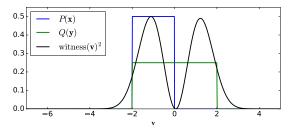

Distinguishing Distributions with Interpretable Features

Wittawat Jitkrittum, Zoltán Szabó, Kacper Chwialkowski, Arthur Gretton

Gatsby Unit, University College London

Where is the best location \mathbf{v} to observe the difference of $P(\mathbf{x})$ and $Q(\mathbf{y})$?

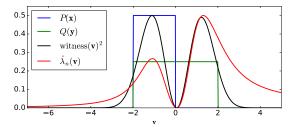


Distinguishing Distributions with Interpretable Features

Wittawat Jitkrittum, Zoltán Szabó, Kacper Chwialkowski, Arthur Gretton

Gatsby Unit, University College London

Where is the best location v to observe the difference of P(x) and Q(y)?


• MMD witness function: witness(\mathbf{v}) $\propto \frac{1}{n} \sum_{i=1}^{n} k(\mathbf{x}_i, \mathbf{v}) - \frac{1}{n} \sum_{i=1}^{n} k(\mathbf{y}_i, \mathbf{v})$

Distinguishing Distributions with Interpretable Features

Wittawat Jitkrittum, Zoltán Szabó, Kacper Chwialkowski, Arthur Gretton

Gatsby Unit, University College London

Where is the best location v to observe the difference of $P(\mathbf{x})$ and $Q(\mathbf{y})$?

• MMD witness function: witness(\mathbf{v}) $\propto \frac{1}{n} \sum_{i=1}^{n} k(\mathbf{x}_i, \mathbf{v}) - \frac{1}{n} \sum_{i=1}^{n} k(\mathbf{y}_i, \mathbf{v})$

Proposed statistic: $\hat{\lambda}_n(\mathbf{v})$.

Interpretable, linear-time two-sample test. Performance comparable to the quadratic-time MMD test.