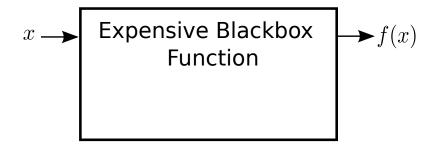
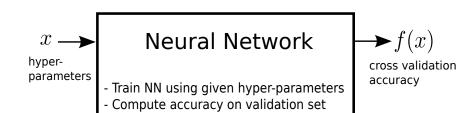
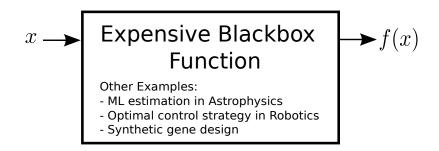
Multi-fidelity Bandit Optimisation

Kirthevasan Kandasamy Carnegie Mellon University

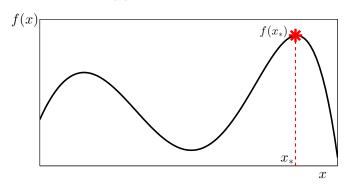
July 12, 2016 University College London



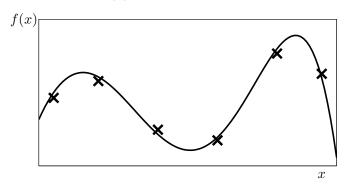




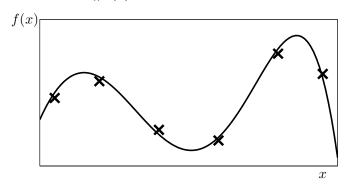
 $f: \mathcal{X} \equiv [0,1]^d \to \mathbb{R}$ is an expensive, black-box, noisy function. Let $x_\star = \operatorname{argmax}_x f(x)$.



 $f: \mathcal{X} \equiv [0,1]^d \to \mathbb{R}$ is an expensive, black-box, noisy function. Let $x_\star = \operatorname{argmax}_x f(x)$.



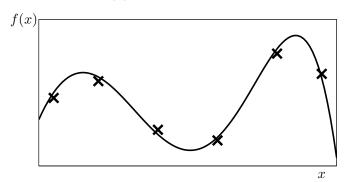
 $f: \mathcal{X} \equiv [0,1]^d \to \mathbb{R}$ is an expensive, black-box, noisy function. Let $x_\star = \operatorname{argmax}_x f(x)$.



Optimisation \cong Minimise *Simple Regret*.

$$S_n = f(\mathbf{x}_{\star}) - \max_{\mathbf{x}_t, t=1,...,n} f(\mathbf{x}_t).$$

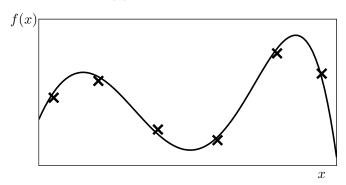
 $f: \mathcal{X} \equiv [0,1]^d \to \mathbb{R}$ is an expensive, black-box, noisy function. Let $x_\star = \operatorname{argmax}_x f(x)$.



Bandits \cong Minimise *Cumulative Regret*.

$$R_n = \sum_{t=1}^n f(x_t) - f(\mathbf{x}_t).$$

 $f: \mathcal{X} \equiv [0,1]^d \to \mathbb{R}$ is an expensive, black-box, noisy function. Let $x_\star = \operatorname{argmax}_x f(x)$.



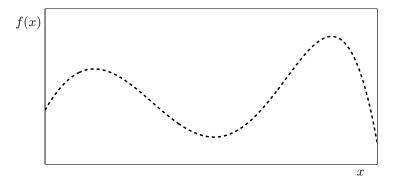
Both problems are related.

$$S_n \leq \frac{1}{n}R_n$$

 $\mathcal{GP}(\mu,\kappa)$: A distribution over functions from $\mathcal X$ to $\mathbb R.$

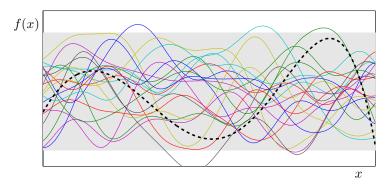
 $\mathcal{GP}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R} .

Functions with no observations



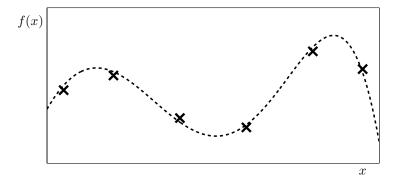
 $\mathcal{GP}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R} .

Prior \mathcal{GP}



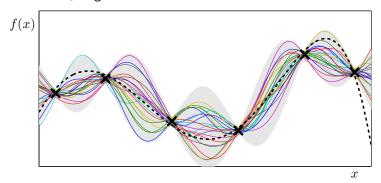
 $\mathcal{GP}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R} .

Observations



 $\mathcal{GP}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R} .

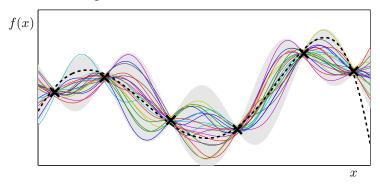
Posterior \mathcal{GP} given Observations



Gaussian Processes (GP)

 $\mathcal{GP}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R} .

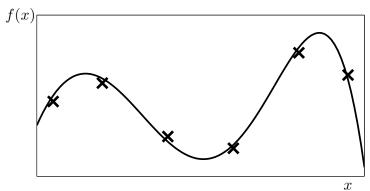
Posterior \mathcal{GP} given Observations



After t observations, $f(x) \sim \mathcal{N}(\mu_t(x), \sigma_t^2(x))$.

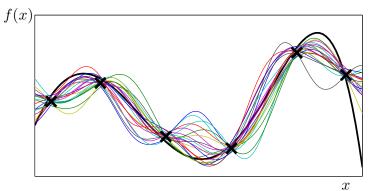
Model $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$.

GP-UCB (Srinivas et al. 2010).



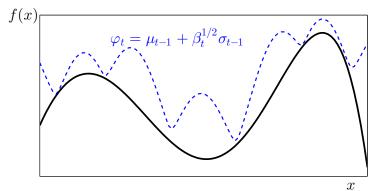
Model $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$.

GP-UCB (Srinivas et al. 2010).



Model $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$.

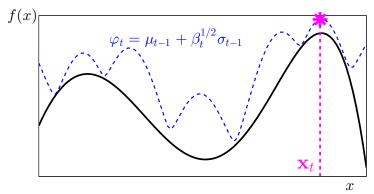
GP-UCB (Srinivas et al. 2010).



Construct Upper Conf. Bound: $\varphi_t(x) = \mu_{t-1}(x) + \beta_t^{1/2} \sigma_{t-1}(x)$.

Model $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$.

GP-UCB (Srinivas et al. 2010).



Maximise Upper Confidence Bound.

$$\mathbf{x}_t = \underset{x}{\operatorname{argmax}} \ \mu_{t-1}(x) + \beta_t^{1/2} \sigma_{t-1}(x)$$

$$\mathbf{x}_t = \underset{\mathbf{x}}{\operatorname{argmax}} \ \mu_{t-1}(\mathbf{x}) + \beta_t^{1/2} \sigma_{t-1}(\mathbf{x})$$

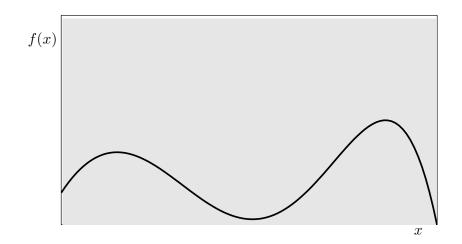
- $\blacktriangleright \mu_{t-1}$: Exploitation
- ▶ σ_{t-1} : Exploration

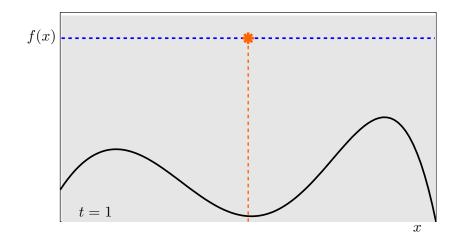
$$\mathbf{x}_t = \underset{x}{\operatorname{argmax}} \quad \mu_{t-1}(x) + \beta_t^{1/2} \sigma_{t-1}(x)$$

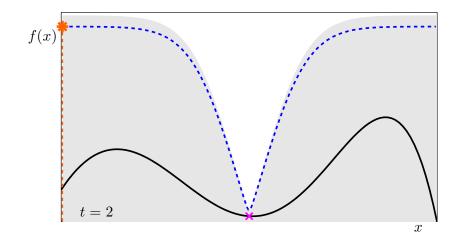
- $\blacktriangleright \mu_{t-1}$: Exploitation
- $ightharpoonup \sigma_{t-1}$: Exploration
- ▶ β_t controls the tradeoff. $\beta_t \approx \log t$.

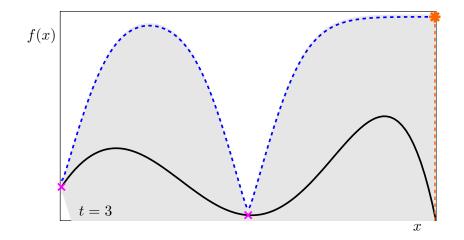
$$\mathbf{x}_t = \underset{\mathbf{x}}{\operatorname{argmax}} \ \mu_{t-1}(\mathbf{x}) + \beta_t^{1/2} \sigma_{t-1}(\mathbf{x})$$

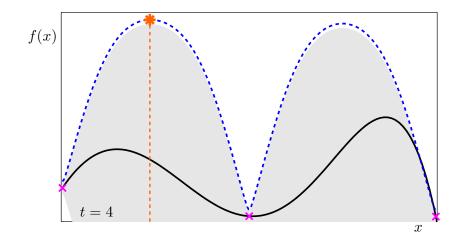
- $\blacktriangleright \mu_{t-1}$: Exploitation
- $ightharpoonup \sigma_{t-1}$: Exploration
- ▶ β_t controls the tradeoff. $\beta_t \approx \log t$.
- ▶ The upper bound $\mu_{t-1} + \beta_t^{1/2} \sigma_{t-1}$ becomes tighter around the optimum x_{\star} .

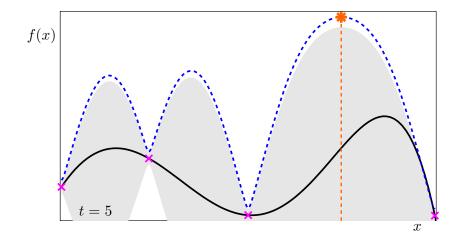


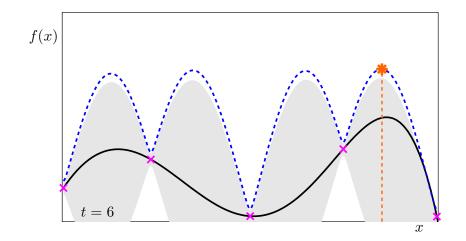


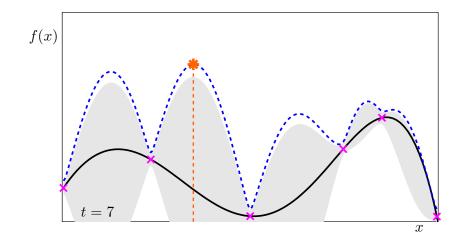


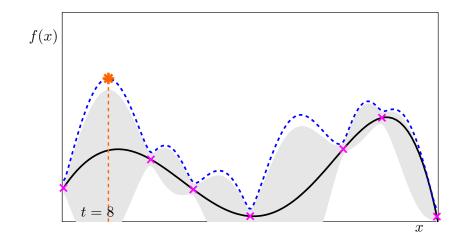


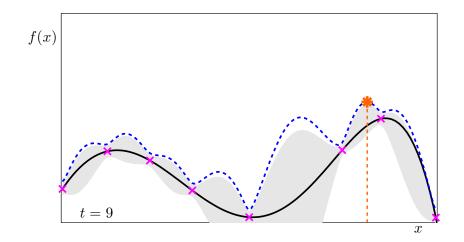


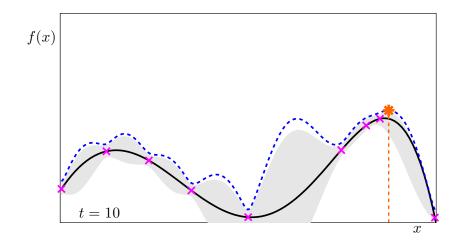


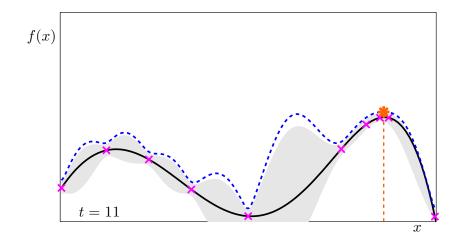


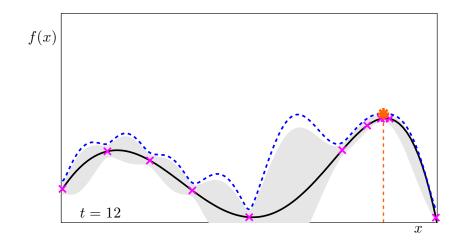


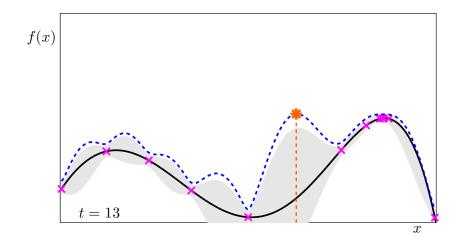


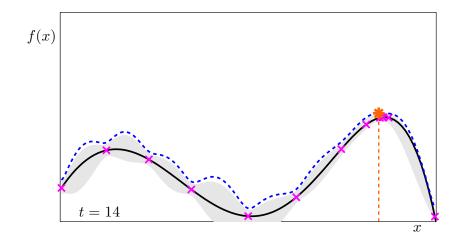


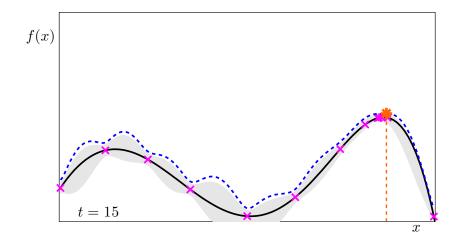


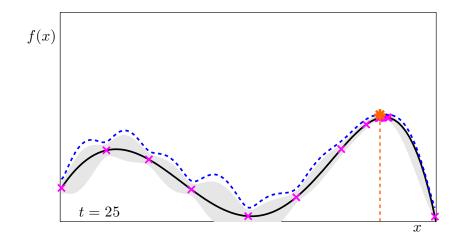






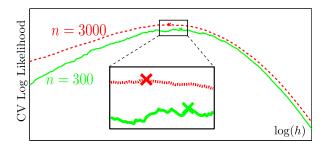




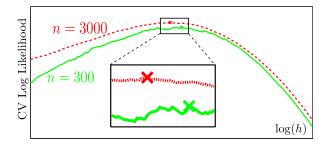


1. Hyper-parameter tuning: Train & CV with a subset of the data, and/or early stopping before convergence.

- 1. Hyper-parameter tuning: Train & CV with a subset of the data, and/or early stopping before convergence.
 - E.g. Bandwidth (h) selection in kernel density estimation.

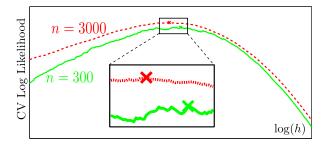


- 1. Hyper-parameter tuning: Train & CV with a subset of the data, and/or early stopping before convergence.
 - E.g. Bandwidth (h) selection in kernel density estimation.



2. Robotics: Simulation vs Real world experiment.

- 1. Hyper-parameter tuning: Train & CV with a subset of the data, and/or early stopping before convergence.
 - E.g. Bandwidth (h) selection in kernel density estimation.



- 2. Robotics: Simulation vs Real world experiment.
- 3. Computational Astrophysics: Cosmological simulations with less granularity.

Outline

- 1. Multi-fidelity Bandit Optimisation
 - Formalism & Challenges
- 2. MF-GP-UCB: Multi-fidelity optimisation using GPs
 - Single Approximation / 2 fidelity setting
 - Theoretical Results & Proof Sketches
- 3. MF-GP-UCB with multiple fidelities.
- 4. Experiments

- ▶ Optimise f. $x_{\star} = \operatorname{argmax}_{x} f(x)$.
- ▶ But ...

- ▶ Optimise f. $x_{\star} = \operatorname{argmax}_{x} f(x)$.
- ▶ **But** .. we have M-1 cheap approximations $f^{(1)}, f^{(2)}, \ldots, f^{(M-1)}$ to the function of interest $f = f^{(M)}$.

- ▶ Optimise f. $x_{\star} = \operatorname{argmax}_{x} f(x)$.
- ▶ **But** .. we have M-1 cheap approximations $f^{(1)}, f^{(2)}, \ldots, f^{(M-1)}$ to the function of interest $f = f^{(M)}$.
- ▶ $f^{(m)}$ costs $\lambda^{(m)}$. $\lambda^{(1)} < \lambda^{(2)} < \dots \lambda^{(M-1)} < \lambda^{(M)}$. "cost": could be computation time, money etc.

- ▶ Optimise f. $x_{\star} = \operatorname{argmax}_{x} f(x)$.
- ▶ **But** .. we have M-1 cheap approximations $f^{(1)}, f^{(2)}, \ldots, f^{(M-1)}$ to the function of interest $f = f^{(M)}$.
- ► $f^{(m)}$ costs $\lambda^{(m)}$. $\lambda^{(1)} < \lambda^{(2)} < \dots \lambda^{(M-1)} < \lambda^{(M)}$. "cost": could be computation time, money etc.
- Assumptions
 - $f^{(m)} \sim \mathcal{GP}(0, \kappa)$ for all m = 1, ..., M.
 - ▶ $||f^{(M)} f^{(m)}||_{\infty} \le \zeta^{(m)}$ for all m = 1, ..., M 1. $\zeta^{(m)}$'s are decreasing with m and are known.

At each step:

▶ Determine the point $\mathbf{x}_t \in \mathcal{X}$ and fidelity \mathbf{m}_t at which you want to query.

At each step:

- ▶ Determine the point $\mathbf{x}_t \in \mathcal{X}$ and fidelity \mathbf{m}_t at which you want to query.
- ► At time t, we have queried previously at any one of M fidelities. Use all these information to determine next query.

At each step:

- ▶ Determine the point $\mathbf{x}_t \in \mathcal{X}$ and fidelity \mathbf{m}_t at which you want to query.
- At time t, we have queried previously at any one of M fidelities. Use all these information to determine next query.
- ▶ End Goal: Maximise $f^{(M)}$. We don't really care much about the value of the query at the lower fidelities.

At each step:

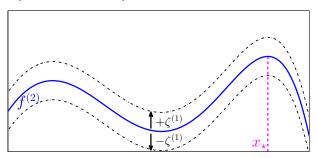
- ▶ Determine the point $\mathbf{x}_t \in \mathcal{X}$ and fidelity \mathbf{m}_t at which you want to query.
- ► At time t, we have queried previously at any one of M fidelities. Use all these information to determine next query.
- ▶ End Goal: Maximise $f^{(M)}$. We don't really care much about the value of the query at the lower fidelities.
- ▶ But use $f^{(1)}, ..., f^{(M-1)}$ to guide search for x_* at $f^{(M)}$.

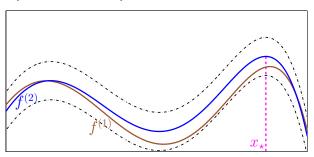
At each step:

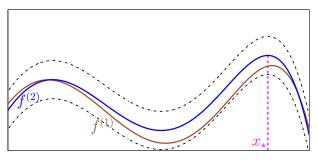
- ▶ Determine the point $\mathbf{x}_t \in \mathcal{X}$ and fidelity \mathbf{m}_t at which you want to query.
- ► At time t, we have queried previously at any one of M fidelities. Use all these information to determine next query.
- ▶ End Goal: Maximise $f^{(M)}$. We don't really care much about the value of the query at the lower fidelities.
- ▶ But use $f^{(1)}, \ldots, f^{(M-1)}$ to guide search for x_{\star} at $f^{(M)}$.

MF-GP-UCB: Multi-fidelity Gaussian Process Upper Confidence Bound

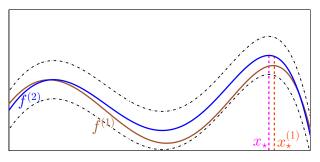




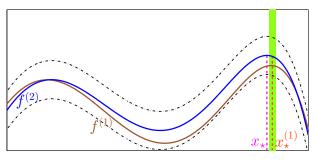




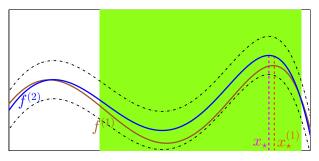
• $f^{(1)}$ is not just a noisy version of $f^{(2)}$.



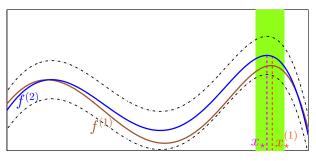
- $f^{(1)}$ is not just a noisy version of $f^{(2)}$.
- ► Cannot just maximise $f^{(1)}$. $x_{\star}^{(1)}$ is suboptimal for $f^{(2)}$.



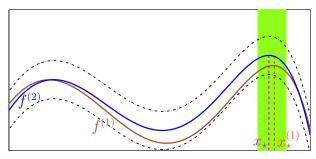
- $f^{(1)}$ is not just a noisy version of $f^{(2)}$.
- ► Cannot just maximise $f^{(1)}$. $x_{\star}^{(1)}$ is suboptimal for $f^{(2)}$.



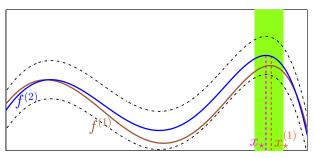
- $f^{(1)}$ is not just a noisy version of $f^{(2)}$.
- ► Cannot just maximise $f^{(1)}$. $x_{\star}^{(1)}$ is suboptimal for $f^{(2)}$.



- $f^{(1)}$ is not just a noisy version of $f^{(2)}$.
- ► Cannot just maximise $f^{(1)}$. $x_{\star}^{(1)}$ is suboptimal for $f^{(2)}$.

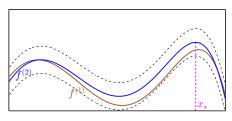


- $f^{(1)}$ is not just a noisy version of $f^{(2)}$.
- ► Cannot just maximise $f^{(1)}$. $x_{\star}^{(1)}$ is suboptimal for $f^{(2)}$.
- Need to explore $f^{(2)}$ sufficiently well around the *high valued regions* of $f^{(1)}$ but at a not too large region.



- $f^{(1)}$ is not just a noisy version of $f^{(2)}$.
- ► Cannot just maximise $f^{(1)}$. $x_{\star}^{(1)}$ is suboptimal for $f^{(2)}$.
- Need to explore $f^{(2)}$ sufficiently well around the *high valued regions* of $f^{(1)}$ but at a not too large region.

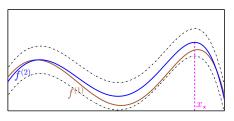
Key Message: MF-GP-UCB will explore \mathcal{X} using $f^{(1)}$ and use $f^{(2)}$ mostly in a "good" set \mathcal{X}_g , determined via $f^{(1)}$.



Upper Confidence Bound: Maintain 2 upper bounds for $f^{(2)}$.

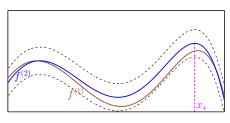
$$\varphi_t^{(1)}(x) = \mu_{t-1}^{(1)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(1)}(x) + \zeta^{(1)}$$

$$\varphi_t^{(2)}(x) = \mu_{t-1}^{(2)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(2)}(x)$$



Upper Confidence Bound: Maintain 2 upper bounds for $f^{(2)}$.

$$\begin{split} \varphi_t^{(1)}(x) &= \ \mu_{t-1}^{(1)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(1)}(x) + \zeta^{(1)} \\ \varphi_t^{(2)}(x) &= \ \mu_{t-1}^{(2)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(2)}(x) \\ \varphi_t(x) &= \ \min\{ \ \varphi_t^{(1)}(x), \ \varphi_t^{(2)}(x) \} \end{split}$$



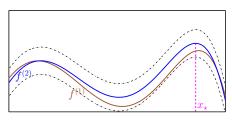
Upper Confidence Bound: Maintain 2 upper bounds for $f^{(2)}$.

$$\varphi_t^{(1)}(x) = \mu_{t-1}^{(1)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(1)}(x) + \zeta^{(1)}$$

$$\varphi_t^{(2)}(x) = \mu_{t-1}^{(2)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(2)}(x)$$

$$\varphi_t(x) = \min\{ \varphi_t^{(1)}(x), \varphi_t^{(2)}(x) \}$$

• Choose $\mathbf{x}_t = \operatorname{argmax}_{x \in \mathcal{X}} \varphi_t(x)$.



Upper Confidence Bound: Maintain 2 upper bounds for $f^{(2)}$.

$$\varphi_t^{(1)}(x) = \mu_{t-1}^{(1)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(1)}(x) + \zeta^{(1)}$$

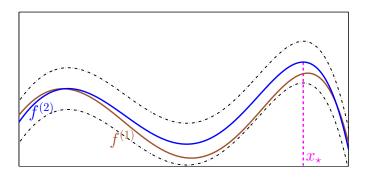
$$\varphi_t^{(2)}(x) = \mu_{t-1}^{(2)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(2)}(x)$$

$$\varphi_t(x) = \min\{\varphi_t^{(1)}(x), \varphi_t^{(2)}(x)\}$$

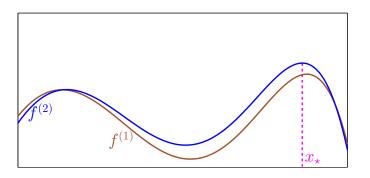
▶ Choose $\mathbf{x}_t = \operatorname{argmax}_{x \in \mathcal{X}} \varphi_t(x)$.

$$\mathbf{m}_t = \begin{cases} 1 & \text{if } \beta_t^{1/2} \sigma_{t-1}^{(1)}(x) > \gamma^{(1)} \\ 2 & \text{otherwise.} \end{cases}$$

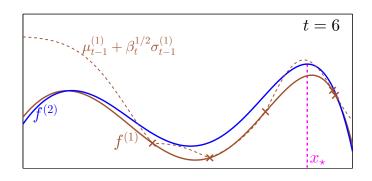
MF-GP-UCB

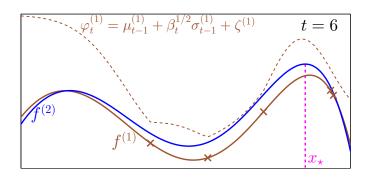


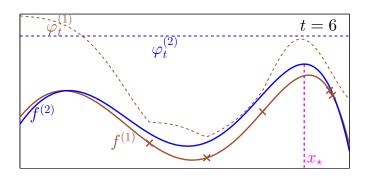
MF-GP-UCB

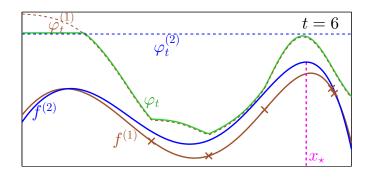


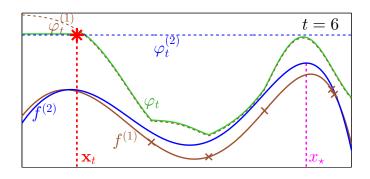
MF-GP-UCB

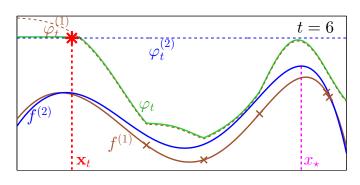




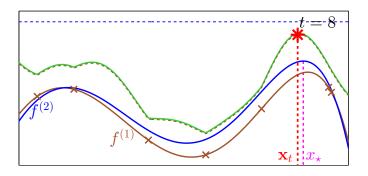


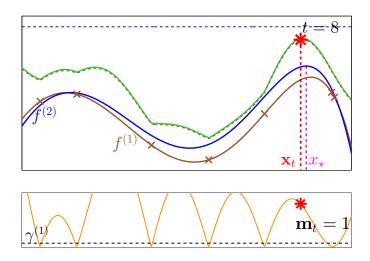


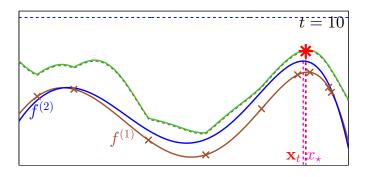


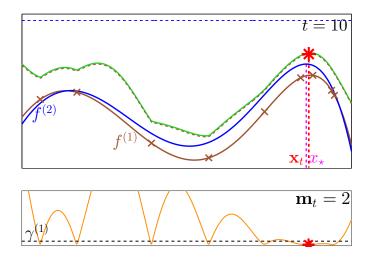


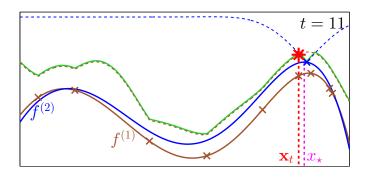


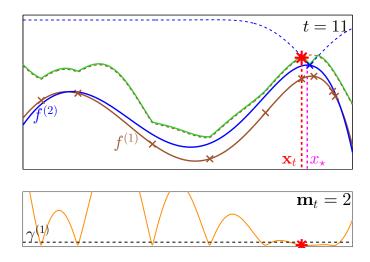


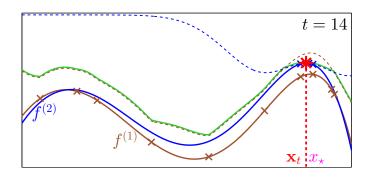


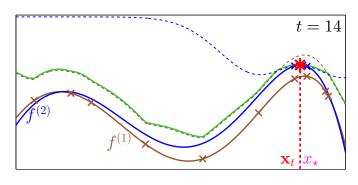


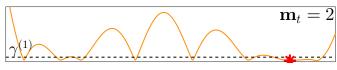


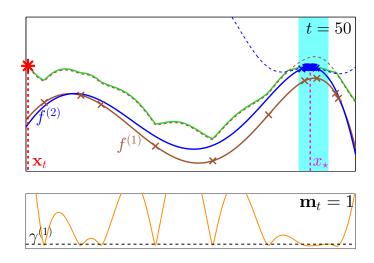












Simple regret after capital Λ ,

$$S(\Lambda) = f^{(2)}(x_{\star}) - \max_{t:\mathbf{m}_{t}=2} f^{(2)}(\mathbf{x}_{t}).$$

Simple regret after capital Λ ,

$$S(\Lambda) = f^{(2)}(x_{\star}) - \max_{t:\mathbf{m}_{t}=2} f^{(2)}(\mathbf{x}_{t}).$$

 $n_{\Lambda} = \lfloor \Lambda/\lambda^{(2)} \rfloor$ is number of queries by GP-UCB within capital Λ .

Simple regret after capital Λ ,

$$S(\Lambda) = f^{(2)}(x_{\star}) - \max_{t:\mathbf{m}_{t}=2} f^{(2)}(\mathbf{x}_{t}).$$

 $n_{\Lambda} = \lfloor \Lambda/\lambda^{(2)} \rfloor$ is number of queries by GP-UCB within capital Λ .

 $\Psi_n(A)$: Maximum Information Gain of $A \subset \mathcal{X}$.

Simple regret after capital Λ ,

$$S(\Lambda) = f^{(2)}(x_{\star}) - \max_{t:\mathbf{m}_{t}=2} f^{(2)}(\mathbf{x}_{t}).$$

 $n_{\Lambda} = \lfloor \Lambda/\lambda^{(2)} \rfloor$ is number of queries by GP-UCB within capital Λ .

 $\Psi_n(A)$: Maximum Information Gain of $A \subset \mathcal{X}. \to \Psi_n(A) \propto \operatorname{vol}(A)$.

Simple regret after capital Λ ,

$$S(\Lambda) = f^{(2)}(x_{\star}) - \max_{t:\mathbf{m}_{t}=2} f^{(2)}(\mathbf{x}_{t}).$$

 $n_{\Lambda} = \lfloor \Lambda/\lambda^{(2)} \rfloor$ is number of queries by GP-UCB within capital Λ .

 $\Psi_n(A)$: Maximum Information Gain of $A \subset \mathcal{X}_+ \to \Psi_n(A) \propto \operatorname{vol}(A)$.

GP-UCB (Srinivas et. al. 2010)
$$S(\Lambda) \, \lesssim \, \sqrt{\frac{\Psi_{n_\Lambda}(\mathcal{X})}{n_\Lambda}}$$

Simple regret after capital Λ ,

$$S(\Lambda) = f^{(2)}(x_{\star}) - \max_{t:\mathbf{m}_{t}=2} f^{(2)}(\mathbf{x}_{t}).$$

 $n_{\Lambda} = |\Lambda/\lambda^{(2)}|$ is number of queries by GP-UCB within capital Λ .

 $\Psi_n(A)$: Maximum Information Gain of $A \subset \mathcal{X}$. $\to \Psi_n(A) \propto \operatorname{vol}(A)$.

GP-UCB (Srinivas et. al. 2010)
$$\lambda^{(2)}S(\Lambda) \ \lesssim \ \lambda^{(2)}\sqrt{\frac{\Psi_{n_\Lambda}(\mathcal{X})}{n_\Lambda}}$$

Simple regret after capital Λ ,

$$S(\Lambda) = f^{(2)}(x_{\star}) - \max_{t:\mathbf{m}_{t}=2} f^{(2)}(\mathbf{x}_{t}).$$

 $n_{\Lambda} = |\Lambda/\lambda^{(2)}|$ is number of queries by GP-UCB within capital Λ .

 $\Psi_n(A)$: Maximum Information Gain of $A \subset \mathcal{X}$. $\to \Psi_n(A) \propto \operatorname{vol}(A)$.

GP-UCB (Srinivas et. al. 2010)
$$\lambda^{(2)}S(\Lambda) \ \lesssim \ \lambda^{(2)}\sqrt{\frac{\psi_{n_\Lambda}(\mathcal{X})}{n_\Lambda}}$$

Can we achieve?

$$\lambda^{(2)}S(\Lambda) \lesssim \lambda^{(2)}\sqrt{\frac{\Psi_{n_{\Lambda}}(\mathcal{X}_{g})}{n_{\Lambda}}} + \lambda^{(1)}\sqrt{\frac{\Psi_{n_{\Lambda}}(\mathcal{X}_{g}^{c})}{n_{\Lambda}}}$$

Simple regret after capital Λ ,

$$S(\Lambda) = f^{(2)}(x_{\star}) - \max_{t:\mathbf{m}_{t}=2} f^{(2)}(\mathbf{x}_{t}).$$

 $n_{\Lambda} = |\Lambda/\lambda^{(2)}|$ is number of queries by GP-UCB within capital Λ .

 $\Psi_n(A)$: Maximum Information Gain of $A \subset \mathcal{X}$. $\to \Psi_n(A) \propto \operatorname{vol}(A)$.

$$\lambda^{(2)}S(\Lambda) \lesssim \lambda^{(2)}\sqrt{\frac{\Psi_{n_{\Lambda}}(\mathcal{X})}{n_{\Lambda}}}$$

Can we achieve?

$$\lambda^{(2)}S(\Lambda) \lesssim \lambda^{(2)}\sqrt{\frac{\Psi_{n_{\Lambda}}(\mathcal{X}_g)}{n_{\Lambda}}} + \lambda^{(1)}\sqrt{\frac{\Psi_{n_{\Lambda}}(\mathcal{X}_g^c)}{n_{\Lambda}}}$$

Ideal Scenario:
$$\lambda^{(1)} \ll \lambda^{(2)}$$
 and $\operatorname{vol}(\mathcal{X}_g) \ll \operatorname{vol}(\mathcal{X}_g^c) \implies \Psi_{n_{\Lambda}}(\mathcal{X}_g) \ll \Psi_{n_{\Lambda}}(\mathcal{X}_g)$.

The "Good" Set \mathcal{X}_g

 \mathcal{X}_g is completely determined by f_\star and $f^{(1)}$.

$$\mathcal{X}_g = \{ x \in \mathcal{X} : f_{\star} - f^{(1)}(x) \le \zeta^{(1)} \}.$$

The "Good" Set \mathcal{X}_g

 \mathcal{X}_g is completely determined by f_\star and $f^{(1)}$.

$$\mathcal{X}_g = \{ x \in \mathcal{X} : f_{\star} - f^{(1)}(x) \le \zeta^{(1)} \}.$$

- ▶ Contains x_{\star} .
- Need not be contiguous.

The "Good" Set \mathcal{X}_g

 \mathcal{X}_g is completely determined by f_\star and $f^{(1)}$.

$$\mathcal{X}_g = \{ x \in \mathcal{X} : f_\star - f^{(1)}(x) \le \zeta^{(1)} \}.$$

- ► Contains x₊.
- Need not be contiguous.
- ▶ Is "fundamental" to the problem: any strategy must explore $f^{(2)}$ well within this region.
 - Lower bounds in the K-armed multi-fidelity bandit.

$$\mathcal{X}_g = \{ x \in \mathcal{X} : f_\star - f^{(1)}(x) \le \zeta^{(1)} \}.$$

Theorem (Simple Regret for MF-GP-UCB):

$$\lambda^{(2)}S(\Lambda) \lesssim \lambda^{(2)}\sqrt{\frac{\Psi_{n_{\Lambda}}(\mathcal{X}_g)}{n_{\Lambda}}} + \lambda^{(1)}\sqrt{\frac{\Psi_{n_{\Lambda}}(\mathcal{X}_g^c)}{n_{\Lambda}}}$$

$$\mathcal{X}_g = \{ x \in \mathcal{X} : f_\star - f^{(1)}(x) \le \zeta^{(1)} \}.$$

We will consider a slightly inflated set.

$$\widetilde{\mathcal{X}}_{g,\rho} = \{ x \in \mathcal{X} : f_{\star} - f^{(1)}(x) \le \zeta^{(1)} + \rho \gamma \} \supset \mathcal{X}_g.$$

Theorem (Simple Regret for MF-GP-UCB):

$$\lambda^{(2)}S(\Lambda) \lesssim \lambda^{(2)}\sqrt{\frac{\Psi_{n_{\Lambda}}(\widetilde{\mathcal{X}}_{g,\rho})}{n_{\Lambda}}} + \lambda^{(1)}\sqrt{\frac{\Psi_{n_{\Lambda}}(\widetilde{\mathcal{X}}_{g,\rho}^{c})}{n_{\Lambda}}}$$

$$\mathcal{X}_g = \{ x \in \mathcal{X} : f_\star - f^{(1)}(x) \le \zeta^{(1)} \}.$$

We will consider a slightly inflated set.

$$\widetilde{\mathcal{X}}_{g,\rho} = \{ x \in \mathcal{X} : f_{\star} - f^{(1)}(x) \le \zeta^{(1)} + \rho \gamma \} \supset \mathcal{X}_g.$$

Theorem (Simple Regret for MF-GP-UCB):
$$\lambda^{(2)}S(\Lambda) \lesssim \lambda^{(2)}\sqrt{\frac{\Psi_{n_{\Lambda}}(\widetilde{\mathcal{X}}_{g,\rho})}{n_{\Lambda}}} + \lambda^{(1)}\sqrt{\frac{\Psi_{n_{\Lambda}}(\widetilde{\mathcal{X}}_{g,\rho}^{c})}{n_{\Lambda}}} + \lambda^{(2)}\sqrt{\frac{\Psi_{n_{\Lambda}}(\widetilde{\mathcal{X}}_{g,\rho}^{c})}{n_{\Lambda}^{2-\alpha}}}$$

$$\mathcal{X}_g = \{ x \in \mathcal{X} : f_\star - f^{(1)}(x) \le \zeta^{(1)} \}.$$

We will consider a slightly inflated set.

$$\widetilde{\mathcal{X}}_{g,\rho} = \{ x \in \mathcal{X} : f_{\star} - f^{(1)}(x) \le \zeta^{(1)} + \rho \gamma \} \supset \mathcal{X}_g.$$

Theorem (Simple Regret for MF-GP-UCB):

$$\lambda^{(2)}S(\Lambda) \lesssim \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\widetilde{\mathcal{X}}_{g,\rho})}{n_{\Lambda}}} + \lambda^{(1)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\widetilde{\mathcal{X}}_{g,\rho}^{c})}{n_{\Lambda}}}$$
$$+ \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}^{\alpha}}(\widetilde{\mathcal{X}}_{g,\rho}^{c})}{n_{\Lambda}^{2-\alpha}}}$$

▶ Statement true for all $\alpha > 0$ for $\rho \approx 1 + \frac{1}{\sqrt{\alpha}}$.

$$\mathcal{X}_g = \{ x \in \mathcal{X} : f_\star - f^{(1)}(x) \le \zeta^{(1)} \}.$$

We will consider a slightly inflated set.

$$\widetilde{\mathcal{X}}_{g,\rho} = \{ x \in \mathcal{X} : f_{\star} - f^{(1)}(x) \le \zeta^{(1)} + \rho \gamma \} \supset \mathcal{X}_g.$$

Theorem (Simple Regret for MF-GP-UCB):

$$\lambda^{(2)}S(\Lambda) \lesssim \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\widetilde{\mathcal{X}}_{g,\rho})}{n_{\Lambda}}} + \lambda^{(1)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\widetilde{\mathcal{X}}_{g,\rho}^{c})}{n_{\Lambda}}} + \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\widetilde{\mathcal{X}}_{g,\rho}^{c})}{n_{\Lambda}}} + \lambda^{(1)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\widetilde{\mathcal{X}}_{g,\rho}^{c})}{n_{\Lambda}}} + \lambda^{(1)} \frac{\operatorname{Vol}(\widetilde{\mathcal{X}}_{g,\rho})}{n_{\Lambda}} \frac{1}{\gamma^{(1)^{d}}}$$

▶ Statement true for all $\alpha > 0$ for $\rho \approx 1 + \frac{1}{\sqrt{\alpha}}$.

$$\mathcal{X}_g = \{ x \in \mathcal{X} : f_\star - f^{(1)}(x) \le \zeta^{(1)} \}.$$

We will consider a slightly inflated set.

$$\widetilde{\mathcal{X}}_{g,\rho} = \{ x \in \mathcal{X} : f_{\star} - f^{(1)}(x) \le \zeta^{(1)} + \rho \gamma \} \supset \mathcal{X}_g.$$

Theorem (Simple Regret for MF-GP-UCB):

$$\lambda^{(2)}S(\Lambda) \lesssim \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\widetilde{\mathcal{X}}_{g,\rho,n}^{c})}{n_{\Lambda}}} + \lambda^{(1)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\widetilde{\mathcal{X}}_{g,\rho}^{c})}{n_{\Lambda}}} + \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\widetilde{\mathcal{X}}_{g,\rho}^{c})}{n_{\Lambda}^{2-\alpha}}} + \lambda^{(1)} \frac{\operatorname{Vol}(\widetilde{\mathcal{X}}_{g,\rho})}{n_{\Lambda}} \frac{1}{\gamma^{(1)^{d}}}$$

- ▶ Statement true for all $\alpha > 0$ for $\rho \approx 1 + \frac{1}{\sqrt{\alpha}}$.
- $igwedge \widetilde{\mathcal{X}}_{\mathbf{g},
 ho,\mathbf{n}}
 ightarrow \widetilde{\mathcal{X}}_{\mathbf{g},
 ho} \ \ ext{as} \ \ n
 ightarrow \infty.$

$$\mathcal{X}_g = \{ x \in \mathcal{X} : f_\star - f^{(1)}(x) \le \zeta^{(1)} \}.$$

We will consider a slightly inflated set.

$$\widetilde{\mathcal{X}}_{g,\rho} = \{ x \in \mathcal{X} : f_{\star} - f^{(1)}(x) \le \zeta^{(1)} + \rho \gamma \} \supset \mathcal{X}_g.$$

Theorem (Simple Regret for MF-GP-UCB):

$$\lambda^{(2)}S(\Lambda) \lesssim \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\widetilde{\mathcal{X}}_{g,\rho})}{n_{\Lambda}}} + \lambda^{(1)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\widetilde{\mathcal{X}}_{g,\rho}^{c})}{n_{\Lambda}}} + \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\widetilde{\mathcal{X}}_{g,\rho}^{c})}{n_{\Lambda}^{2-\alpha}}} + \lambda^{(1)} \frac{\nabla \operatorname{vol}(\widetilde{\mathcal{X}}_{g,\rho})}{n_{\Lambda}} \frac{1}{\gamma^{(1)^{d}}}$$

▶ Statement true for all $\alpha > 0$ for $\rho \approx 1 + \frac{1}{\sqrt{\alpha}}$.

$$igwedge \widetilde{\mathcal{X}}_{\mathbf{g},
ho,\mathbf{n}}
ightarrow \widetilde{\mathcal{X}}_{\mathbf{g},
ho} \ \ ext{as} \ \ n
ightarrow \infty.$$

 $N \leftarrow \text{Number of plays by MF-GP-UCB within capital } \Lambda.$

 $N \leftarrow \text{Number of plays by MF-GP-UCB within capital } \Lambda.$ Since $\lambda^{(1)} < \lambda^{(2)}$, N could be much larger than $n_{\Lambda} = \lfloor \Lambda/\lambda^{(2)} \rfloor$.

 $N \leftarrow \text{Number of plays by MF-GP-UCB within capital } \Lambda.$ Since $\lambda^{(1)} < \lambda^{(2)}$, N could be much larger than $n_{\Lambda} = \lfloor \Lambda/\lambda^{(2)} \rfloor$.

But .. we show $N \leq 2n_{\Lambda}$ with high probability.

 $N \leftarrow \text{Number of plays by MF-GP-UCB within capital } \Lambda.$ Since $\lambda^{(1)} < \lambda^{(2)}$, N could be much larger than $n_{\Lambda} = \lfloor \Lambda/\lambda^{(2)} \rfloor$.

But .. we show $N \leq 2n_{\Lambda}$ with high probability.

We need to bound the following 4 quantities.

- $T_{N}^{(2)}(\widetilde{\chi}_{g,\rho})$: # of second fidelity queries in $\widetilde{\chi}_{g,\rho}$.
- $T_N^{(2)}(\widetilde{\mathcal{X}}_{g,\rho}^c)$: # of second fidelity queries in $\widetilde{\mathcal{X}}_{g,\rho}^c$.
- $T_N^{(1)}(\widetilde{\mathcal{X}}_{g,\rho}), T_N^{(1)}(\widetilde{\mathcal{X}}_{g,\rho}^c).$

Proof Sketch

 $N \leftarrow \text{Number of plays by MF-GP-UCB within capital } \Lambda.$ Since $\lambda^{(1)} < \lambda^{(2)}$, N could be much larger than $n_{\Lambda} = \lfloor \Lambda/\lambda^{(2)} \rfloor$.

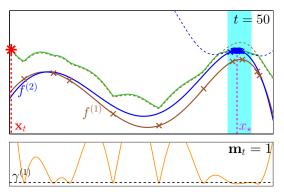
But .. we show $N \leq 2n_{\Lambda}$ with high probability.

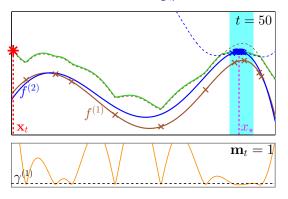
We need to bound the following 4 quantities.

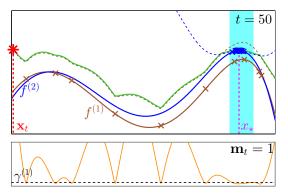
- $T_{N}^{(2)}(\widetilde{\chi}_{g,\rho})$: # of second fidelity queries in $\widetilde{\chi}_{g,\rho}$.
- $T_N^{(2)}(\widetilde{\mathcal{X}}_{g,\rho}^c)$: # of second fidelity queries in $\widetilde{\mathcal{X}}_{g,\rho}^c$.
- $T_N^{(1)}(\widetilde{\mathcal{X}}_{g,\rho}), T_N^{(1)}(\widetilde{\mathcal{X}}_{g,\rho}^c).$

We will use, $T_N^{(1)}(\widetilde{\mathcal{X}}_{g,\rho}^c), T_N^{(2)}(\widetilde{\mathcal{X}}_{g,\rho}) \leq N$. Gives us

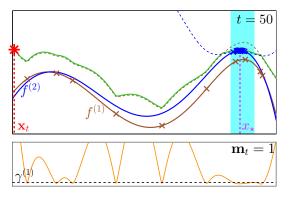
$$\lambda^{(2)} \sqrt{\frac{\Psi_{\textit{N}}(\widetilde{\mathcal{X}}_{\textit{g},\rho})}{\textit{N}}} \ + \ \lambda^{(1)} \ \sqrt{\frac{\Psi_{\textit{N}}(\widetilde{\mathcal{X}}_{\textit{g},\rho}^{\textit{c}})}{\textit{N}}}$$







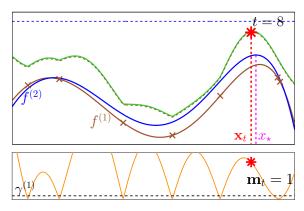
Holds for all $\alpha > 0$ if $\rho \approx 1 + \frac{1}{\sqrt{\alpha}}$. This result is *strong*.

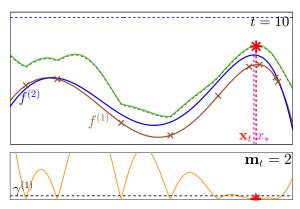


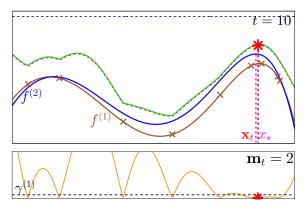
$$\mathbb{P}\left(\ \mathcal{T}_{N}^{(2)}(\widetilde{\mathcal{X}}_{g,\rho}^{c}) \ > \ \mathcal{N}^{lpha} \,
ight) \ < \ ext{something small}$$

Holds for all $\alpha > 0$ if $\rho \approx 1 + \frac{1}{\sqrt{\alpha}}$. This result is *strong*.

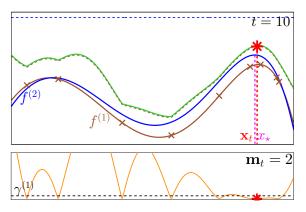
This gives us the third term $\lambda^{(2)} \; \sqrt{\frac{\Psi_{N^{\alpha}}(\widetilde{X}_{g,\rho}^{c})}{N^{2-\alpha}}}$.







 $T_N^{(1)}(\widetilde{\mathcal{X}}_{g,\rho})$ cannot be large due to the switching criterion. Proof uses a covering argument and bounds on the GP posterior variance.



 $T_N^{(1)}(\widetilde{\mathcal{X}}_{g,\rho})$ cannot be large due to the switching criterion. Proof uses a covering argument and bounds on the GP posterior variance.

This gives us the last term $\lambda^{(1)} \frac{\operatorname{vol}(\widetilde{\mathcal{X}}_{g,\rho})}{N} \frac{1}{\gamma^{(1)^d}}$

Setting: $\|f^{(M)} - f^{(m)}\|_{\infty} \le \zeta^{(m)}$ for all $m = 1, \dots, M-1$.

Setting:
$$||f^{(M)} - f^{(m)}||_{\infty} \le \zeta^{(m)}$$
 for all $m = 1, ..., M - 1$.

MF-GP-UCB:

$$\varphi_t^{(m)}(x) = \mu_{t-1}^{(m)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(m)}(x) + \zeta^{(m)}$$

Setting:
$$||f^{(M)} - f^{(m)}||_{\infty} \le \zeta^{(m)}$$
 for all $m = 1, ..., M - 1$.

MF-GP-UCB:

$$\varphi_t^{(m)}(x) = \mu_{t-1}^{(m)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(m)}(x) + \zeta^{(m)}$$
$$\varphi_t(x) = \min_{m=1,\dots,M} \varphi_t^{(m)}(x)$$

Setting: $||f^{(M)} - f^{(m)}||_{\infty} \le \zeta^{(m)}$ for all m = 1, ..., M - 1.

MF-GP-UCB:

$$\varphi_t^{(m)}(x) = \mu_{t-1}^{(m)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(m)}(x) + \zeta^{(m)}$$
$$\varphi_t(x) = \min_{m=1,\dots,M} \varphi_t^{(m)}(x)$$

▶ Choose $\mathbf{x}_t = \operatorname{argmax}_{x \in \mathcal{X}} \varphi_t(x)$.

Setting: $||f^{(M)} - f^{(m)}||_{\infty} \le \zeta^{(m)}$ for all m = 1, ..., M - 1.

MF-GP-UCB:

$$\varphi_t^{(m)}(x) = \mu_{t-1}^{(m)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(m)}(x) + \zeta^{(m)}$$
$$\varphi_t(x) = \min_{m=1,\dots,M} \varphi_t^{(m)}(x)$$

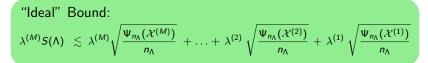
- Choose $\mathbf{x}_t = \operatorname{argmax}_{x \in \mathcal{X}} \varphi_t(x)$.
- Choosing \mathbf{m}_t : for $m=1,\ldots,M$: if $\beta_t^{1/2}\sigma_{t-1}^{(m)}(\mathbf{x}_t)>\gamma^{(m)}$, break; $\mathbf{m}_t=m$.

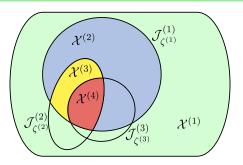
Regret Bound: MF-GP-UCB with M fidelities

"Ideal" Bound:

$$\lambda^{(M)}S(\Lambda) \lesssim \lambda^{(M)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\mathcal{X}^{(M)})}{n_{\Lambda}}} + \ldots + \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\mathcal{X}^{(2)})}{n_{\Lambda}}} + \lambda^{(1)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\mathcal{X}^{(1)})}{n_{\Lambda}}}$$

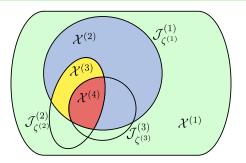
Regret Bound: MF-GP-UCB with M fidelities





Regret Bound: MF-GP-UCB with M fidelities

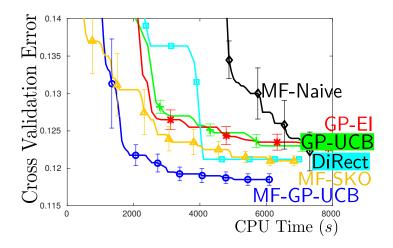
"Ideal" Bound:
$$\lambda^{(M)} S(\Lambda) \lesssim \lambda^{(M)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\mathcal{X}^{(M)})}{n_{\Lambda}}} + \ldots + \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\mathcal{X}^{(2)})}{n_{\Lambda}}} + \lambda^{(1)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\mathcal{X}^{(1)})}{n_{\Lambda}}}$$



Theorem: Similar to above but contains $\gamma^{(m)}$ dependent inflations and other subdominant terms as in the two fidelity setting.

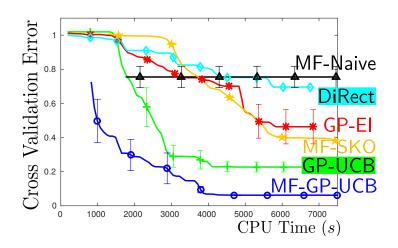
Experiment: Support Vector Classification

2 hyper-parameters, 2 fidelities ($n_{tr} = \{500, 2000\}$)



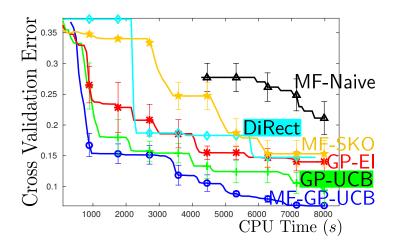
Experiment: SALSA

6 hyper-parameters, 3 fidelities $(n_{tr} = \{2000, 4000, 8000\})$



Experiment: Viola & Jones Face Detection

22 hyper-parameters, 2 fidelities ($n_{tr} = \{300, 3000\}$)

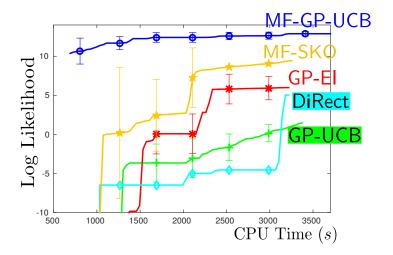


Experiment: Cosmological Maximum Likelihood Inference

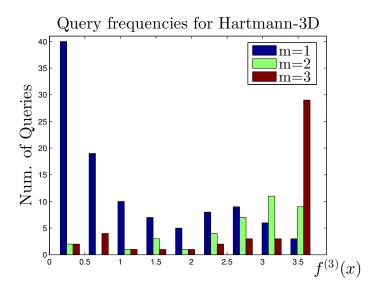
- ► Type Ia Supernovae Data
- Maximum likelihood inference for 3 cosmological parameters:
 - ► Hubble Constant *H*₀
 - ▶ Dark Energy Fraction Ω_{Λ}
 - ▶ Dark Matter Fraction Ω_M
- Likelihood: Robertson Walker metric
 Requires numerical integration for each point in the dataset.

Experiment: Cosmological Maximum Likelihood Inference

3 cosmological parameters, 3 fidelities (grid = $\{10^2, 10^4, 10^6\}$)



Synthetic Experiment: Hartmann-3*D*



Summary

- ► A novel framework and algorithm for Multi-fidelity Bandit Optimisation.
- ► MF-GP-UCB: intuitive algorithm using UCB principles.

Summary

- ► A novel framework and algorithm for Multi-fidelity Bandit Optimisation.
- ▶ MF-GP-UCB: intuitive algorithm using UCB principles.
- Theoretical Results
 - Lower fidelities are used to eliminate bad regions.
 - Higher fidelities are used in successively smaller regions.

Summary

- ► A novel framework and algorithm for Multi-fidelity Bandit Optimisation.
- MF-GP-UCB: intuitive algorithm using UCB principles.
- Theoretical Results
 - Lower fidelities are used to eliminate bad regions.
 - Higher fidelities are used in successively smaller regions.
- Outperforms naive strategies and other multi-fidelity methods in practice.

Collaborators

Gautam Dasarathy

Junier Oliva

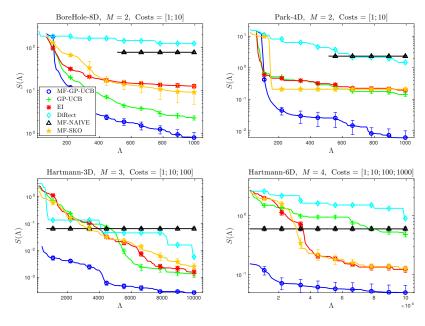
Jeff Schneider

Barnabas Poczos

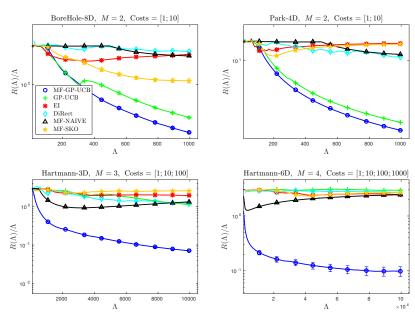
Thank you.

Paper and slides are up on my website. Code will be up online soon.

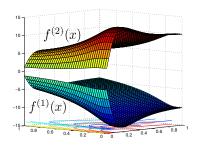
Appendix: Simple Regret

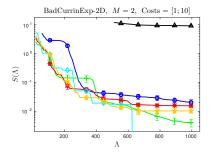


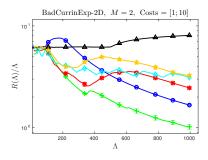
Appendix: Cumulative Regret



Appendix: Bad Approximations







Appendix: Cumulative Regret Definition

Instantaneous Reward
$$q_t = \begin{cases} -B & \text{if } \mathbf{m}_t \neq M \\ f^{(M)}(\mathbf{x}_t) & \text{if } \mathbf{m}_t = M \end{cases}$$

Instantaneous Regret
$$r_t = f_{\star} - q_t = \begin{cases} f_{\star} - B & \text{if } \mathbf{m}_t \neq M \\ f_{\star} - f^{(M)}(\mathbf{x}_t) & \text{if } \mathbf{m}_t = M \end{cases}$$

$$R(\Lambda) = \Lambda f_{\star} - \left[\sum_{t=1}^{N} \lambda^{(m_t)} q_t + \left(\Lambda - \sum_{t=1}^{N} \lambda^{(m_t)} \right) (-B) \right]$$

$$\leq 2B \underbrace{\left(\Lambda - \sum_{t=1}^{N} \lambda^{(m_t)} \right)}_{\Lambda_{res}} + \sum_{t=1}^{N} \lambda^{(m_t)} r_t$$