

<1

, 8x,y 2 dom(f)
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Self-concordance: A mathematical tool

• Main properties of 

x,y 2 dom(f)Lower surrogate

Upper surrogate

Hessian surrogates (1� ky � xk
x

)2r2f(x) � r2f(y) � (1� ky � xk
x

)�2r2f(x)

f(y)  f(x) +rf(x)T (y � x) + !⇤ (ky � xk
x

)

f(y) � f(x) +rf(x)T (y � x) + ! (ky � xk
x

)

ky � xk
x

< 1

ky � xk
x

< 1

F2

f is self-concordant if '(t) := f(x+ td) satisfies |'000
(t)|  2'00

(t)3/2 for all x and d.

min
x2Rn

{�(x) := f(x) + g(x)}

• New variable metric framework with rigorous convergence guarantees

Includes several algorithms: Newton, quasi-Newton, and gradient methods... 



Our composite self-concordant minimization framework

• Proximal Newton scheme
Given x

0
, generate a sequence {xk}k�0 such that

x

k+1
:= x

k
+ ↵kd

k
Hk

where ↵k 2 (0, 1] is step-size, dk
Hk

is a search direction

Hk = r2f(xk)



• Proximal Newton scheme

• How to compute the Proximal Newton direction?

dk
Hk

:= argmin
d

⇢
f(xk) +rf(xk)Td+

1

2
dTHkd+ g(xk + d)

�
, Hk = r2f(xk)

Given x

0
, generate a sequence {xk}k�0 such that

x

k+1
:= x

k
+ ↵kd

k
Hk

where ↵k 2 (0, 1] is step-size, dk
Hk

is a search direction

Our composite self-concordant minimization framework

Hk = r2f(xk)

�f(xk)

f(x)

x

k+1 := x

k + ↵k

�
s

k
g � x

k
�

skg := arg min
x2dom(F )

�
Q(x;xk,Hk) + g(x)

 

Q(x;xk,Hk)



• Proximal Newton scheme

• How to compute the Proximal Newton direction?

dk
Hk

:= argmin
d

⇢
f(xk) +rf(xk)Td+

1

2
dTHkd+ g(xk + d)

�
, Hk = r2f(xk)

Given x

0
, generate a sequence {xk}k�0 such that

x

k+1
:= x

k
+ ↵kd

k
Hk

where ↵k 2 (0, 1] is step-size, dk
Hk

is a search direction

FL

Fµ
F : smooth

FL,µ

Fast gradient schemes (Nesterov’s methods)

Newton/quasi Newton schemes

µI � r2
f(x) � LI

krf(x)�rf(y)k  Lky � xk

Our composite self-concordant minimization framework

Hk = r2f(xk)



Our composite self-concordant minimization framework

• Proximal Newton scheme

• How to compute the Proximal Newton direction?

dk
Hk

:= argmin
d

⇢
f(xk) +rf(xk)Td+

1

2
dTHkd+ g(xk + d)

�
, Hk = r2f(xk)

Given x

0
, generate a sequence {xk}k�0 such that

x

k+1
:= x

k
+ ↵kd

k
Hk

where ↵k 2 (0, 1] is step-size, dk
Hk

is a search direction

FL

Fµ
F : smooth

FL,µ

Fast gradient schemes (Nesterov’s methods)

Newton/quasi Newton schemes

µI � r2
f(x) � LI

krf(x)�rf(y)k  Lky � xk

Hk = r2f(xk)
Key contribution: 
step size selection procedure



How do we compute the step-size?

f(xk+1)  f(xk) +rf(xk)T (xk+1 � x

k) + !⇤(kxk+1 � x

kk
x

k), kxk+1 � x

kk
x

k < 1

g(xk+1)� g(xk)  �↵krf(xk)Tdk
Hk

� ↵kkdk
Hk

k2Hk
.

• Upper surrogate of f

• Convexity of g and optimality condition of the subproblem



How do we compute the step-size?

f(xk+1)  f(xk) +rf(xk)T (xk+1 � x

k) + !⇤(kxk+1 � x

kk
x

k), kxk+1 � x

kk
x

k < 1

g(xk+1)� g(xk)  �↵krf(xk)Tdk
Hk

� ↵kkdk
Hk

k2Hk
.

• Upper surrogate of f

• Convexity of g and optimality condition of the subproblem

�(xk+1)  �(xk)� ↵kkdk
Hk

k2Hk
+ !⇤

�
↵kkdk

Hk
kxk

�



How do we compute the step-size?

f(xk+1)  f(xk) +rf(xk)T (xk+1 � x

k) + !⇤(kxk+1 � x

kk
x

k), kxk+1 � x

kk
x

k < 1

g(xk+1)� g(xk)  �↵krf(xk)Tdk
Hk

� ↵kkdk
Hk

k2Hk
.

• Upper surrogate of f

• Convexity of g and optimality condition of the subproblem

• When                         ,Hk ⌘ r2f(xk)
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Graphical model selection
• Objective:
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• Gradient and Hessian (large-scale, special structure)
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• How to compute the Proximal Newton direction?

dk
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:= argmin
d

⇢
f(xk) +rf(xk)Td+
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dTHkd+ g(xk + d)

�
, Hk = r2f(xk)

Graphical model selection
• Objective:



• Gradient and Hessian (large-scale, special structure)

• Dual approach for solving subproblem (SP)
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Graphical model selection
• Objective:

Unconstrained LASSO problem
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Our method vs QUIC [Hseih2011]

- QUIC subproblem solver: 	
	
 special block-coordinate descent

- Our subproblem solver: 	
 	
 general proximal algorithms

Convergence behaviour [rho = 0.5]:  Lymph [p = 587] (left),    Leukemia [p = 1255] (right)
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PN−no LS

PN−LS

QUIC
F. eval = 13

F. eval = 21

F. eval = 21

F. eval = 31

nnz(X⇤) ⇡ 0.013p2 nnz(X⇤) ⇡ 0.02p2

Graphical model selection: numerical examples

Step-size selection strategies: Arabidopsis [p = 834], Leukemia [p = 1255], Hereditary [p = 1869]

*Details: “A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions,” ICML’13 and lions.epfl.ch/publications. 

http://infoscience.epfl.ch/record/183012/files/glearn_wo_matrix_inversion_2.pdf?version=1
http://infoscience.epfl.ch/record/183012/files/glearn_wo_matrix_inversion_2.pdf?version=1
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Graphical model selection: numerical examples

Step-size selection strategies: Arabidopsis [p = 834], Leukemia [p = 1255], Hereditary [p = 1869]

On the average x5 acceleration (up to x15) over Matlab QUIC

*Details: “A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions,” ICML’13 and lions.epfl.ch/publications. 

http://infoscience.epfl.ch/record/183012/files/glearn_wo_matrix_inversion_2.pdf?version=1
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Composite minimization: alternatives?

Existing numerical approaches
- Splitting methods

    - Forward-backward:                           applicable if f has Lipschitz gradient

    - Douglas-Rachford decomposition:      f and g have “tractable” proximity operators

(P) min
x2Rn

{�(x) := f(x) + g(x)}

- Augmented Lagrangian methods (e.g., D-R again)

Prox operator of self-concordant functions are costly!

g
convex and possibly nonsmooth

f
convex and smooth

min
x2Rn

{�(x,y) := f(x) + g(y)}

s.t. x� y = 0
� log det : full eigen decomposition

� log (with a linear operator): non-linear system

• New theory for AL/ADMM/decomposition (another presentation!) 



Our “cheaper” variable metric strategies

• Proximal gradient scheme*

• How to compute the search direction? 

Given x

0
, generate a sequence {xk}k�0 such that

x

k+1
:= x

k
+ ↵kd

k
Hk

where ↵k 2 (0, 1] is step-size, dk
Hk

is a search direction

• No Lipschitz assumption

A new predictor corrector scheme (with local linear convergence*)

• Proximal quasi-Newton scheme (BFGS updates)*

dk
Hk

:= argmin

d

⇢
f(xk

) +rf(xk
)

Td+

1

2

dTHkd+ g(xk
+ d)

�
, Hk = Dk : diagonal

*Details: “Composite Self-Concordant Minimization,” arxiv and lions.epfl.ch/publications. 



New theory: Local linear convergence of the PG 
Graph learning: Lymph [p = 587]
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Heteroschedastic LASSO [rho decreases from left to right]

New theory: Local linear convergence of the PG 
Graph learning: Lymph [p = 587]
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ProxGrad3
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⇤ ⌘ (�⇤, �⇤
) = argmin

�,�

n

�log(�) +
1

2n
k�y �X�k22

| {z }

=:f(x)

+ ⇢k�k1
| {z }

=:g(x)

o



Proximal gradient scheme: new engineering

• A greedy enhancement min
x2Rn

{�(x) := f(x) + g(x)}

s

k
g := arg min

x2dom(F )

�
Q(x;xk,Dk) + g(x)

 
x̂

k := (1� ↵k)x
k + ↵ks

k
g

prox:
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Proximal gradient scheme: new engineering
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Our method vs SPIRAL-TAP [Harmany2012]

Poisson imaging reconstruction via TV

Original image Poisson noise image Reconstructed image (ProxGrad) Reconstructed image (ProxGradNewton) Reconstructed image (SPIRAL−TAP)

• Poisson imaging reconstruction via TV regularization
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Our method vs SPIRAL-TAP [Harmany2012]

Poisson imaging reconstruction via TV

Original image Poisson noise image Reconstructed image (ProxGrad) Reconstructed image (ProxGradNewton) Reconstructed image (SPIRAL−TAP)

On the average x10 acceleration (up to x250) over SPIRAL-TAP with better accuracy
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Barrier extensions



Constrained convex problems

• ⌦ is endowed with a self-concordant barrier f(x);

• g is a (possibly nonmsooth) convex function, e.g. `1-norm or an indicator

function.

g⇤ := min
x2⌦

g(x) FL

Fµ

F2F2,⌫

F : smooth

Self-concordant barrier

 - Self-concordance: f is standard self-concordant if

'(t) := f(x+ tv), where x,x+ tv 2 dom(f),v 2 Rn, t 2 R

 - Given f is smooth and convex on its domain. We define:

 - Self-concordant barrier: f is a self-concordant barrier if there exists            such that:⌫ > 0

|'000(t)|  2'00(t)3/2

8
><

>:

f is standard self-concordant,

|'0
(t)| 

p
⌫'00

(t)1/2,

f(x) ! +1 as x ! @⌦



Constrained convex problems

• ⌦ is endowed with a self-concordant barrier f(x);

• g is a (possibly nonmsooth) convex function, e.g. `1-norm or an indicator

function.

g⇤ := min
x2⌦

g(x)

f is a ⌫-self-concordant barrier if '(t) := f(x+ td) satisfies |'000
(t)|  2'00

(t)3/2 and |'0
(t)| 

p
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(t)1/2

• Examples:

⌦ : X ⌫ 0 ) f⌦(X) = � log det(X)

⌦ : a

T
x � 0 ) f⌦(x) = � log(a

T
x)
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• g is a (possibly nonmsooth) convex function, e.g. `1-norm or an indicator

function.
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• Examples:
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T
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⌦ : kAx� bk  � ) f⌦(x) = � log(�2 � kAx� bk2)

• Main idea: solve a sequence of composite self-concordant problems 

combine them together!!!

Proximal Point Interior Point+

min
x2int(⌦)

�
F (x, ⌧) := f(x) + ⌧�1g(x)

 



How does it work?

*Details: “An Inexact Proximal Path-Following Algorithm for Constrained Convex Minimization,” optimization-online and lions.epfl.ch/publications. 

Main idea: solve a sequence of composite self-concordant problems as opposed to DCO

One iteration k requires two updates simultaneously:

x

k+1 := argmin
x

⇢
tk+1rf(xk)T (x� x

k) +
tk+1

2
(x� x

k)Tr2f(xk)(x� x

k) + g(x)

�

- Update the penalty parameter:

- Update the iterative vector (can be solved approximately):

tk+1 := (1� �k)tk, �k 2 [�, 1) (e.g.,� = 0.0337/
p
⌫).
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How does it converge?

Tracking properties on the penalty parameter and the iterative sequence in Phase II

- Tracking error of the iterative sequence:

Worst-case complexity:

- Phase 1:  Finding a starting point for Phase II requires at most

j
max

:=

�
F (x0; t

0

)� F (x⇤(t
0

); t
0

)

0.0012

⌫
+ 1

The algorithm consists of two PHASES:

- Phase II:  Perform the path-following iterations

O
✓p

⌫ log

✓
Ct0
"

◆◆
- Phase II:  The worst-case complexity to reach an    - solution is at most:"

- Phase I:  Find a starting point        such that: kx0
p2

� x

⇤(t0)k
x

⇤(t0)  0.05x

0
p2

- Note: This worst-case complexity is as the same as in standard path-following methods [see Nesterov2004]

if kxk � x

⇤(tk)k
x

⇤(tk)  0.05 then kxk+1 � x

⇤(tk+1)k
x

⇤(tk+1)  0.05

- The penalty parameter      decreases at least with a factor                                   at each iteration ktk ⌧ := 1� 0.0337p
⌫

tk+1 = ⌧ tk



Proximal path-following

• ⌦ is endowed with a self-concordant barrier f(x);

• g is a (possibly nonmsooth) convex function, e.g. `1-norm or an indicator

function.

g⇤ := min
x2⌦

g(x)

Proximal path following for conic programming with rigorous guarantees

Example: Low-rank SDP matrix approximation ...

min
X

⇢kvec(X�M)k1 + (1� ⇢)tr(X)

s.t. X ⌫ 0, Lij  Xij  Uij , i, j = 1, . . . , n.

⇢  is a regularization parameter in (0, 1), M is the given input matrix.

Upshot: no-heavy lifting!

sparsity is 25%. Then, we generate matrix M := RTR+ 10�4E, where E ⇠ N (0, I).
The lower bound L and the upper bound U are given as L := (m

l

� 0.1 |m
l

|)I and
U := (m

u

+ 0.1 |m
u

|)I, where m

l

:= min
i,j

M
ij

and m

u

:= max
i,j

M
ij

.
We test three algorithms on five problems of size n 2 {80, 100, . . . , 160} w.r.t.

⇢ = 0.2. Table 6.1 reports the results and the performance of these three algorithms.
Our platform is Matlab 2011b on a PC Intel Xeon X5690 at 3.47GHz per core with
94Gb RAM.

Table 6.1
Comparison of Algorithm 1, SDPT3 and SeDuMi

Solver\n 80 100 120 140 160

Size [n

v

;n

c

] [16,200; 9,720] [25,250; 15,150] [36,300; 21,780] [49,350; 29,610] [64,400; 38,640]

Time (sec)
New Algorithm 15.738 24.046 24.817 25.326 36.531

SDPT3 156.340 508.418 881.398 1742.502 2948.441
SeDuMi 231.530 970.390 3820.828 9258.429 17096.580

Objective value
New Algorithm 306.9159 497.6706 635.4304 842.4626 1096.6516

SDPT3 306.9153 497.6754 635.4306 842.4644 1096.6540
SeDuMi 306.9176 497.6821 635.4384 842.4776 1096.6695

From Table 6.1 we can see that if we reformulate problem (6.10) into a standard
SDP problem where SDPT3 and SeDuMi can solved, then the number of variables
n

v

and the number of constraints n

c

increase rapidly (highlighted with red color).
Consequently, the computational time in SDPT3 and SeDuMi also increase significantly
compared to Algorithm 1. Moreover, SeDuMi is much slower than SDPT3 in this
particular example. Since Algorithm 1 does not require to transform problem (6.10)
into a standard SDP problem, we can clearly see the computational advantage of
this algorithm to standard interior-point solvers, e.g., SDPT3 and SeDuMi, for solving
problem (6.10). We note that the implementation of the proposed scheme is still a
prototype, coded in Matlab without any preconditioning strategy.

6.4. Max-norm and `

1

-norm optimization in clustering. In this example,
we show an application of Algorithm 1 to solve a constrained SDP problem arising
from the correlation clustering [3], where the number of clusters is unknown. Briefly,
the problem statement is as follows: Given a graph with p vertices, let A be its
a�nity matrix (cf., [3] for the definition). The clustering goal here is to partition the
set of vertices such that the total disagreement with the edge labels is minimized in
A, which is an explicitly combinatorial problem. The work in [19] proposes a tight
convex relaxation (1.3), poses significant di�culties to the IPM methods in large-scale.
The approach is called max-norm constrained clustering, and if solved correctly, has
rigorous theoretical guarantees of correctness for its solution.

In this example, we demonstrate that Algorithm 1 can obtain medium accuracy
solutions in a scalable fashion as compared to a state-of-the-art IPM. Here, we use the
adaptive update rule (4.5). The algorithm terminates if t

k

 10�3 and �

k

 10�8.
We also solve (1.4) and (4.7) by applying FISTA.

We compare our algorithm with the o↵-the-self, IPM implementation SDPT3 [38],
both in terms of time- and memory-complexity. Since the curse-of-dimensionality
renders the execution of SDPT3 impossible in large dimensions, we use the low precision
mode in SDPT3 (i.e., " ⇡ 1.5 ⇥ 10�8) in order to execute larger problems within

16
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#constraints

    + Lift the problem dimension (small to large-scale)

    + Destroy the sparsity due to scaling-factors in SDP (e.g., Nesterov-Todd scaling factor)



DCO:

Example: Max-norm clustering

Proximal path following for conic programming with rigorous guarantees

Proximal path-following

• ⌦ is endowed with a self-concordant barrier f(x);

• g is a (possibly nonmsooth) convex function, e.g. `1-norm or an indicator

function.

g⇤ := min
x2⌦

g(x)
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SDPT3
Path follow ing scheme

O(p5.5 )

O(p3)

Table 6.2
Average values over 10 Monte Carlo iterations for each dimension p. The variable K

⇤ refers
to the respective solution at convergence as returned by the algorithms under comparison.

p 50 75 100 150 200

Time (sec)

PF 62.450 109.426 202.600 416.044 1573.881
SDPT3 4.396 21.282 64.939 522.021 2588.721

[19] 102.217 236.366 354.444 778.904 1420.844

g(K⇤
)

PF 549.1567 1293.6727 2232.5897 5396.0485 9809.6066
SDPT3 549.1860 1293.7890 2233.0747 5396.7305 9809.6934

[19] 597.8825 1387.1379 2496.6535 5583.8605 9958.0974

mode in SDPT3 (i.e., " ⇡ 1.5 ⇥ 10�8) in order to execute larger problems within
a reasonable time frame. We compare these two schemes based on synthetic data,
generated as described in [19].
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SDPT3 PF scheme

p variables constraints variables

50 15.1 2.6 10

75 33.9 5.8 22.5

100 60.2 10.2 40

150 135.3 22.8 90

200 240.4 40.4 160

Fig. 6.1. (Left) Execution times. (Right) Number of variables and equality constraints in
thousands.

In terms of solution accuracy, our scheme with the aforementioned parameter
settings is comparable to the low-precision mode of SDPT3, and can often obtain
accurate solutions (cf., Table 6.2). However, Figure 6.1(Left) illustrates that our path
following scheme has a rather dramatic scaling advantage as compared to SDPT3:
O(p3) for ours vs. O(p5.5) for SDPT3. Because of this scaling, SDPT3 cannot handle
problems instances where p > 200 in our computer.

Reasons for our scalability are twofold. First, our path following scheme avoids
“lifting” the problem into higher dimensions. Hence, as the problem dimensions grow
(cf., Fig. 6.1(Right); numbers are in thousands), our memory requirement scales in a
better fashion. Moreover, we do not have to handle additional (in)equality constraints.
Second, the subproblem solver has linear convergence rate due to its construction (i.e.,
r2

f � 0). Hence, our fast solver (FISTA) obtains medium accuracy solutions quickly
since the proximal operator is e�cient and has a closed form.

We also compare the proposed scheme with the scalable Factorization Method
(FM), presented in [19]: a state-of-the-art, non-convex implementation of (1.3), based
on splitting techniques. The code is publicly available at http://www.ali-jalali.
com/. We modified this code to include a stopping criterion at a tolerance of
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a reasonable time frame. We compare these two schemes based on synthetic data,
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O(p3) for ours vs. O(p5.5) for SDPT3. Because of this scaling, SDPT3 cannot handle
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Second, the subproblem solver has linear convergence rate due to its construction (i.e.,
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f � 0). Hence, our fast solver (FISTA) obtains medium accuracy solutions quickly
since the proximal operator is e�cient and has a closed form.

We also compare the proposed scheme with the scalable Factorization Method
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splitting

splitting

Upshot: desired scaling!



Example: Max-norm clustering Example: Graph selection

Proximal path-following

• ⌦ is endowed with a self-concordant barrier f(x);

• g is a (possibly nonmsooth) convex function, e.g. `1-norm or an indicator

function.- Main idea: solve a sequence of composite self-concordant problems as opposed to DCO

g⇤ := min
x2⌦

g(x)

min
x2int(⌦)

{F (x; t) := g(x) + tf(x)}

Proximal path following for conic programming with rigorous guarantees
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Fig. 6.2. Impact of the regularization parameter to the solution sparsity.

Table 6.3
The relative error and the number of nonzero elements of two approximate solutions

⇢ 0.1 0.2 0.3 0.4 0.5

Lymph (n = 587)

Relative error ek 0.0011 0.0013 0.0018 0.0018 7.5342⇥ 10�6

n.n.z. (eX(⇢k)/Xk) 37587/37561 20275/20269 14901/14875 9869/9871 4615/4615

Leukemia (n = 1255)

Relative error ek 6.1643⇥ 10�4 5.5701⇥ 10�4 6.2124⇥ 10�4 5.6060⇥ 10�4 3.6497⇥ 10�6

n.n.z. (eX(⇢k)/Xk) 102313/102253 56451/56421 45051/45055 41613/41609 34761/34761

In order to verify the obtained Pareto curve
�

Xk

 

well approximates the true
solution trajectory X⇤(⇢) of the problem (6.11), we apply the proximal-Newton algo-

rithm in [36] to compute the approximate solution eX(⇢
k

) to X⇤(⇢
k

) at five di↵erent

points of ⇢. The relative errors e

k

:=
�

�

�

Xk � eX(⇢
k

)
�

�

�

F

/max
n

eX(⇢
k

)
o

as well as the

number of nonzero elements n.n.z. are shown in Table 6.3. We can see from this
table that both solutions are relatively close to each other both in terms of relative
error and the sparsity.

7. Concluding remarks. We have proposed a new inexact path-following frame-
work for minimizing (possibly) non-smooth and non-Lipschitz gradient objectives un-
der constraints that admit a self-concordant barrier. We have shown how to solve
such problems scalably without inflating problem dimensions or introducing additional
slack variables and constraints. Our method is quite modular: custom implementa-
tions only require the corresponding custom solver for the composite subproblem (1.4)
with a strongly convex quadratic smooth term and a tractable proximity of the sec-
ond term g. We have provided a rigorous analysis that establish the worse complexity
of our approach via a new joint treatment of proximal methods and self-concordant
optimization schemes. While our scheme maintains the original problem structure,
its worst-case complexity remains the same as in standard path-following interior
point methods [23]. We have also shown how the new scheme can obtain points on
the Pareto frontier of regularized problems (with globally non-Lipschitz gradient of
the smooth part). We have numerically illustrated our method on three examples
involving the nonsmooth constrained convex programming problems of matrix vari-
ables. Numerical results have shown that the new path-following scheme is superior
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Smoothing via self-concordant barrier

min
x2Rn

{�(x) := f(x) + g(x)}

f(x) := max

u2U

�
hAT

x,ui �G(u)

 

Composite convex minimization with nonsmooth-max structure f:

- Nonsmooth function f is defined as:

-      : endowed with a self-concordant barrier      , G: convexU bU

Motivating examples

- Nonsmooth convex function induced by a norm:

- Fenchel’s dual function with compact domain:

f(x) := kDxk = max

u
{hDx,ui | u 2 U := {v | kvk⇤  1}}

f(x) := max

u2domf⇤
{hx,ui � f⇤

(u)}

- Lagrange dual problem in constrained convex optimization problem
max

u2U
{�G(u) | Au = b}

min

x

n

max

u2U

�

x

T
Au�G(u)

 

| {z }

f(x)

�bTx
| {z }

g(x)

o



Smoothing via self-concordant barrier

min
x2Rn

{�(x) := f(x) + g(x)}

f(x) := max

u2U

�
hAT

x,ui �G(u)

 

Composite convex minimization with nonsmooth-max structure f:

- Nonsmooth function f is defined as:

Self-concordant barrier smoother of f*

f�(x) := max

u2int(U)

�
hAT

x,ui �G(u)� �bU (u)
 

-               is a smoothness parameter� > 0

- The solution             of the maximization problem satisfies the following optimality condition:
u

⇤
�(x)

0 2 A

T
x� @G(u⇤

�(x))� �rbU (u
⇤
�(x))

rf�(x) = Au

⇤
�(x)

The gradient of     is given asf�

- This is a generalized equation.  If G is smooth then it reduces to a system of nonlinear equations

Often easier to solve than general convex problems

*Details:  Manuscript under review for ICASSP’14.

-      : endowed with a self-concordant barrier      , G: convexU bU



Three key properties of the barrier smoother 
1. Approximation property

2. Local Lipschitz-like property

f�(x)  f(x)  f�(x) + �C⌫.

-               is the smoothness parameter, C is a given constant and      is the barrier parameter.� > 0 ⌫

krf�(x)�rf�(y)k2  c2Akx� yk2
� � cAkx� yk2

, 8x,y kx� yk2 <
�

cA

3. Existence of the second order derivative

- If G is twice differentiable and A is full-row rank, then

r2f�(x) = A

�
r2G(u⇤

�(x))) + �r2bU (u
⇤
�(x))

��1
A

T � 0

MG- If, in addition, G is self-concordant with the parameter        , then        is also self-concordant withf�

Mf� = max

⇢
MG,

2p
�

�

- Here: cA ⌘ cA(x) =
⇥
kAr2bU (u

⇤
�(x))A

T k
⇤1/2
2

 c̄A (constant)



First-order method for barrier smoothing
Barrier smoothed problem

Proximal - gradient scheme

Convergence and convergence rate

�⇤
� = min

x2Rn
{��(x) := f�(x) + g(x)}

Here,      is smooth and g is “tractably” proximalf�

8
><

>:

s

k
:= prox

g
�k

�
x

k � �krf�(x
k
)

�
,

d

k
:= s

k � x

k,

x

k+1
:= x

k
+ ↵kd

k.

- Step-sizes:                   and                                                     with �k � �

c̄2A
↵k =

�

ckA
�
ckA�k + �k

� 2 (0, 1] �k = kdkk2, ckA = cA(x
k)

- Descent property: ��(x
k+1

)  ��(x
k
)� �!

✓
�k

ckA

◆
, !(⌧) = ⌧ � log(1 + t).

��(x̄
k)� ��(x

⇤
�) 

(1 +M)c̄2A
2�k

kx0 � x

⇤
�k22

- Convergence rate (in the ergodic sense):  If                    and                                           then�0  Mc̄A x̄

k =

0

@
kX

j=0

↵j

1

A
�1

kX

j=0

↵jx
j

O
✓
c̄2A
�k

kx0 � x�
⇤k22

◆



A stylized example 
A simple quadratically constrained quadratic program

Convergence of Nesterov’s smoothing vs. Barrier smoothing (m = 200, n = 60) after 50 iterations

�⇤
= min

x

n

�(x) := max

u

T
Bu1

⇢

(Ax� b)Tu� 1

2

x

TQu

�

| {z }

f(x)

+ cTx
|{z}

g(x)

o

- Self-concordant barrier for                                                    is                                                with U :=
�
u 2 Rm | uTBu  1

 
bU (u) := � log(1� uTBu) ⌫ = 2

- Line-search gradient method based on Nesterov’s smoothing with proximity function p(x) =
1

2
x

T
Bx

- Gradient method based on barrier smoothing with the worst-case step size using c̄A
- Gradient method based on barrier smoothing with the adaptive step size using ckA

          Line-search requires additional function evaluations. The number of function evaluations is 296 after 50 iterations
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Barr ie r smoothing gradient algor ithm
(adapt ive )

Barr ie r smoothing gradient algor ithm
(worst -case )

Line -search gradient algor ithm
(Neste rov ’s smoothing)

Constant-step gradient algor ithm
(Neste rov ’s smoothing)
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A stylized example 
A simple quadratically constrained quadratic program

Convergence of Nesterov’s smoothing vs. Barrier smoothing (m = 200, n = 60) after 50 iterations
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- Self-concordant barrier for                                                    is                                                with U :=
�
u 2 Rm | uTBu  1

 
bU (u) := � log(1� uTBu) ⌫ = 2

- Line-search gradient method based on Nesterov’s smoothing with proximity function p(x) =
1

2
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T
Bx

- Gradient method based on barrier smoothing with the worst-case step size using c̄A
- Gradient method based on barrier smoothing with the adaptive step size using ckA

          Line-search requires additional function evaluations. The number of function evaluations is 296 after 50 iterations
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Barr ie r smoothing gradient algor ithm
(adapt ive )

Barr ie r smoothing gradient algor ithm
(worst -case )
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Second order method for barrier smoothing
When to apply proximal-Newton?

Proximal-Newton scheme

Convergence

G is self-concordant and A is full-row rank

8
>>><

>>>:

s

k := argmin
x

�
Q(x;xk) + g(x)

 
,

d

k := s

k � x

k,

↵k := (1 + �k)�1, �k :=
p
��1kdkk

x

k ,

x

k+1 := x

k + ↵kd
k.

Q(x;xk) := rf�(x
k)T (x� x

k) +
1

2
(x� x

k)Tr2f�(x
k)(x� x

k)

- Maintain local quadratic convergence as in proximal-Newton method for self-concordant minimization

- The worst-case complexity depends on the smoothness parameter:

#iterations =

�
��(x

0
)� ��

⇤

0.017�

⌫
+O

✓
1.5 ln ln

✓
0.28

�"

◆◆
+ 2

- Possible to apply the path-following proximal Newton scheme for tuning � # 0+

Simultaneously update both     and      at each iteration k� x

k

- Q is the quadratic surrogate of      around      :f� x

k
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Conclusions

• Fµ - µ-strongly convex

• FL - L-Lipschitz gradient

• F2 - self-concordant

min
x2Rn

{�(x) := f(x) + g(x)}

FL

Fµ
F : smooth

F2

A new variable metric proximal-point framework for 
composite self-concordant minimization

+ 
Extensions



Conclusions

• Fµ - µ-strongly convex

• FL - L-Lipschitz gradient

• F2 - self-concordant

min
x2Rn

{�(x) := f(x) + g(x)}

- Globalization: 	
 	
 	
 	
 a new strategy for finding step-size explicitly
	
 	
 	
 	
 	
 	
 	
 motivate “forward-looking” line-search strategy

- Search direction:  	
 	
 	
 efficient (strongly convex program)

- Local convergence: 	
 	
 	
 quadratic convergence without boundedness of the Hessian

                                   	
 	
 	
 analytic quadratic convergence region

• Highlights

FL

Fµ
F : smooth

F2



Conclusions

➡ SCOPT package has quasi-Newton / first & second order methods @lions.epfl.ch/software

➡ leverage fast proximal solvers for g(x) (structured norms etc.)

➡ robust to subproblem solver accuracy 

• Fµ - µ-strongly convex

• FL - L-Lipschitz gradient

• F2 - self-concordant

min
x2Rn

{�(x) := f(x) + g(x)}

- Globalization: 	
 	
 	
 	
 a new strategy for finding step-size explicitly
	
 	
 	
 	
 	
 	
 	
 motivate “forward-looking” line-search strategy

- Search direction:  	
 	
 	
 efficient (strongly convex program)

- Local convergence: 	
 	
 	
 quadratic convergence without boundedness of the Hessian

                                   	
 	
 	
 analytic quadratic convergence region

• Highlights

• Practical contributions (this talk)

FL

Fµ
F : smooth

F2

SCOPT FTW
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