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Abstract
Two semimetrics on probability distributions are
proposed, based on a difference between features
chosen from each, where these features can be in
either the spatial or Fourier domains. The fea-
tures are chosen so as to maximize the distin-
guishability of the distributions, by optimizing
a lower bound of power for a statistical test us-
ing these features. The result is a parsimonious
and interpretable indication of how and where
two distributions differ, which can be used even
in high dimensions, and when the difference is
localized in the Fourier domain. A real-world
benchmark image data demonstrates that the re-
turned features provide a meaningful and infor-
mative indication as to how the distributions dif-
fer.

1. Introduction
We address the problem of discovering features of distinct
probability distributions P and Q, such that they can most
easily be distinguished. The distributions may be in high
dimensions, can differ in non-trivial ways (i.e., not simply
in their means), and are observed only through i.i.d. sam-
ples. We take a two-sample hypothesis testing approach to
discovering features which best distinguish P and Q. Our
approach builds on the analytic representations of proba-
bility distributions of Chwialkowski et al. (2015), where
differences in expectations of analytic functions at particu-
lar spatial (ME test) or frequency locations (SCF test) are
used to construct a two-sample test statistic, which can be
computed in linear time. Despite the differences in these
analytic functions being evaluated at a finite set of loca-
tions, the analytic tests have greater power than linear time
tests based on subsampled estimates of the MMD (Gretton
et al., 2012b; Zaremba et al., 2013).

Given two samples X := {xi}ni=1,Y := {yi}ni=1 ⊂ Rd
independently and identically distributed (i.i.d.) according
to P and Q, respectively, the goal of a two-sample test is

to decide whether P is different from Q on the basis of the
two samples. The task is formulated as a statistical hypoth-
esis test proposing a null hypothesis H0 : P = Q (samples
are drawn from the same distribution) against an alternative
hypothesis H1 : P 6= Q (the sample generating distribu-
tions are different). A test calculates a test statistic λ̂n from
X and Y, and rejects H0 if λ̂n exceeds a predetermined test
threshold (critical value). The threshold Tα is given by the
(1−α)-quantile of the distribution of λ̂n underH0 i.e., null
distribution, and α is the significance level of the test.

Mean Embedding Test (ME Test) The ME test uses
as its test statistic λ̂n, a form of Hotelling’s T-squared
statistic, defined as λ̂n := nz>nS−1n zn, where zn :=
1
n

∑n
i=1 zi, Sn := 1

n−1
∑n
i=1(zi − zn)(zi − zn)

>, and
zi := (k(xi,vj) − k(yi,vj))Jj=1 ∈ RJ . The statistic de-
pends on a positive definite kernel k : X × X → R (with
X ⊆ Rd), and a set of J test locations V = {vj}Jj=1 ⊂ Rd.
Under H0, asymptotically λ̂n follows χ2(J), a chi-squared
distribution with J degrees of freedom. The ME test re-
jects H0 if λ̂n > Tα, where the test threshold Tα is given
by the (1 − α)-quantile of the asymptotic null distribution
χ2(J). Although the distribution of λ̂n under H1 was not
derived, Chwialkowski et al. (2015) showed that if k is an-
alytic, integrable and characteristic (in the sense of Sripe-
rumbudur et al. (2011)), under H1 λ̂n can be arbitrarily
large as n→∞, allowing the test to correctly reject H0.

Smooth Characteristic Function Test (SCF Test) The
SCF uses the test statistic which has the same form as λ̂n
in the ME test with a modified

zi :=[l̂(xi) sin(x
>
i vj)− l̂(yi) sin(y>i vj),

l̂(xi) cos(x
>
i vj)− l̂(yi) cos(y>i vj)]

J
j=1 ∈ R2J ,

where l̂(x) =
´
Rd exp(−iu

>x)l(u) du is the Fourier
transform of l(x), and l : Rd → R is an analytic smooth-
ing kernel. In contrast to the ME test defining the statistic
in terms of spatial locations, the locations V = {vj}Jj=1 in
the SCF test are in the frequency domain.
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2. Main Contributions
The statistic λ̂n for both ME and SCF tests depends on a set
of test locations V and a kernel k. For simplicity, assume a
Gaussian kernel k(x,y) = exp

(
−‖x−y‖

2

2σ2

)
. A well cho-

sen θ := {V, σ} will increase the probability of correctly
rejecting H0 when H1 holds i.e., P(λ̂n ≥ Tα|H1) or test
power. We propose to optimize θ by maximizing a test
power proxy, defined as a lower bound on the test power.
The optimization of θ brings two benefits: first, it signif-
icantly increases the probability of rejecting H0 when H1

holds; second, the learned test locations act as discrimi-
native features allowing an interpretation of how the two
distributions differ.

Let λn := nµ>Σµ, µ := E[z1], and Σ := E[(z −
µ)(z − µ)>]. We have P(λ̂n > Tα|H1) ≥ 1 −
2 exp

(
[(n−1)(λn−Tα)−24Jcn]2

72J4(2n−1)2c2n2

)
− 4 exp

(
− (λn−Tα)2

72c2nJ4

)
as

a lower bound on the test power, where c is a global con-
stant bounding ‖S−1n ‖F and ‖Σ−1‖F for all V and for
all Gaussian kernels. This lower bound can be derived
by applying Hoeffding’s inequality to bound ‖zn − µ‖2
and ‖Sn − Σ‖F , and combining the results with a union
bound. It can be seen that, for large n, to maximize the
lower bound on the power, it is sufficient to maximize λn.
In practice, since µ and Σ are unknown, in place of λn we
use λ̂trn/2 ∝ z>nS−1n zn, an empirical quantity computed on
a held-out training set of size n/2. The actual test statistic
is denoted by λ̂ten/2 which is computed on a test sample of
size n/2.

We also derive a finite-sample bound to
| supV,σ z>nS−1n zn − supV,σ µ

>Σµ|. The result im-
plies that the optimization objective converges almost
surely to its population quantity uniformly over the class
of Gaussian kernels, and all distinct test locations V . We
omit the technical details due to the lack of space. We note
that optimizing parameters by maximizing a test power
proxy (Gretton et al., 2012b) is valid under both H0 and
H1 as long as the data used for parameter tuning and for
testing are disjoint.

3. Distinguishing Pos. and Neg. Emotions
We study empirically how well the ME and SCF tests can
distinguish two samples of photos of people showing posi-
tive and negative facial expressions. We use Karolinska Di-
rected Emotional Faces (KDEF) dataset (Lundqvist et al.,
1998) containing face images of 70 amateur actors, 35 fe-
males and 35 males. Each actor poses six expressions:
happy (HA), neutral (NE), surprised (SU), afraid (AF), an-
gry (AN), and disgusted (DI). We assign HA, NE, and SU
faces into the positive emotion group (i.e., samples from
P ), and AF, AN and DI faces into the negative emotion

Table 1. Type-I errors and powers in the problem of distinguishing
positive (+) and negative (-) facial expressions. α = 0.01. J = 1.

Problem nte ME-full SCF-full MMD-lin
± vs. ± 201 .010 .014 .008
+ vs. − 201 .998 1.00 .618

(a) HA (b) NE (c) SU (d) AF (e) AN (f) DI (g) v1

Figure 1. (a)-(f): Six facial expressions of actor AM05 in the
KDEF data. (g): Average across trials of the learned test loca-
tions v1.

group (samples from Q). We denote this problem as “+
vs. −”. Examples of six facial expressions from one actor
are shown in Fig. 1. Each image is cropped to exclude the
background, resized to 48 × 34 = 1632 pixels (d dimen-
sions), and converted to grayscale.

For the SCF test, we set l̂(x) = k(x, 0). Denote by ME-
full and SCF-full the ME and SCF tests whose test loca-
tions and the Gaussian kernel width σ are fully optimized
using gradient ascent on a separate training sample of the
same size as the test set. MMD-lin refers to the nonparam-
eteric test based on maximum mean discrepancy of Gretton
et al. (2012a), where we use a linear-time estimator for the
MMD (see Gretton et al. (2012a, Section 6)). We run the
tests 500 times with J = 1 and α = 0.01. Samples are par-
titioned randomly into training and test sets in each trial.
We report an empirical estimate of P(λ̂ten/2 > Tα) which is

the proportion of the number of times the statistic λ̂ten/2 is

above Tα. The quantity P(λ̂ten/2 > Tα) is type-I error (false
positive) underH0, and corresponds to test power whenH1

is true.

The type-I errors and test powers are shown in Table 1. In
the table, “± vs.±” is a problem in which all faces express-
ing the six emotions are randomly split into two samples of
equal sizes i.e., H0 is true. Evidently, both ME-full and
SCF-full achieve high test powers while maintaining the
right type-I errors. As a way to interpret how positive and
negative emotions differ, we take an average across trials
of the learned test locations of ME-full in the “+ vs. −”
problem. This average is shown in Fig. 1g. Indeed, we see
that the test locations faithfully capture the difference of
positive and negative emotions by giving more weights to
the regions of nose, upper lip, and nasolabial folds (smile
lines), confirming the interpretability of the test in a high-
dimensional problem.
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