Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families

Heiko Strathmann^{*} Dino Sejdinovic⁺ Samuel Livingstone^o Zoltan Szabo^{*} Arthur Gretton^{*}

*Gatsby Unit, University College London. +Department of Statistics, University of Oxford, ^oSchool of Mathematics, University of Bristol

Motivation: Hamiltonian Monte Carlo and Intractable Targets

- Goal: Efficient sampling from density π on \mathbb{R}^d .
- ► HMC proposes distant moves with high acceptance probability.
- Given potential energy $U(q) = -\log \pi(q)$, sample auxiliary momentum

$$p \sim \exp(-K(p))$$
 and simulate for $t \in \mathbb{R}$ along Hamiltonian flow

$$\phi_t^H:(p,q)\mapsto(p^*,q^*)$$

of the joint log-density H(p,q) = K(p) + U(q), using the operator

 $\partial K \partial = \frac{\partial U}{\partial \partial}$ $\partial p \partial q \quad \partial q \partial p$

► Numerical simulation (i.e. leapfrog) depends on *gradient information*.

- ► Often *unavailable*, e.g. in Bayesian GP classification. More generally in
- Pseudo-Marginal MCMC [1] or Approximate Bayesian Computation [4].
- **Right**: Marginal hyper-parameters of a GP classifier. HMC dynamics?

We want a HMC sampler that automatically learns gradients.

So far: (Kernel) Adaptive Metropolis-Hastings

Idea: use history of Markov chain to learn target structure.

Adaptive Metropolis-Hastings [2]

- ► Learns *global* linear covariance.
- ► Pro: Automatically learns proposal scaling, fast.
- ► Con: Local steps, does not work well on non-linear targets.

Kernel Adaptive Metropolis Hastings [5]

- ► Learns covariance in RKHS.
- ► Pro: Locally aligns to (non-linear) target covariance, gradient free.
- ► Con: Local steps, random walk.

Can we combine 'global' and 'non-linear' – without gradients?

Hamiltonian Monte Carlo with kernel induced potential energy

- ▶ Learn gradient 'surrogate' model $\nabla U_k \approx \nabla U = -\nabla \log \pi$ from Markov chain history $\{x_i\}_{i=1}^t$. ► Replace $\frac{\partial U}{\partial q}$ by $\frac{\partial U_k}{\partial q}$; gives kernel induced Hamiltonian flow $\phi_t^{H_k}$: $(p,q) \mapsto (p_k^*, q_k^*)$
- $\phi_t^{H_k}$ can be simulated using the operator

• Accept using *true* Hamiltonian (depends on U but *not* on ∇U) with probability

$$\min\left[1, \exp\left(-H\left(p_{k}^{*}, q_{k}^{*}\right) + H(p, q)\right)\right]$$

- ► Corrects for both leap-frog error *and* surrogate induced Hamiltonian flow error ⇒ Asymptotically correct.
- ▶ **Note**: $\exp(U(q))$ can be replaced with unbiased estimator, c.f. Pseudo-Marginal MCMC.

Key quantity: average gradient error $\int \pi(x) \|\nabla U(x) - \nabla U_k(x)\|_2^2 dx$

Illustration of kernel induced Hamiltonian flow

Standard HMC dynamics using ∇U (plot shows gradient norm $\|\nabla U\|$).

We need an expressive yet tractable model.

	Stability in growing dimensions
$\mathcal{H} - \mathcal{A}(f))$ $k(x, \cdot) angle_{\mathcal{H}}$ for any $f \in \mathcal{H}.$	 Fit surrogate on <i>n</i> oracle samples, increase <i>d</i> and <i>n</i>. Compute acceptance rate along random HMC trajectories. Small step-size, optimal value is 1. Red: KMC efficient, blue: KMC inefficient.
c.), E. access to A(f)?	A challenging Gaussian target (top): • Eigenvalues: $\lambda_i \sim \text{Exp}(1)$. • Covariance: diag($\lambda_1, \ldots, \lambda_d$), randomly rotate. • Use Rational Quadratic kernel to account for resulting highly 'non-singular' length-scales. • KMC scales up to $d \approx 30$.
	An easy, isotropic Gaussian target (bottom): More smoothness allows KMC to scale up to $d \approx 100$. 10 ⁰ $\frac{10^{2}}{10^{2}} = \frac{10^{3}}{10^{3}} = \frac{10^{10}}{10^{4}}$
:	Mixing on synthetic 8-dimensional Banana [5]
$egin{aligned} & \log \pi(x) \ _2^2 dx \ & \text{nrough samples: } \mathbf{x} := \{x_i\}_{i=1}^t \ & \left(rac{\partial f(x)}{\partial x_\ell} ight)^2 \end{bmatrix} \ & \mathbf{x} \in \left(rac{\partial f(x)}{\partial x_\ell} ight)^2 \end{bmatrix} \ & \mathbf{x} \in \left(rac{\partial f(x)}{\partial x_\ell} ight)^2 \end{bmatrix}$	Acc. rate $1 \oplus 1 \oplus$
	KMC behaves like HMC as number n of oracle samples increases.
ndwidth σ)	Gaussian Process Classification on UCI data
x)	Standard GPC model
s. I, yet grows with $n \ll t$. 1b	$p(\mathbf{f}, \mathbf{y}, \theta) = p(\theta)p(\mathbf{f} \theta)p(\mathbf{y} \mathbf{f})$ where $p(\mathbf{f} \theta)$ is a GP and with a sigmoidal likelihood $p(\mathbf{y} \mathbf{f})$. • Goal: sample from $p(\theta \mathbf{y}) \propto p(\theta)p(\mathbf{y} \theta)$. • Unbiased estimate of $\hat{p}(\mathbf{y} \theta)$ via importance sampling. • No access to likelihood or gradient.
tions and conjugate gradient.	Significant mixing improvements over state-of-the-art.
	Approximate Bayesian Computation on a Skew-Normal model
c.f. Random Fourier Features. $\sum_{\ell=1}^{d} \dot{\phi}_{x_{i}}^{\ell} \left(\dot{\phi}_{x_{i}}^{\ell} \right)^{T} \in \mathbb{R}^{m \times m}$	• Likelihood free MCMC for ABC via simulation from likelihood. • Can fit (Gaussian) synthetic likelihoods. • This often induces bias, simple example: $p(\mathbf{y} \theta) = 2\mathcal{N}(\mathbf{y} \theta, I) \Phi\left(\alpha^{\top}\mathbf{y}\right)$ with Gaussian CDF Φ and skewness $\alpha = 10 \cdot 1^{\top}$.
	 Compared to Hamiltonian ABC (gradients by stochastic finite differences): KMC uses surrogate for ABC posterior. No synthetic likelihood. No stochastic gradients.
nvergence).	No additional bias and reduced number of likelihood simulations.
KMC Finite	References
	 [1] C. Andrieu and G.O. Roberts. The pseudo-marginal approach for efficient Monte Carlo computations. The Annals of Statistics, 37(2):697–725, April 2009. [2] C. Andrieu and J. Thoms. A tutorial on adaptive MCMC. Statistics and Computing, 18(4):343–373, December 2008. [3] A. Hyvärinen. [4] E. Meeds, R. Leenders, and M. Welling. Hamiltonian ABC. In UAI, 2015. [5] D. Sejdinovic, H. Strathmann, M. Lomeli, C. Andrieu, and A. Gretton. Kernel Adaptive Metropolis-Hastings. In ICML, 2014. [6] B. Sriperumbudur, K. Fukumizu, R. Kumar, A. Gretton, and A. Hyvärinen.
	Estimation of non-normalized statistical models by score matching. JMLR, 6:695–709, 2005. Density Estimation in Infinite Dimensional Exponential Families. arXiv preprint arXiv:1312.3516, 2014.

Code: https://github.com/karlnapf/kernel_hmo

