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Bandit Optimisation

T —p Neural Network > f(2)

hyper- cross validation

parameters ) ) .
- Train NN using given hyper-parameters | <"

- Compute accuracy on validation set

1/30



Bandit Optimisation

x —»| Expensive Blackbox | 5 f(z)
Function

Other Examples:

- ML estimation in Astrophysics

- Optimal control strategy in Robotics
- Synthetic gene design
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Bandit Optimisation

f: X =1[0,1]¢ — R is an expensive, black-box, noisy function.

Let x, = argmax, f(x).
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Bandit Optimisation

f: X =0, l]d — R is an expensive, black-box, noisy function.
Let x, = argmax, f(x).

f(z)

Optimisation = Minimise Simple Regret.

Sp=1Ff(x) — max f(x¢).

xt, t=1,...,n
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Bandit Optimisation

f:XxX=]0, l]d — R is an expensive, black-box, noisy function.
Let x, = argmax, f(x).

f(z)

Bandits = Minimise Cumulative Regret.

Ro=> f(x) — f(x).
t=1
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Bandit Optimisation

f: X =1[0,1]¢ — R is an expensive, black-box, noisy function.
Let x, = argmax, f(x).

f()

Both problems are related.

fgn < -R,

S|
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Gaussian Processes (GP)

GP(u, k): A distribution over functions from X" to R.
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Gaussian Processes (GP)

GP(u, k): A distribution over functions from X to R.

Functions with no observations

f(x)
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Gaussian Processes (GP)

GP(u, k): A distribution over functions from X" to R.

Prior GP
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Gaussian Processes (GP)

GP(u, k): A distribution over functions from X to R.
Observations

f(x)
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Gaussian Processes (GP)

GP(u, k): A distribution over functions from X" to R.

Posterior GP given Observations
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Gaussian Processes (GP)

GP(u, k): A distribution over functions from X" to R.

Posterior GP given Observations

f(x)

After t observations,  f(x) ~ N(u(x), 02(x)).
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Gaussian Process Bandit (Bayesian) Optimisation

Model f ~ GP(0, k).

GP-UCB  (Srinivas et al. 2010).
f(z)

4/30



(Srinivas et al. 2010).

Model f ~ GP(0, k).

Gaussian Process Bandit (Bayesian) Optimisation
GP-UCB
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Gaussian Process Bandit (Bayesian) Optimisation

Model f ~ GP(0, k).

GP-UCB  (Srinivas et al. 2010).
f(z)

X

Construct Upper Conf. Bound: ¢¢(x) = pr—1(x) + Bi/2crt,1(x).
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Gaussian Process Bandit (Bayesian) Optimisation

Model f

GP-UCB
f(x)

~ GP(0, k).

(Srinivas et al. 2010).

Maximise Upper Confidence Bound.
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GP-UCB

x; = argmax fi¢—1(x) + ,8}/20t_1(x)
X
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GP-UCB

x; = argmax fi¢—1(x) + ,Btl/zat_l(x)
X

> us—1: Exploitation

» o+ 1. Exploration
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GP-UCB

x; = argmax fi¢—1(x) + ,Btl/zat_l(x)
X

> us—1: Exploitation

» o+ 1. Exploration

» [3; controls the tradeoff. 3; < logt.

5/30



GP-UCB

x; = argmax fi¢—1(x) + ,Btl/zat_l(x)
X

v

pe—1: Exploitation

v

o¢+_1: Exploration

v

Bt controls the tradeoff.  f§; < logt.

v

The upper bound p:—1 + B:/zat,l becomes tighter around
the optimum x,.
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GP-UCB
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GP-UCB

f(z)

~

-
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GP-UCB
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GP-UCB
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GP-UCB
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What if we have cheap approximations to f ?
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1. Hyper-parameter tuning: Train & CV with a subset of the
data, and/or early stopping before convergence.

E.g. Bandwidth (h) selection in kernel density estimation.
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What if we have cheap approximations to f ?

1. Hyper-parameter tuning: Train & CV with a subset of the
data, and/or early stopping before convergence.

E.g. Bandwidth (h) selection in kernel density estimation.
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2. Robotics: Simulation vs Real world experiment.

CV Log Likelihood

log(h)
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What if we have cheap approximations to f ?

1. Hyper-parameter tuning: Train & CV with a subset of the
data, and/or early stopping before convergence.

E.g. Bandwidth (h) selection in kernel density estimation.

ulnl|\ln|\‘x"llmlu,“"“",“"I
)

W s

2. Robotics: Simulation vs Real world experiment.

CV Log Likelihood

log(h)

3. Compuatational Astrophysics: Cosmological simulations with
less granularity.

7/30



Outline

. Multi-fidelity Bandit Optimisation

- Formalism & Challenges

. MF-GP-UCB: Multi-fidelity optimisation using GPs

- Single Approximation/ 2 fidelity setting
- Theoretical Results & Proof Sketches

MF-GP-UCB with multiple fidelities.

. Experiments
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Multi-fidelity Bandit Optimisation
Goal:

» Optimise f.  x, = argmax, f(x).

» But ..
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Multi-fidelity Bandit Optimisation

Goal:
» Optimise f.  x, = argmax, f(x).

» But .. we have M — 1 cheap approximations
f) £ f(M=1) {5 the function of interest f = f(M).

> (M costs A(M. AD) < A@) < AM=1) < \(M),
“cost”: could be computation time, money etc.

» Assumptions
> £(m) GP(0,k) forallm=1,...,M.

> | FM) — £ <M forallm=1,...,M—1.
¢(m’s are decreasing with m and are known.
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Outline for a Sequential Strategy

At each step:

» Determine the point x; € X and fidelity m; at which you
want to query.
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Outline for a Sequential Strategy

At each step:

» Determine the point x; € X and fidelity m; at which you
want to query.

> At time t, we have queried previously at any one of M
fidelities. Use all these information to determine next query.

» End Goal: Maximise f(M). We don't really care much about
the value of the query at the lower fidelities.

» But use f(1), ... F(M=1) to guide search for x, at F(M).

MF-GP-UCB: Multi-fidelity Gaussian Process Upper Confidence Bound
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Challenges (in 2 fidelities)

» () is not just a noisy version of (2.

(1)

» Cannot just maximise f(1). x;™ is suboptimal for (2.

» Need to explore f(2) sufficiently well around the high valued
regions of f(1) — but at a not too large region.

Key Message: MF-GP-UCB will explore X using f(!) and use f(®
mostly in a “good” set X, determined via F,
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MF-GP-UCB with 2 fidelities

T,

Upper Confidence Bound: Maintain 2 upper bounds for f(?.

oM () = 1 () + 820D (x) + (W
ePx) = 1?1 (x) + B2 (x)
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T,

Upper Confidence Bound: Maintain 2 upper bounds for f(?.

oM () = 1 () + 820D (x) + (W
ePx) = 1?1 (x) + B2 (x)
pe(x) = min{ oM (x), ¢P(x)}

» Choose x; = argmax,c y ¢¢(x).
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MF-GP-UCB with 2 fidelities

T,

Upper Confidence Bound: Maintain 2 upper bounds for f(?.

oM () = u (x) + B2

e (x) = 1P (x) + B0

pe(x) = min{ o (x),

» Choose x; = argmax,c y ¢¢(x).

(1)
N mt:{l 1f6 at 1( ) >

2 otherwise.

L ()

“1(x)

P (x)}

+ C(l)
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MF-GP-UCB
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MF-GP-UCB

l‘f 1 + 5

1/2
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Theoretical Results

Simple regret after capital A\,

S(A) = FP(x,) — max_ FP(x,).

t:m=2
nn = [A/AP)] is number of queries by GP-UCB within capital A.
V,(A): Maximum Information Gain of A C X. — W,(A) x vol(A).

GP-UCB (Srinivas et. al. 2010)
(X)

A0y < 2@, [Ym(d)
na

Can we achieve?

ADS(A) < A(Z)\/m ) \/W
~ na na

Ideal Scenario: A1) <« \(2) and
vol(Xy) < vol(ng) = V,, (X)) <V, (Xg).

14/30
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The “Good” Set X,

AXg is completely determined by f, and £

Xy={xex f,—fO(x)<¢D}.

» Contains x,.
> Need not be contiguous.

» Is “fundamental” to the problem: any strategy must explore
() well within this region.
- Lower bounds in the K-armed multi-fidelity bandit.
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Theoretical Results

Xy ={xecX: f—f(x)<cD}.
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Theoretical Results
Xy={xecXx:f—fD(x) <Oy

We will consider a slightly inflated set.
Xep={xeX: fi—fOx)<cW1py} DA,

Theorem (Simple Regret for MF-GP-UCB):

\Un/\(ngpvn) + )\(1)

AAsA) <A@

na

Vg (X5 ,)
ny [NV
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Theorem (Simple Regret for MF-GP-UCB):

\Un/\(fgvp)

AAsA) <A@ + A0

[NV
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Proof Sketch

N < Number of plays by MF-GP-UCB within capital A.
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We need to bound the following 4 quantities.
- T®)(X,,): # of second fidelity queries in X ,.
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N < Number of plays by MF-GP-UCB within capital A.
Since A\() < X?), N could be much larger than ny = [A/A?)].

But .. we show N < 2np with high probability.

We need to bound the following 4 quantities.
- T®)(X,,): # of second fidelity queries in X ,.
- T,(VQ)()?;’p): # of second fidelity queries in ‘%;,p-
1), 5 1), 5
- I(\I )(Xg»p)’ TI(\I )(ch,p)

We will use, T)(XE,), T (Xg,p) < N. Gives us

Wy (Xy,) Wy (Xg,)
(2), ] X N\tgp) (1) 4/ N\ g/
A N + A N

17/30



Proof Sketch: Bounding T ( )
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Proof Sketch: Bounding T ( )

P(T,Ef)(;?c ) > NO‘) < something small

Holds for all « > 0 if p <1+ ﬁ This result is strong.
This gives us the third term A(? %_
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Proof Sketch: Bounding T\ (X;.,)

19/30
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Xf "r*
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Proof Sketch: Bounding T,s,l)(??g,p)

T,(Vl)(/fg,p) cannot be large due to the switching criterion. Proof
uses a covering argument and bounds on the GP posterior variance.

19/30



Proof Sketch: Bounding T,s,l)(??g,p)

T,(Vl)(/fg,p) cannot be large due to the switching criterion. Proof
uses a covering argument and bounds on the GP posterior variance.

(1) vol(Xg,p) 1
A N L@

This gives us the last term

19/30
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MF-GP-UCB with M fidelities

Setting:  ||[f(M) — (M) <¢(M forallm=1,...,

MF-GP-UCB:

o) = 1M (x) + BP0 (x) + ¢

pe(x) = min ™ (x)

m=1,....M

» Choose x; = argmax,c y ¢t(x).

» Choosing m;:
form=1... . M:
if 8% ”’)( ¢) > ~(™, break;
m; = m.

M —1.
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Regret Bound: MF-GP-UCB with M fidelities
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Regret Bound: MF-GP-UCB with M fidelities

“Ideal” Bound:

)\(M)S(/\) < AM) I\U"/\(‘X(M)) + ...+ 2@ /\U"/\(X(z)) + 2@ /\Un/\('){(l))
na na w

Theorem: Similar to above but contains ("™ dependent infla-
tions and other subdominant terms as in the two fidelity setting.
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Experiment: Support Vector Classification

2 hyper-parameters, 2 fidelities (n; = {500,2000})
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Experiment: SALSA

6 hyper-parameters, 3 fidelities (n;, = {2000, 4000, 8000})

0.8 -

0.6 -

I
~

o
(V)

Cross Validation Error

_MF-GPJUCB

L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000

CPU Time (s)

23/30



Experiment: Viola & Jones Face Detection

22 hyper-parameters, 2 fidelities (n:, = {300,3000})
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Experiment: Cosmological Maximum Likelihood Inference

» Type la Supernovae Data

» Maximum likelihood inference for 3 cosmological parameters:
» Hubble Constant Hy
» Dark Energy Fraction Qp

» Dark Matter Fraction Qu

> Likelihood: Robertson Walker metric
Requires numerical integration for each point in the dataset.
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Experiment: Cosmological Maximum Likelihood Inference

3 cosmological parameters, 3 fidelities (grid = {10%,10%,10°})

ME-GP-UCB
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Synthetic Experiment: Hartmann-3D

Query frequencies for Hartmann-3D

Num. of Queries

0 0.5 1 15 2 25 3 3.5 f(g) (.fl’,')
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Summary

> A novel framework and algorithm for Multi-fidelity Bandit
Optimisation.

» MF-GP-UCB: intuitive algorithm using UCB principles.
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Summary

v

A novel framework and algorithm for Multi-fidelity Bandit
Optimisation.

v

MF-GP-UCB: intuitive algorithm using UCB principles.

v

Theoretical Results
- Lower fidelities are used to eliminate bad regions.
- Higher fidelities are used in successively smaller regions.

v

Outperforms naive strategies and other multi-fidelity methods
in practice.

28/30



Collaborators

(A

Gautam Junier Jeff Barnabas
Dasarathy Oliva Schneider Poczos
Thank you.

Paper and slides are up on my website.
Code will be up online soon.
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Appendix: Simple Regret

BoreHole-8D, M =2, Costs = [1;10]
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Appendix: Cumulative Regret

BoreHole-8D, M =2, Costs = [1;10]

Park-4D, M =2, Costs = [1;10]
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Appendix: Bad Approximations
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Appendix: Cumulative Regret Definition

-B if me £ M

Instantaneous Reward =
7 {f(M)(xt) ifm, = M

f,— B if m; # M

Instantaneous Regret r, =f, — =
g t * qe {ﬂ _ f(M)(Xt) if m; = M

N N
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