Bayesian Manifold Learning: the Locally Linear Latent Variable Model (LL-LVM)
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Manifold Learning Variational EM lllustration 3: Mapping Climate Data

@ Learning in high-dim. space is hard and expensive. @ Maximising log marginal likelihood is intractable. Maximise lower bound F instead @ Goal: Recover 2D geographical relationships between weather stations.
@ Good news: intrinsic dimensionality is often low. ply,C,x|G, 0) @ y; = 12-dim. vector of monthly precipitation measurements at a weather station.
o Observations lie on a low-dim. manifold embedded in a high-dim. space. log p(y|G, @ // C,x) log q(C, x) dxdC = F(q(C, x), 0). o
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@ Manifold learning: uncover the low-dim. manifold structure. o For computational tractability, assume ¢(C,x) = ¢(x)q(C). o
o Variational expectation maximisation (EM) algorithm: . W ?
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Advantages: q(C) o exp /q(x) 10gp(y,C,x\G,9)dx} = N(c|te, X¢). 20 _— .
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@ Principled way to evaluate manifold dimensionality. o M-step for learning 6 = {«, 77}' (2) 600 weather stations (b) LLE (c) LTSA
@ Learned model can handle unseen data points naturally. 0 = argmax F(q(C,x), 0). .
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lllustration 1: Mitigating Short-Circuiting Problems % - S
@ Assume a locally linear mapping between tangent spaces in low and high SRR ® Cet T
dimensional spaces A 400 samples (in 3D) B 2D representation | C posterior mean of x in 2D space o ° .
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T ey ‘.{‘ @ [he projection obtained from LL-LVM recovers the topological arrangement of the stations to
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\. : LB: 1151.5 h LB: 1119.4 @ Define a mapping from latent X to data Y using GP.
o Fordata Y =[yy,...,yq) € R"% and latents X =[xy, ...,Xq,] € R"%,
y;, —yi~C; ( — X;) Figure : (A) Two datapoints seem close to each other, (B) but actually far in 2D space. (C) Short-circuiting the
two datapoints lower the lower bound. .
o Input: neighbourhood graph G = [n;;| with binary adjacency indicator p(Y[X) = HN yil0, K+ 57L),
n;; = L it points 4, j are neighbours. @ The lower bound F can be used to evaluate a hypothesised neighbourhood structure. .
@ Find posterior distribution p(C, x|y, G) over the linear maps where the Z’];h eIeme?t 02 the covariance n;atrlx S
_ ' S mT nd, . : . - k(x;,, x;) =0%ex {—— toog(xi s — } ,and «,'s determine dimensionality of latent
C=|Cy,---,Cy] and the latent variables x = [x; -+ ,x, /| € R". lllustration 2: Modelling USPS Handwritten Digits sp<aée i) = 0P | 75 2 Al — Tia) ! g

e Limitations:

A variational lower bound B posterior mean of x (k=n/80)
x10* B B B B true Y* estimate o No preservation of local neighbourhood properties
I k ® clgitO's cigit s clgit2 ® digit o Smoothness of manifold constrained by pre-chosen covariance function.
Joint distribution: V /ﬁ% query (1) o Use auxiliary variable for variational inference. Restrict the choice of covariance function.
7 k=n/507
ply, C,x|G) = p(y|C,x, G)p(C|G)p(x|G). N == ken/4o / Relationship of LL-LVM and GP-LVM
_ | | | o Integrating out C from likelihood yields
@ Prior on latent x: assume neighbouring points are similar, 3 | |
S p(ylx, G,0) = /p(y\C,X,G,H)p(C\G,H)dC —exp |—y ' Ki71yl.
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px|G,a) = ) X =3 Z o[l |” + Z nijl i — X1 | o @ In contrast to GP-LVM, the precision matrix KZ% is directly determined by the graph structure
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where o controls the expected scale, II™" = al, 4 + , = 2L 14 1 1 1 T 1
and L = diag(G1) — G. - K,/ =CLIV )= (WRV  H)AW V),
: : | . e where W is a function in x and L and A is a function in x'x and L.
@ Prior on linear maps: matrix normal, Co ‘
p(CIG,U) = MN(0,U,Q),  where E[CC ] o U, E[C C] x G. “HHE
@ Likelihood: penalise the approximation error, e _ _ _ o
P N PP O Lium somap Geovm L A new probabilistic approach to manifold learning preserving local geometries in data and
ply|C,x, V G) = Nlpy, Zy) Figure : (A): Variational lower bound with different k's (#neighbours). (B): Posterior mean of x by LL-LVM. equipped with straightforward variational inference.
T (F): 1-NN classification error on test data using the inferred x. ’
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- 11] : | @ Classification with LL-LVM coordinates outperforms GP-LVM and LLE, and matches [1] N.D. Lawrence. GP-LVM. NIPS 2003
where V7 = ~1 and 7 is to be learned. ISOMAP. [2] M.K. Titsias, N.D. Lawrence. Bayesian GP-LVM. AISTATS, 2010.
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