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Faculty of Informatics, Eötvös Loránd University,
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Abstract. We extend the scope of Wikification to novel words by relax-
ing two premises of Wikification: (i) we wikify without using the surface
form of the word (ii) to a mixture of Wikipedia senses instead of a single
sense. We identify two types of “novel” words: words where the con-
nection between their surface form and their meaning is broken (e.g., a
misspelled word), and words where there is no meaning to connect to –
the meaning itself is also novel.
We propose a method capable of wikifying both types of novel words
while also dealing with the inherently large-scale disambiguation prob-
lem. We show that the method can disambiguate between up to 1000
Wikipedia senses, and it can explain words with novel meaning as a
mixture of other, possibly related senses. This mixture representation
compares favorably to the widely used bag of words representation.

Keywords: interpreting novel words, Wikification, link disambiguation,
natural language processing, structured sparse coding

1 Introduction

Wikification aims to help users and computers alike in understanding texts by
enriching them with encyclopedic knowledge in the form of links to Wikipedia
articles [1]. However, Wikification concerns itself only with correct and known
words: neologisms, misspelled words and the like fall outside its scope.

These novel words are different in that the connection between their surface
form1 and their meaning is broken (e.g., a misspelled word), or – in the more
involved case – there is no meaning to connect to (e.g., a word with a completely
new meaning). This property makes them particularly hard to interpret, but it
also makes them the words that need interpreting the most.

This paper extends the scope of Wikification to novel words by interpreting
them (i) without relying on their surface form and (ii) as a weighted mixture of
Wikipedia senses, instead of as a single sense.
? In Janusz Kacprzyk, editor, Advances in Intelligent and Soft Computing.

c© Springer-Verlag Berlin Heidelberg 2013. The original publication is available at
www.springerlink.com.

1 the form of a word as it appears in the text
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Usually, Wikification consists of two phases: link detection and link disam-
biguation. The detection phase identifies the terms and phrases from which links
should be made. The disambiguation phase identifies the appropriate Wikipedia
article for each detected term to link to. For example, the term bank could link
to an article about financial institutions or river banks. We consider only dis-
ambiguation, as the words to be disambiguated are assumed given: they are the
novel words in the text.

Similarly to Mihalcea [1], we regard Wikipedia as a sense inventory, where
each link can be thought of as a sense-annotated word. In each link, the anchor
text of the link – the word – is annotated with the target Wikipedia page – the
sense.

Novel words can be of two types with respect to this sense inventory. In
the first case, a novel surface form is – maybe incorrectly – associated with
an already known meaning. An example for correct word use is a neologism
where a new word gets associated with an already known sense (e.g., neologisms
created by clipping: professor → prof, facsimile → fax). Examples for words used
incorrectly include misspelled words, mixed up words like homophones, scanning
or Optical Character Recognition errors, errors introduced by automatic speech
recognition, etc. For the sake of simplicity, we also refer to these as novel words,
although they may be completely unintelligible (e.g., a word completely blurred
in a scanned document).

In the second case, the meaning of the novel word itself is also novel – it is not
present in the sense inventory. In many cases, these words can be explained by
a mixture of senses. A striking example is neologisms created by blending, like
edutainment (from education and entertainment) and netiquette (from network
and etiquette) [2]. Even in less clear-cut cases, finding a set of senses closely
related to the novel meaning could help users and computer algorithms alike to
understand it.

To interpret these novel words, we have to overcome a new difficulty. As
we do not rely on the surface form of the target word2, the complexity of the
disambiguation problem increases. Current methods for Wikification treat the
disambiguation of different word types3 independently. In the case of novel words,
we cannot formulate an independent problem for each surface form; we have to
disambiguate among hundreds or thousands of senses at once instead of about
a dozen. This vast number of candidate senses results in a large-scale problem,
and this is why the new difficulty appears.

Typical methods to disambiguate words with correct surface form apply the
distributional hypothesis. According to the distributional hypothesis, words that
occur in the same contexts tend to have similar meanings [3]. Because our new
disambiguation problem without using the surface form is large-scale, exceptions
to the distributional hypothesis occur more frequently. Particularly, let us call
two contexts spuriously similar if they are similar but belong to words that de-

2 the word to be explained with Wikipedia senses
3 In “A rose is a rose is a rose”, there are three word types (a, rose, is), but eight word

tokens.
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note different senses. The number of spuriously similar contexts tends to increase
inherently with the number of candidate senses. There is more chance to select a
wrong sense from among 1000 senses than from among 10: the learning problem
becomes considerably harder.

To counter the effect of spurious similarities, we use the distributional hy-
pothesis in a novel way. We introduce structured sparse coding [4] to diminish
the effect of spurious similarities of contexts by matching the structure in the
regularization to the structure of the problem (Section 3).

The contributions of the paper are summarized as follows: (i) we propose a
method to interpret novel words as weighted mixtures of Wikipedia senses. (ii)
We show that structured sparsity reduces the effect of spurious similarities of
contexts. (iii) We perform large-scale evaluations where we disambiguate among
1000 Wikipedia senses at once.

In the next section we review related work. Our method and results are
described in Section 3 and 4. We discuss our results in Section 5 and conclude
in Section 6.

2 Related Work

The main differences between previous methods for Wikification and ours is that
they consider the disambiguation problems of different word types independently,
and they wikify to a single Wikipedia sense. We relaxed these two premises to
make interpreting novel words possible.

Mihalcea et al. [1] introduced the concept of Wikification: they proposed
a method to automatically enrich text with links to Wikipedia articles. They
used keyword extraction to detect the most important terms in the text, and
disambiguated them to Wikipedia articles with supervised learning using the
contexts. The same task was solved in [5] more efficiently. Here, contexts were
taken into account also for the detection phase. Disambiguation was done using
sense commonness and sense relatedness scores.

Unlike the previously mentioned works, which introduce links to important
terms in the text chiefly to achieve better readability, the goal of [6] was to add
as many links as possible to help information retrieval. The terms were disam-
biguated by assuming that coherent documents refer to entities from one or a few
related topics or domains. Ratinov et al. [7] proposed a similar disambiguation
system called Glow (Global Wikification), which used several local and global
features to obtain a set of disambiguations that are coherent in the whole text.

In information retrieval and speech recognition, unintelligible words pose a
practical problem. The TREC-5 confusion track [8] studied the impact of data
corruption introduced by scanning or Optical Character Recognition errors on
retrieval performance. In the subsequent spoken document retrieval tracks [9],
the errors were introduced by automatic speech recognition.

Structured sparsity has been successfully applied to natural language process-
ing problems, e.g., in [10] and [11]. Jenatton et al. [10] apply sparse hierarchical
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dictionary learning to learn hierarchies of topics from a corpora of NIPS proceed-
ings papers. In a more recent application [11], structured sparsity was used to
perform effective feature template selection on three natural language processing
tasks: chunking, entity recognition, and dependency parsing.

3 The Method

The novel word is explained as a weighted mixture of Wikipedia senses. Partic-
ularly, we assign a vector of coefficients to each novel word – an interpretation
vector – where each coefficient corresponds to a single Wikipedia sense.

The interpretation vector is determined in two steps. First, we formulate a
linear model with a structured sparsity inducing regularization and compute a
representation vector α. In the second step, this representation vector is con-
densed to yield an interpretation vector.

We start with a set of Wikipedia senses the novel word could be interpreted
as. For each sense, we collect a number of contexts from Wikipedia. A context
of a sense consists of the N non-stopword words occurring before and after the
anchor of the link that points to the corresponding Wikipedia page. For example,
the anchor text bar could point to (and be tagged with) Bar_(law), Bar_(unit),
Bar_(establishment), etc. There can be at most 2N words in a context.

The presented method makes use of a collection of such contexts arranged
in a word-context matrix D [12] (Figure 1). In this matrix, each context is a
column represented as a bag-of-words vector v of word frequencies, where vi is
the number of occurrences of the ith word in the context.
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Fig. 1. The word-context matrix D. Each column is a context of a Wikipedia sense
(e.g., Boot, Foot). Each element Dij of the matrix holds the number of occurences of
the ith word in the jth context. For example, the word leg occurs three times in the
7th context, which is the 3rd context labeled with Foot.
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To compute the representation vector α, the context x ∈ Rm of the target
word is approximated linearly with the columns of the word-context matrix
D = [d1,d2, . . . ,dn] ∈ Rm×n, called the dictionary in the terminology of sparse
coding. The columns of the dictionary contain contexts, each labeled with the
sense li ∈ L the context was collected for. Please note that multiple contexts
can be, and in many cases are, tagged with the same sense: li = lj is possible.
There are m words in the vocabulary, and n contexts in the dictionary.

The representation vector α consists of the coefficients of a linear combination

x ≈ α1d1 + α2d2 + . . . + αndn. (1)

For each target word, whose context is x ∈ Rm, a representation vector α =
[α1; α2; . . . ;αn] ∈ Rn is computed.

We introduce the structured sparsity inducing regularization by organizing
the contexts in D into groups. Each group contains the contexts annotated with
a single sense. Sparsity on the groups is realized by computing α with a group
Lasso regularization [13] determined by the labels.

The groups are introduced as a family of sets G = {Gl}l∈L ⊆ 2{1,...,n}. There
are as many sets in G as there are distinct senses in L. For each sense l ∈ L,
there is exactly one set Gl ∈ G that contains the indices of all the columns di

tagged with l. G forms a partition.
The representation vector α of the target word whose context is x is com-

puted as the minimum of the loss function

min
α∈Rn

1
2
‖x − Dα‖2

2 + λ
∑
l∈L

wl||αGl
||2, (2)

where αGl
∈ R|Gl| denotes the vector where only the coordinates present in the

set Gl ⊆ {1, . . . , n} are retained.
The first term is the approximation error, the second one realizes the struc-

tured sparsity inducing regularization. Parameter λ > 0 controls the tradeoff
between the two terms. The parameters wl > 0 denote the weights for each
group Gl.

If each group is a singleton (i.e., G = {{1}, {2}, . . . , {n}}) the Lasso problem
[14] is recovered:

min
α∈Rn

1
2
‖x − Dα‖2

2 + λ
n∑

i=1

wi|αi|. (3)

Setting λ = 0 yields the least squares cost function.
For the sake of simplicity, we represent each sense with the same number

of contexts: there are an equal number of columns in D for each label l ∈ L
(|G1| = |G2| = · · · = |G|L||). The weights wl of the groups are set to 1.

In the second step, the target word is disambiguated to a mixture of
Wikipedia senses based on the weights in this vector. We utilize the group struc-
ture to condense the vector α ∈ Rn to a vector s ∈ R|L| where each coordinate
corresponds to a single sense. The interpretation vector is obtained by summing
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the weights in each group Gl ∈ G. The weight for each sense l ∈ L in the mixture
is

sl =
∑

i

(αGl
)i. (4)

The structured sparsity inducing regularization fulfills three purposes.
Firstly, it allows us to conveniently condense the representation vector α to
the interpretation vector s based on the groups. Secondly, it allows us to ex-
plain each target word with only a few senses. This is important mainly for
applications where human users interpret the results.

Thirdly, and most importantly, the structured sparsity inducing regulariza-
tion allows us to reduce the effect of spurious similarities of contexts in the
large-scale disambiguation problem, as it selects whole groups of contexts.

Each group Gl ∈ G contains contexts tagged with the same sense l ∈ L,
and only a few groups can be selected. The 2-norm in the loss function favors
dense representations: it tries to represent each selected sense densely in the
representation vector α. The method tends to choose representations where most
of the contexts are active in the group of a selected sense over representations
where only a few contexts are active. Intuitively, a context that is similar to the
context of the target word only by accident – the context in the group of an
incorrect sense – won’t be selected, as most of the other contexts in its group
will be dissimilar, and so inactive. In the group of the correct sense, most of the
contexts will be similar and active, so that will be selected instead.

An important consequence of reducing the effect of spurious similarities is
increased accuracy in large-scale problems compared to other algorithms (Sec-
tions 4 and 5).

4 Results

We evaluate the proposed method on two tasks for the two types of novel words.
In the first task, we use the method to interpret words whose connection be-
tween their surface form and their meaning is broken, but the sense they denote
is present in our sense inventory. These include misspelled words, certain neol-
ogisms, errors introduced by automatic speech recognition, and the like (Sec-
tion 1).

In the second task, we interpret words with novel meaning. These are words
for whom there are no correct senses in our sense inventory. Our expectation is
that the meaning of these words can be approximated by mixtures of related
senses. We compare the quality of the interpretation vectors to the bag of words
contexts by measuring the quality of the clustering they induce.

4.1 The Datasets

The datasets used in our experiments are obtained by randomly sampling
the links in Wikipedia. Each dataset consists of contexts tagged with senses
(c1, l1), (c2, l2), . . . . Each tagged context is obtained by processing a link: the



Title Suppressed Due to Excessive Length 7

bag-of-words vector generated from the context of the anchor text is annotated
with the target of the link.

We use the English Wikipedia database dump from October 20104. Disam-
biguation pages, and articles that are too small to be relevant (i.e., have less
than 200 non-stopwords in their texts, or less than 20 incoming and 20 outgoing
links) are discarded. Inflected words are reduced to root forms by the Porter
stemming algorithm [15].

To produce a dataset, a list of anchor texts are generated that match a
number of criteria. These criteria have been chosen to obtain (i) words that are
frequent enough to be suitable training examples and (ii) are proper English
words. The anchor text has to be a single word between 3 and 20 characters
long, must consist of the letters of the English alphabet, must be present in
Wikipedia at least 100 times, and must point to at least two different Wikipedia
pages, but not to more than 20. It has to occur at least once in WordNet [16]
and at least three times in the British National Corpus [17].

A number of anchor texts are selected from this list randomly, and their
linked occurrences are collected along with their N -wide contexts. Each link is
processed to obtain a labeled context (ci, li).

To ensure that there are an equal number of contexts tagged with each sense
l ∈ L, d randomly selected contexts are collected for each label. Labels with
less than d contexts are discarded. We do not perform feature selection, but we
remove the words that appear less than five times across all contexts, in order
to discard very rare words.

4.2 Interpreting novel words whose meaning is present in the sense
inventory

The first task is a disambiguation problem where the algorithm is used to select
a single correct sense from all the available senses in the sense inventory. Given
a context x ∈ Rm of a word, the goal is to determine the correct sense l ∈ L. The
performance of the algorithms is measured as the accuracy of this classification.

We compare the interpretation vectors computed with group Lasso to three
baselines: representations α computed with two different regularizations (least
squares and the Lasso) of the linear model described in Section 3, and a Support
Vector Machine (SVM). The SVM is a multiclass Support Vector Machine with
a linear kernel, used successfully for Wikification in previous works [5, 7].

The interpretation vector s yields a single sense by simply selecting its largest
coefficient. Similarly for least squares and the Lasso, the target word is disam-
biguated to the sense that corresponds to the largest coefficient in α. For the
SVM, a classification problem is solved using the labeled contexts (ci, li) as
training and test examples.

The minimization problems of both the Lasso and group Lasso (Eq. 2) are
solved by the Sparse Learning with Efficient Projections (SLEP) package [18].
For the support vector machine, we use the implementation of LIBSVM [19].

4 Downloaded from http://dumps.wikimedia.org/enwiki/.
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Fig. 2. Dependency of the accuracy on the number of contexts per candidate sense.
There are d − 1 such contexts in each step of the cross-validation, as there is one
test example for each sense. The data points are the mean of values obtained on the
five datasets. The error bars denote the standard deviations. “Group Lasso” means
taking the largest weight in the interpretation vector computed with group Lasso. The
results of least squares are not illustrated as the standard deviations were very large.
It performs consistently below the Lasso.

The algorithms are evaluated on five disjoint datasets generated from
Wikipedia (Section 4.1), each with different senses. We report the mean and
standard deviation of the accuracy across these five datasets.

There are |L| = 1000 different senses in each dataset, and d = 50 contexts
annotated with each sense. The algorithms are evaluated on datasets of different
sizes (i.e., d and |L| are different), generated from the original five datasets by
removing contexts and their labels randomly.

In accord with [20, 21], and others, we use a broad context, N = 20. We
found that a broad context improves the performance of all four algorithms.

Before evaluating the algorithms, we examined the effect of their parameters
on the results. We found that the algorithms are robust: for the Lasso, λ = 0.005,
for the group Lasso, λ = 0.05, and for the SVM, C = 1 was optimal in almost
every validation experiment.

In the first evaluation, we examine the effect the number of training examples
per candidate sense has on the accuracy of the four algorithms. The starting
datasets consist of |L| = 500 senses with d = 10 contexts (or training examples)
each. Stratified 10-fold cross-validation is used to determine the accuracy of the
classification: the dataset is partitioned into 10 subsets (the same as d), where
each subset contains exactly |L| examples – one annotated with each sense. In
one iteration, one subset is used for testing, and the other 9 subsets form the
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Fig. 3. Dependency of the accuracy on the number of candidate senses, |L|. The data
points are the mean of values obtained on the five datasets. The error bars denote the
standard deviations. “Group Lasso” means taking the largest weight in the interpreta-
tion vector computed with group Lasso. The results of least squares are not illustrated,
as the standard deviations were very large. It performs consistently below the Lasso.

columns of D: there are |L| test examples and n = (d − 1)|L| columns in D in
each iteration. For the SVM, the columns of D are used as training examples.

To examine the effect of additional contexts, we add contexts to D for each
candidate sense, and examine the change in accuracy. In order to evaluate the
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effect correctly (i.e., to not make the learning problem harder), the test examples
remain the same as with d = 10. In other words, we perform the same cross-
validation as before, only we add additional columns to D in each step. In
Figure 2, we report the results for d = 10, 20, 30, 40, 50.

In the second evaluation, the accuracy of the algorithms is examined as the
number of candidate senses |L| increases. As in the first evaluation, there are
d = 10 examples per candidate sense, and stratified 10-fold cross-validation is
performed. Then, the number of examples is raised to d = 20 in the same way
(i.e., the new examples are not added to the test examples). We report the results
for |L| = 100, 200, . . . , 1000 candidate senses in Figure 3.

4.3 Interpreting words with novel meaning

In this section, we extend our examinations of the presented method to inter-
pret words whose meaning is novel. In practice this means that we remove all
knowledge about the senses our target words denote from the dictionary D. The
word with novel meaning has to be interpreted based on its relatedness to other,
possibly related senses.

Words with novel meaning are simulated by making sure that there is no
context in the dictionary tagged with any sense the test examples are tagged
with. Wikipedia senses in the set T and the contexts tagged by them constitute
the test examples (i.e., the contexts of words with novel meaning), while the rest
of the senses in L together with their contexts form D. The sets T and L, and
so the examples for the words with novel meaning and D are disjoint: there is
not a single context in D for any of the senses in T .

The evaluation is based on the labeling of the test examples: for each target
word, we already know the sense it denotes. This labeling determines a clustering
of the resulting interpretation vectors s ∈ R|L|: two interpretation vectors belong
to the same cluster if and only if they are tagged with the same sense. The
quality of the interpretation vectors (the performance of the presented method)
is measured as the quality of this clustering.

Clustering quality can be measured by various clustering validation measures
[22]. For our purposes, we need to consider different criteria than Liu et al. [22],
as we do not evaluate the clustering, but the data. Our measure should be able
to compare data in coordinate spaces of different dimension, and it should be
somewhat sensitive to noise and clusters of different density. On the other hand,
the capability to accurately tell the number of clusters in the dataset is not
important for us. Based on these criteria, we chose the well-known R-squared
measure. R-squared may be considered a measure of the degree of difference
between clusters and the degree of homogeneity between groups [23, 24].

If X denotes all the test examples, c is the center of X, Ct, t ∈ T are the
different clusters, and ct are the centers of the clusters, then R-squared is

RS =

(∑
x∈X

‖x − c‖2
2 −

∑
t∈T

∑
x∈Ct

‖x − ct‖2
2

)
/
∑
x∈X

‖x − c‖2
2. (5)
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Fig. 4. Interpretation vectors of words with novel meaning vs. the bag of words con-
texts. The R-squared with the bag of words representation is constant, as it does not
depend on the number of senses in the interpretation vector, |L|. The data points are
the mean of 30 experiments. The thick error bars denote the standard errors of the
mean. The thin error bars denote the standard deviations.

For these evaluations, we obtain a single dataset by concatenating the five
datasets used in the first task into a larger dataset that contains 5000 senses.
The disjoint sets T and L are randomly selected from among these 5000 senses
in each experiment.

Parameter λ was set to λ = 0.05, the same as in the first task. This value
yields interpretation vectors with approximately 30 to 70 active senses on aver-
age. There are d = 20 contexts for each sense. We interpret |T | = 50 different
senses in each experiment, so there are 1000 target words to interpret. Each
experiment is repeated 30 times with different randomly selected senses in both
T and L. We report the mean, its standard error, and the standard deviation.

We compare the interpretation vectors to the input bag of words contexts.
For each sense t ∈ T , we use the same d = 20 contexts that were transformed
into the interpretation vectors. For bag of words, we conducted a single set of
experiments, as the results do not depend on the value of the parameter |L|. We
report the results in Figure 4.

5 Discussion

In the first task, the results are very consistent across the five disjoint datasets,
except in the case when the representation vector was computed with least
squares. The performance of least squares was the worst of the four algorithms,
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and it was so erratic that we did not plot it in order to keep the figure unclut-
tered.

For group Lasso and the SVM, additional training examples help up to 20
examples per sense (Figure 2), but only small gains can be achieved by adding
more than 20 examples.

The Lasso-based representation does not benefit from new training examples
at all when there are many candidate senses. This may be the effect of spurious
similarities. As more and more contexts are added, the less chance Lasso has to
select the right sense from among the candidates.

Classification based on interpretation vectors computed with group Lasso
significantly outperforms the other methods, including SVM (Figure 3). This
illustrates the efficiency of our method: structured sparsity decreases the chance
of selecting contexts spuriously similar to the context of the target word.

In the second task, we found that even when the correct sense of the novel
word is unknown, the interpretation vectors perform much better than the bag
of words contexts. This points to the possibility of improving performance in
natural language processing tasks by using interpretation vectors instead of a
bag of words representation.

As the number of senses in the interpretation vector increases, the learning
problem becomes harder, and the performance decreases – similarly to the first
task. Although there are more and more senses to represent meaning with, these
senses were selected randomly from Wikipedia: the chance for senses that are
closely related to the novel meaning to appear is too low to offset the effect of
the harder learning problem. Based on this intuition, we believe that there is a
promising direction for future improvement of the method.

In these first experiments, we interpreted words with novel meaning as mix-
tures of senses that were randomly selected from Wikipedia. Our experience
suggests that a promising avenue of future research is to preselect the senses
systematically based on the context of the target word to increase the chance
of closely related senses to appear. We have observed some interesting examples
where the (unavailable) novel meaning was represented by a mixture of closely
related senses. For example, for the novel meaning Prime_number, its hyper-
nym, Number was selected. For Existence, the method selected Logos, Karma,
and Eternity. The most interesting example is that of Transformers: it was in-
terpreted as a mixture of Humanoid, Tram, Flash_(comics), Cyborg, and Hero.
With a slight stretch of the imagination, Transformers are Humanoid robots
(Cyborg) that can change into vehicles (Tram), and they are also Heroes that
appear in comic books (Flash_(comics)) and animated series.

6 Conclusions

We extended the scope of Wikification to novel words by relaxing its premises:
(i) we wikify without using the surface form of the word (ii) to a mixture of
Wikipedia senses instead of a single sense.
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We identified two types of novel words: words where the connection between
their surface form and their meaning is broken, and words where there is no
meaning to connect to – the meaning itself is also novel.

We proposed a method capable of wikifying both types of novel words while
also dealing with the problem of spuriously similar contexts that intensifies be-
cause the disambiguation problem becomes inherently large-scale. The perfor-
mance of the method was demonstrated on two tasks for the two types of novel
words. We found that the method was capable of disambiguating between up
to 1000 Wikipedia senses. Additionally, we used it to explain words with novel
meaning as a mixture of other, possibly related senses. This mixture represen-
tation compared favorably to the bag of words input contexts.

In these first experiments of interpreting words with novel meaning, the sense
inventories were randomly generated from Wikipedia. Our experience suggests
that extending the method by constructing the sense inventory in a systematic
way based on the context of the target word is a promising direction for future
research.

A possible future application of the presented method is the verification of
links to Wikipedia. The method assigns a weight to each candidate sense. If the
weight corresponding to the target of the link is small in contrast to weights of
other pages, the link is probably incorrect.

The method can be generalized, as it can work with arbitrarily labeled text
fragments as well as contexts of Wikipedia links. This more general framework
may have further applications, as the idea of distributional similarity offers solu-
tions to many natural language processing problems. For example, topics might
be assigned to documents as in centroid-based document classification [25].

ACKNOWLEDGEMENTS

The research has been supported by the ‘European Robotic Surgery’ EC FP7
grant (no.: 288233). Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect
the views of other members of the consortium or the European Commission.

The research was carried out as part of the EITKIC 12-1-2012-0001 project,
which is supported by the Hungarian Government, managed by the National
Development Agency, financed by the Research and Technology Innovation Fund
and was performed in cooperation with the EIT ICT Labs Budapest Associate
Partner Group.

References

1. Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic knowledge.
In: Proceedings of the Conference on Information and Knowledge Management
(CIKM). (2007) 233–242

2. Akmajian, A.: Linguistics: An introduction to language and communication. The
MIT press (2001)



14 Balázs Pintér, Gyula Vörös, Zoltán Szabó, and András Lőrincz
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