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Summary

•Two semimetrics, ME and SCF, on distributions are based on the differ-
ences of analytic functions evaluated at spatial or frequency locations (i.e.,
features).
•Proposal: choose the features so as to maximize the distinguishability of

the distributions, by optimizing a lower bound on test power for a statistical
test using these features.
•Result: powerful, linear-time, nonparametric, interpretable two-sample

test. Performance comparable to the quadratic-time MMD test.

ME and SCF Tests

•Observe X := {xi}n
i=1 ∼ P and Y := {yi}n

i=1 ∼ Q in Rd.

•Test H0 : P = Q v.s. H1 : P 6= Q. Calculate a statistic λ̂n, and reject H0 if
λ̂n > Tα = (1− α)-quantile of the null distribution.

Mean Embedding (ME) Test:

Test statistic: λ̂n := nz>n (Sn + γnI)−1zn,

•zn := 1
n

∑n
i=1 zi,

•Sn := 1
n−1

∑n
i=1(zi − zn)(zi − zn)>,

•zi := (kσ(xi,v j)− kσ(yi,v j))
J
j=1 ∈ RJ,

• γn is a regularizer.

µ̂P(v) := 1
n

∑n
i=1 kσ(xi,v)

µ̂P(v)

µ̂Q(v)

µ̂P(v)− µ̂Q(v)

•Need a positive definite kernel kσ , and spatial features V = {v j}J
j=1.

Difference to MMD’s Witness Function

• (µ̂P(v)− µ̂Q(v))2 = z̄n(v)2. Variance Sn(v) is high in overlapping regions.
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Smooth Characteristic Function (SCF) Test:

zi := [l̂σ(xi) exp(ix>i v j)− l̂σ(yi) exp(iy>i v j)]
J
j=1 ∈ R2J

•Check the difference of smoothed (by lσ) characteristic functions.
•Need an analytic smoothing kernel lσ , and frequency features V = {v j}J

j=1.

•Both tests are consistent. Under H0, λ̂n asymptotically follow χ2(dim(z̄n)).

Test Power Lower Bound

Proposition.The power PH1
(λ̂n ≥ Tα) of the ME test is at least

L(λn) = 1− 2e
− (λn−Tα )2

32·8B2c2
2Jn − 2e

−(γn(λn−Tα )(n−1)−24B2c1Jn)2

32·32B4c2
1J2n(2n−1)2 − 2e

−((λn−Tα )/3−c3nγn)2γ2n
32B4J2c2

1n .

For large n, L(λn) is increasing in λn.

• c1, c2 and c3 are constants. B bounds the kernel k pointwise.
•λn := nµ>Σ−1

µ is the population counterpart of λ̂n.
•µ = Exy[z1] and Σ = Exy[(z1 − µ)(z1 − µ)>].

Proposal: Optimize V,σ = arg maxV,σ L(λn) = arg maxV,σ λn.

•λn unknown. Use λ̂ tr
n/2

instead (computed on a separate training set).

Theorem (convergence rate): If γn = O(n−1/4), then∣∣∣∣ sup
V,k

z>n (Sn + γnI)−1zn − sup
V,k

µ
>Σ−1

µ

∣∣∣∣ = Op(n−1/4),

implying that the objective converges as n→∞.

Informative Features

•Contour plot of λ̂ tr
n/2

as a function of v2 when J = 2. v1 fixed at s.
v2 λ̂trn/2(v1, v2)
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is high in the regions that
reveal the difference.
•Nonconvexity indicates many

ways to detect the differences.

Test Power vs. n and d

Problem P Q
SG N (0d, Id) N (0d, Id)
GVD N (0d, Id) N (0d, diag(2, 1, . . . , 1))
Blobs Mixture of 16 Gaussians in R2. See→
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•Use Gaussian kernel kσ(x,y) = exp(−‖x− y‖2/2σ 2).
•ME-full, SCF-full = Proposed methods with full optimization. J = 5.
•ME-grid, SCF-grid = Fixed V . Optimize kernel parameter σ .
•MMD-quad, MMD-lin = Quadratic and linear-time MMD tests.

P(reject H0) vs. test sample size. 500 trials. α = 0.01.
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GVD. d = 50.

•Blobs: Best performance
by SCF-full.
•GVD: Best performance

by ME-full.

P(reject H0) vs. dimension d. n = 10000.
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Distinguishing NIPS Articles

•Task: distinguishing 2 categories of NIPS papers (1988–2015).
•Stemmed d = 2000 nouns. TF-IDF representation. J = 1. α = 0.01.

Problem nte ME-full ME-grid SCF-full SCF-grid MMD-quad MMD-lin
1. Bayes-Bayes 215 .012 .018 .012 .004 .022 .008
2. Bayes-Deep 216 .954 .034 .688 .180 .906 .262
3. Bayes-Learn 138 .990 .774 .836 .534 1.00 .238
4. Bayes-Neuro 394 1.00 .300 .828 .500 .952 .972
5. Learn-Deep 149 .956 .052 .656 .138 .876 .500
6. Learn-Neuro 146 .960 .572 .590 .360 1.00 .538

• In (4), words with highest weights as ranked by the learned v1:
spike, markov, cortex, dropout, recurr, iii, gibb, basin, circuit.

•ME-full, SCF-full: high powers, correct type-I errors, and interpretable.

Distinguishing Pos. & Neg. Emotions

•Task: distinguishing images of positive and negative facial expressions.
• (+): { happy (HA), neutral (NE), surprised (SU) }

vs. (–): { afraid (AF), angry (AN), disgusted (DI). }
•d = 48× 34 = 1632 pixels. Grayscale. J = 1.

HA NE SU AF AN DI v∗1

Problem nte ME-full ME-grid SCF-full SCF-grid MMD-quad MMD-lin
± vs. ± 201 .010 .012 .014 .002 .018 .008
+ vs. − 201 .998 .656 1.00 .750 1.00 .578

•ME-full achieves a high test power and gives an interpretable feature v∗1.
•v∗1 = average across trials of the learned test locations.
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