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Bandit Optimisation

Neural Network
hyper-
parameters

cross validation
accuracy

- Train NN using given hyper-parameters
- Compute accuracy on validation set
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Bandit Optimisation

Expensive Blackbox
          Function
Other Examples:
- ML estimation in Astrophysics
- Optimal control strategy in Robotics
- Synthetic gene design
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Bandit Optimisation

f : X ≡ [0, 1]d → R is an expensive, black-box, noisy function.
Let x? = argmaxx f (x).

x∗

f (x∗)

x

f(x)
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Bandit Optimisation

f : X ≡ [0, 1]d → R is an expensive, black-box, noisy function.
Let x? = argmaxx f (x).

x

f(x)

Optimisation ∼= Minimise Simple Regret.

Sn = f (x?) − max
xt , t=1,...,n

f (xt).
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Bandit Optimisation

f : X ≡ [0, 1]d → R is an expensive, black-box, noisy function.
Let x? = argmaxx f (x).

x

f(x)

Bandits ∼= Minimise Cumulative Regret.

Rn =
n∑

t=1

f (x?) − f (xt).
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Bandit Optimisation

f : X ≡ [0, 1]d → R is an expensive, black-box, noisy function.
Let x? = argmaxx f (x).

x

f(x)

Both problems are related.

Sn ≤
1

n
Rn
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Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Functions with no observations

x

f(x)

After t observations, f (x) ∼ N (µt(x), σ2
t (x) ).
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Gaussian Process Bandit (Bayesian) Optimisation

Model f ∼ GP(0, κ).

GP-UCB (Srinivas et al. 2010).

x

f(x)

Construct Upper Conf. Bound: ϕt(x) = µt−1(x) + β
1/2
t σt−1(x).
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Gaussian Process Bandit (Bayesian) Optimisation

Model f ∼ GP(0, κ).

GP-UCB (Srinivas et al. 2010).

ϕt = µt−1 + β
1/2
t σt−1

xt

x

f(x)

Maximise Upper Confidence Bound.
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GP-UCB

xt = argmax
x

µt−1(x) + β
1/2
t σt−1(x)

I µt−1: Exploitation

I σt−1: Exploration

I βt controls the tradeoff. βt � log t.

I The upper bound µt−1 + β
1/2
t σt−1 becomes tighter around

the optimum x?.
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GP-UCB

x

f(x)
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GP-UCB

t = 1
x

f(x)
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GP-UCB

t = 2
x

f(x)
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GP-UCB

t = 3
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GP-UCB
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GP-UCB
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GP-UCB
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GP-UCB
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GP-UCB

t = 14
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GP-UCB

t = 15
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GP-UCB

t = 25
x

f(x)

6/30



What if we have cheap approximations to f ?

1. Hyper-parameter tuning: Train & CV with a subset of the
data, and/or early stopping before convergence.

E.g. Bandwidth (h) selection in kernel density estimation.

2. Robotics: Simulation vs Real world experiment.

3. Compuatational Astrophysics: Cosmological simulations with
less granularity.
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Outline

1. Multi-fidelity Bandit Optimisation
- Formalism & Challenges

2. MF-GP-UCB: Multi-fidelity optimisation using GPs
- Single Approximation/ 2 fidelity setting
- Theoretical Results & Proof Sketches

3. MF-GP-UCB with multiple fidelities.

4. Experiments

8/30



Multi-fidelity Bandit Optimisation

Goal:

I Optimise f . x? = argmaxx f (x).

I But ..

we have M − 1 cheap approximations
f (1), f (2), . . . , f (M−1) to the function of interest f = f (M).

I f (m) costs λ(m). λ(1) < λ(2) < . . . λ(M−1) < λ(M).
“cost”: could be computation time, money etc.

I Assumptions

I f (m) ∼ GP(0, κ) for all m = 1, . . . ,M.

I ‖f (M) − f (m)‖∞ ≤ ζ(m) for all m = 1, . . . ,M − 1.
ζ(m)’s are decreasing with m and are known.
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Outline for a Sequential Strategy

At each step:

I Determine the point xt ∈ X and fidelity mt at which you
want to query.

I At time t, we have queried previously at any one of M
fidelities. Use all these information to determine next query.

I End Goal: Maximise f (M). We don’t really care much about
the value of the query at the lower fidelities.

I But use f (1), . . . , f (M−1) to guide search for x? at f (M).

MF-GP-UCB: Multi-fidelity Gaussian Process Upper Confidence Bound
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Challenges (in 2 fidelities)

x⋆

f (2) = f

I f (1) is not just a noisy version of f (2).

I Cannot just maximise f (1). x
(1)
? is suboptimal for f (2).

I Need to explore f (2) sufficiently well around the high valued
regions of f (1) – but at a not too large region.

Key Message: MF-GP-UCB will explore X using f (1) and use f (2)

mostly in a “good” set Xg , determined via f (1).
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MF-GP-UCB with 2 fidelities

x⋆

f (1)

f (2)

Upper Confidence Bound: Maintain 2 upper bounds for f (2).

ϕ
(1)
t (x) = µ

(1)
t−1(x) + β

1/2
t σ

(1)
t−1(x) + ζ(1)

ϕ
(2)
t (x) = µ

(2)
t−1(x) + β

1/2
t σ

(2)
t−1(x)

ϕt(x) = min{ϕ(1)
t (x), ϕ

(2)
t (x) }

I Choose xt = argmaxx∈X ϕt(x).

I mt =

{
1 if β

1/2
t σ

(1)
t−1(x) > γ(1)

2 otherwise.
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MF-GP-UCB
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Theoretical Results

Simple regret after capital Λ,

S(Λ) = f (2)(x?)− max
t:mt=2

f (2)(xt).

nΛ = bΛ/λ(2)c is number of queries by GP-UCB within capital Λ.

Ψn(A): Maximum Information Gain of A ⊂ X . → Ψn(A) ∝ vol(A).

GP-UCB (Srinivas et. al. 2010)

S(Λ) .

√
ΨnΛ

(X )

nΛ

Can we achieve?

λ(2)S(Λ) . λ(2)

√
ΨnΛ

(Xg )

nΛ
+ λ(1)

√
ΨnΛ

(X c
g )

nΛ

Ideal Scenario: λ(1) � λ(2) and
vol(Xg )� vol(X c

g ) =⇒ ΨnΛ
(Xg )� ΨnΛ

(Xg ).
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The “Good” Set Xg

Xg is completely determined by f? and f (1).

Xg = {x ∈ X : f? − f (1)(x) ≤ ζ(1)}.

I Contains x?.

I Need not be contiguous.

I Is “fundamental” to the problem: any strategy must explore
f (2) well within this region.

- Lower bounds in the K -armed multi-fidelity bandit.
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Theoretical Results

Xg = {x ∈ X : f? − f (1)(x) ≤ ζ(1)}.

We will consider a slightly inflated set.

X̃g ,ρ = {x ∈ X : f? − f (1)(x) ≤ ζ(1) + ργ} ⊃ Xg .

Theorem (Simple Regret for MF-GP-UCB):

λ(2)S(Λ) . λ(2)

√√√√ΨnΛ
(Xg )

nΛ

+ λ(1)

√√√√ΨnΛ
(X c

g )

nΛ

+ λ(2)

√√√√ΨnαΛ
(X̃ c

g ,ρ)

n2−α
Λ

+ λ(1)vol(X̃g ,ρ)

nΛ

1

γ(1)d

I Statement true for all α > 0 for ρ � 1 + 1√
α

.

I X̃g ,ρ,n → X̃g ,ρ as n→∞.
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Proof Sketch

N ← Number of plays by MF-GP-UCB within capital Λ.

Since λ(1) < λ(2), N could be much larger than nΛ = bΛ/λ(2)c.

But .. we show N ≤ 2nΛ with high probability.

We need to bound the following 4 quantities.

- T
(2)
N (X̃g ,ρ): # of second fidelity queries in X̃g ,ρ.

- T
(2)
N (X̃ c

g ,ρ): # of second fidelity queries in X̃ c
g ,ρ.

- T
(1)
N (X̃g ,ρ),T

(1)
N (X̃ c

g ,ρ).

We will use, T
(1)
N (X̃ c

g ,ρ),T
(2)
N (X̃g ,ρ) ≤ N. Gives us

λ(2)

√
ΨN(X̃g ,ρ)

N
+ λ(1)

√
ΨN(X̃ c

g ,ρ)

N
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Proof Sketch: Bounding T
(2)
N (X̃ c

g ,ρ)

x⋆xt

t = 50

f (1)

f (2)

γ
(1)

mt = 1

P
(
T

(2)
N (X̃ c

g ,ρ) > Nα
)

< something small

Holds for all α > 0 if ρ � 1 + 1√
α

. This result is strong.

This gives us the third term λ(2)

√
ΨNα (X̃ c

g,ρ)

N2−α .

18/30
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Proof Sketch: Bounding T
(1)
N (X̃g ,ρ)

x⋆xt

t = 8

f (1)

f (2)

γ
(1) mt = 1

T
(1)
N (X̃g ,ρ) cannot be large due to the switching criterion. Proof

uses a covering argument and bounds on the GP posterior variance.

This gives us the last term λ(1) vol(X̃g,ρ)
N

1

γ(1)d
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MF-GP-UCB with M fidelities

Setting: ‖f (M) − f (m)‖∞ ≤ ζ(m) for all m = 1, . . . ,M − 1.

MF-GP-UCB:

ϕ
(m)
t (x) = µ

(m)
t−1(x) + β

1/2
t σ

(m)
t−1(x) + ζ(m)

ϕt(x) = min
m=1,...,M

ϕ
(m)
t (x)

I Choose xt = argmaxx∈X ϕt(x).

I Choosing mt :
for m = 1, . . . ,M:

if β
1/2
t σ

(m)
t−1(xt) > γ(m), break;

mt = m.
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Regret Bound: MF-GP-UCB with M fidelities

“Ideal” Bound:

λ(M)S(Λ) . λ(M)

√
ΨnΛ (X (M))

nΛ
+ . . . + λ(2)

√
ΨnΛ (X (2))

nΛ
+ λ(1)

√
ΨnΛ (X (1))

nΛ

Theorem: Similar to above but contains γ(m) dependent infla-
tions and other subdominant terms as in the two fidelity setting.
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Experiment: Support Vector Classification

2 hyper-parameters, 2 fidelities (ntr = {500, 2000})
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Experiment: SALSA

6 hyper-parameters, 3 fidelities (ntr = {2000, 4000, 8000})
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Experiment: Viola & Jones Face Detection

22 hyper-parameters, 2 fidelities (ntr = {300, 3000})
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Experiment: Cosmological Maximum Likelihood Inference

I Type Ia Supernovae Data

I Maximum likelihood inference for 3 cosmological parameters:

I Hubble Constant H0

I Dark Energy Fraction ΩΛ

I Dark Matter Fraction ΩM

I Likelihood: Robertson Walker metric
Requires numerical integration for each point in the dataset.
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Experiment: Cosmological Maximum Likelihood Inference

3 cosmological parameters, 3 fidelities (grid = {102, 104, 106})

500 1000 1500 2000 2500 3000 3500
-10

-5

0

5

10

26/30



Synthetic Experiment: Hartmann-3D
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Summary

I A novel framework and algorithm for Multi-fidelity Bandit
Optimisation.

I MF-GP-UCB: intuitive algorithm using UCB principles.

I Theoretical Results
- Lower fidelities are used to eliminate bad regions.
- Higher fidelities are used in successively smaller regions.

I Outperforms naive strategies and other multi-fidelity methods
in practice.
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Collaborators

     Jeff
Schneider

Barnabas
  Poczos

Junier
Oliva

  Gautam
Dasarathy

Thank you.

Paper and slides are up on my website.
Code will be up online soon.
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Appendix: Simple Regret
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Appendix: Cumulative Regret
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Appendix: Bad Approximations
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Appendix: Cumulative Regret Definition

Instantaneous Reward qt =

{
−B if mt 6= M

f (M)(xt) if mt = M

Instantaneous Regret rt = f? − qt =

{
f? − B if mt 6= M

f? − f (M)(xt) if mt = M

R(Λ) = Λf? −

[
N∑
t=1

λ(mt)qt +

(
Λ−

N∑
t=1

λ(mt)

)
(−B)

]

≤ 2B

(
Λ−

N∑
t=1

λ(mt)

)
︸ ︷︷ ︸

Λres

+
N∑
t=1

λ(mt)rt


