Distinguishing Distributions with Interpretable Features

Wittawat Jitkrittum, Zoltán Szabó, Kacper Chwialkowski, Arthur Gretton

Gatsby Unit, University College London

Summary

- Two semimetrics, ME and SCF, on distributions are based on the differences of analytic functions evaluated at spatial or frequency locations (i.e., features).
- **Proposal**: choose the features so as to maximize the distinguishability of the distributions, by optimizing a lower bound on test power for a statistical test using these features.
- **Result**: powerful, linear-time, nonparametric, interpretable two-sample test. Performance comparable to the quadratic-time MMD test.

Informative Features

Test Power vs. *n* and *d*

ME and SCF Tests

• Observe $X := {\mathbf{x}_i}_{i=1}^n \sim P$ and $Y := {\mathbf{y}_i}_{i=1}^n \sim Q$ in \mathbb{R}^d . • Test $H_0: P = Q$ v.s. $H_1: P \neq Q$. Calculate a statistic λ_n , and reject H_0 if $\lambda_n > T_{\alpha} = (1 - \alpha)$ -quantile of the null distribution.

 $\hat{\mu}_P(\mathbf{v}) := \frac{1}{n} \sum_{i=1}^n k_{\sigma}(\mathbf{x}_i, \mathbf{v})$

Mean Embedding (ME) Test: Test statistic: $\hat{\lambda}_n := n \overline{\mathbf{z}}_n^\top (\mathbf{S}_n + \gamma_n I)^{-1} \overline{\mathbf{z}}_n$,

• $\overline{\mathbf{Z}}_n := \frac{1}{n} \sum_{i=1}^n \mathbf{Z}_i$, • $\mathbf{S}_n := \frac{1}{n-1} \sum_{i=1}^n (\mathbf{z}_i - \overline{\mathbf{z}}_n) (\mathbf{z}_i - \overline{\mathbf{z}}_n)^\top$, • $\mathbf{z}_i := (k_{\sigma}(\mathbf{x}_i, \mathbf{v}_j) - k_{\sigma}(\mathbf{y}_i, \mathbf{v}_j))_{i=1}^J \in \mathbb{R}^J,$ $- \hat{\mu}_Q(\mathbf{v})$ $\hat{\mu}_P(\mathbf{v}) - \hat{\mu}_Q(\mathbf{v})$ • γ_n is a regularizer. • Need a positive definite kernel k_{σ} , and spatial features $\mathcal{V} = \{\mathbf{v}_j\}_{j=1}^J$.

Difference to MMD's Witness Function

• $(\hat{\mu}_P(\mathbf{v}) - \hat{\mu}_Q(\mathbf{v}))^2 = \bar{\mathbf{z}}_n(\mathbf{v})^2$. Variance $\mathbf{S}_n(\mathbf{v})$ is high in overlapping regions.

Problem	P Q
SG	$\mathcal{N}(0_d, I_d) \ \mathcal{N}(0_d, I_d)$
GVD	$\mathcal{N}(0_d, I_d) \ \mathcal{N}(0_d, \operatorname{diag}(2, 1, \dots, 1))$
Blobs	Mixture of 16 Gaussians in \mathbb{R}^2 . See $ ightarrow$

• Use Gaussian kernel $k_{\sigma}(\mathbf{x}, \mathbf{y}) = \exp(-\|\mathbf{x} - \mathbf{y}\|^2/2\sigma^2)$. • ME-full, SCF-full = Proposed methods with full optimization. J = 5. • ME-grid, SCF-grid = Fixed \mathcal{V} . Optimize kernel parameter σ . • MMD-quad, MMD-lin = Quadratic and linear-time MMD tests.

 $\mathbb{P}(\text{reject } H_0)$ vs. test sample size. 500 trials. $\alpha = 0.01$.

Smooth Characteristic Function (SCF) Test:

$\mathbf{z}_i := [\hat{l}_{\sigma}(\mathbf{x}_i) \exp(i\mathbf{x}_i^\top \mathbf{v}_j) - \hat{l}_{\sigma}(\mathbf{y}_i) \exp(i\mathbf{y}_i^\top \mathbf{v}_j)]_{i=1}^J \in \mathbb{R}^{2J}$

• Check the difference of smoothed (by l_{σ}) characteristic functions. • Need an analytic smoothing kernel l_{σ} , and frequency features $\mathcal{V} = \{\mathbf{v}_j\}_{j=1}^J$. • Both tests are consistent. Under H_0 , λ_n asymptotically follow $\chi^2(\dim(\bar{\mathbf{z}}_n))$.

Test Power Lower Bound

Proposition. The power $\mathbb{P}_{H_1}(\lambda_n \geq T_{\alpha})$ of the ME test is at least

 $L(\lambda_n) = 1 - 2e^{-\frac{(\lambda_n - T_{\alpha})^2}{3^2 \cdot 8B^2 \overline{c}_2^2 Jn}} - 2e^{-\frac{(\gamma_n (\lambda_n - T_{\alpha})(n-1) - 24B^2 \overline{c}_1 Jn)^2}{3^2 \cdot 32B^4 \overline{c}_1^2 J^2 n(2n-1)^2}} - 2e^{-\frac{((\lambda_n - T_{\alpha})/3 - \overline{c}_3 n\gamma_n)^2 \gamma_n^2}{32B^4 J^2 \overline{c}_1^2 n}}.$

For large *n*, $L(\lambda_n)$ is increasing in λ_n .

• $\overline{c}_1, \overline{c}_2$ and \overline{c}_3 are constants. *B* bounds the kernel *k* pointwise. • $\lambda_n := n \mu^\top \Sigma^{-1} \mu$ is the population counterpart of λ_n . • $\boldsymbol{\mu} = \mathbb{E}_{\mathbf{x}\mathbf{y}}[\mathbf{z}_1]$ and $\boldsymbol{\Sigma} = \mathbb{E}_{\mathbf{x}\mathbf{y}}[(\mathbf{z}_1 - \boldsymbol{\mu})(\mathbf{z}_1 - \boldsymbol{\mu})^{\top}].$

Distinguishing NIPS Articles

• Task: distinguishing 2 categories of NIPS papers (1988–2015). • Stemmed d = 2000 nouns. TF-IDF representation. J = 1. $\alpha = 0.01$.

n ^{te}	ME-full	ME-grid	SCF-full	$SCF\operatorname{-grid}$	MMD-quad	MMD-lin
215	.012	.018	.012	.004	.022	.008
216	.954	.034	.688	.180	.906	.262
138	.990	.774	.836	.534	1.00	.238
394	1.00	.300	.828	.500	.952	.972
149	.956	.052	.656	.138	.876	.500
146	.960	.572	.590	.360	1.00	.538
	n ^{te} 215 216 138 394 149 146	nteME-full215.012216.954138.9903941.00149.956146.960	nteME-fullME-grid215.012.018216.954.034138.990.7743941.00.300149.956.052146.960.572	nteME-fullME-gridSCF-full215.012.018.012216.954.034.688138.990.774.8363941.00.300.828149.956.052.656146.960.572.590	nteME-fullME-gridSCF-fullSCF-grid215.012.018.012.004216.954.034.688.180138.990.774.836.5343941.00.300.828.500149.956.052.656.138146.960.572.590.360	nteME-fullME-gridSCF-fullSCF-gridMMD-quad215.012.018.012.004.022216.954.034.688.180.906138.990.774.836.5341.003941.00.300.828.500.952149.956.052.656.138.876146.960.572.590.3601.00

• In (4), words with highest weights as ranked by the learned \mathbf{v}_1 : spike, markov, cortex, dropout, recurr, iii, gibb, basin, circuit. • ME-full, SCF-full: high powers, correct type-I errors, and interpretable.

Distinguishing Pos. & Neg. Emotions

Proposal: Optimize $\mathcal{V}, \boldsymbol{\sigma} = \arg \max_{\mathcal{V}, \boldsymbol{\sigma}} L(\lambda_n) = \arg \max_{\mathcal{V}, \boldsymbol{\sigma}} \lambda_n$. • λ_n unknown. Use $\lambda_{n/2}^{tr}$ instead (computed on a separate training set). **Theorem (convergence rate)**: If $\gamma_n = \mathcal{O}(n^{-1/4})$, then

 $\left|\sup_{\mathcal{V},k} \overline{\mathbf{z}}_n^\top (\mathbf{S}_n + \boldsymbol{\gamma}_n I)^{-1} \overline{\mathbf{z}}_n - \sup_{\mathcal{V},k} \boldsymbol{\mu}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right| = \mathcal{O}_p(n^{-1/4}),$

implying that the objective converges as $n \to \infty$.

We thank the Gatsby Charitable Foundation for the financial support.

Contact: wittawat@gatsby.ucl.ac.uk **Code:** github.com/wittawatj/interpretable-test Paper: http://arxiv.org/abs/1605.06796

• Task: distinguishing images of positive and negative facial expressions. (+): { happy (HA), neutral (NE), surprised (SU) } **vs.** (-): { afraid (AF), angry (AN), disgusted (DI). } • $d = 48 \times 34 = 1632$ pixels. Grayscale. J = 1.

HA	NE	SU	AF	AN	DI	\mathbf{v}_1^*
----	----	----	----	----	----	------------------

Problem *n^{te}* **ME-full** ME-grid **SCF-full** SCF-grid MMD-quad MMD-lin \pm vs. \pm 201 .010 .012 .014 .008 .002 .018 + vs. - 201 .998 .656 1.00.750 1.00 .578

• ME-full achieves a high test power and gives an interpretable feature \mathbf{v}_1^* . • \mathbf{v}_1^* = average across trials of the learned test locations.