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Motivation: Hamiltonian Monte Carlo and Intractable Targets

I Goal: Efficient sampling from density π on Rd .

I HMC proposes distant moves with high acceptance probability.

I Given potential energy U(q) = − log π(q), sample auxiliary momentum
p ∼ exp(−K (p)) and simulate for t ∈ R along Hamiltonian flow

φH
t : (p, q) 7→ (p∗, q∗)

of the joint log-density H(p, q) = K (p) + U(q), using the operator
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∂
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− ∂U

∂q

∂

∂p

I Numerical simulation (i.e. leapfrog) depends on gradient information.

I Often unavailable, e.g. in Bayesian GP classification. More generally in
Pseudo-Marginal MCMC [1] or Approximate Bayesian Computation [4].

I Right: Marginal hyper-parameters of a GP classifier. HMC dynamics?
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We want a HMC sampler that automatically learns gradients.

So far: (Kernel) Adaptive Metropolis-Hastings

Idea: use history of Markov chain to learn target structure.

Adaptive Metropolis-Hastings [2]

I Learns global linear covariance.

I Pro: Automatically learns proposal scaling, fast.

I Con: Local steps, does not work well on non-linear targets.

Kernel Adaptive Metropolis Hastings [5]

I Learns covariance in RKHS.

I Pro: Locally aligns to (non-linear) target covariance, gradient free.

I Con: Local steps, random walk.

Can we combine ‘global’ and ‘non-linear’ – without gradients?

Hamiltonian Monte Carlo with kernel induced potential energy

I Learn gradient ‘surrogate’ model ∇Uk ≈ ∇U = −∇ log π from Markov chain history {xi}t
i=1.

I Replace ∂U
∂q by

∂Uk
∂q ; gives kernel induced Hamiltonian flow φ

Hk
t : (p, q) 7→ (p∗k , q∗k)

I φ
Hk
t can be simulated using the operator

∂K

∂p

∂

∂q
− ∂Uk

∂q

∂

∂p

I Accept using true Hamiltonian (depends on U but not on ∇U) with probability

min
[
1, exp

(
−H

(
p∗k , q∗k

)
+ H(p, q)

)]
I Corrects for both leap-frog error and surrogate induced Hamiltonian flow error ⇒ Asymptotically correct.

I Note: exp(U(q)) can be replaced with unbiased estimator, c.f. Pseudo-Marginal MCMC.

Key quantity: average gradient error

∫
π(x)‖∇U(x)−∇Uk(x)‖2

2dx

Illustration of kernel induced Hamiltonian flow

I Standard HMC dynamics using ∇U
(plot shows gradient norm ‖∇U‖).

I Dynamics on kernel surrogate ∇Uk ,
fitted from samples.

0 100 200 300 400 500

Leap-frog steps

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Acceptance prob.

0 100 200 300 400 500

Leap-frog steps

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Acceptance prob.

We need an expressive yet tractable model.

Infinite dimensional exponential families [6]

(Unnormalised) exponential family model in a RKHS:

const× π(x) ≈ exp (〈f , k(x , ·)〉H − A(f ))

I Sufficient statistics: feature map k(·, x) ∈ H, satisfies f (x) = 〈f , k(x , ·)〉H for any f ∈ H.

I Natural parameters: f ∈ H.

I Normalising constant A(f ) is intractable.

The model is

I dense in continuous densities on compact domains (in TV, KL, etc.),

I relatively robust to increasing dimensions, as opposed to e.g. KDE.

How to learn f from samples without access to A(f )?

Score matching [3]

I Allows estimation of unnormalised density models from samples.

I Minimises Fisher divergence (precisely the average gradient error):

J(f ) =
1

2

∫
π(x) ‖∇f (x)−∇ log π(x)‖2

2 dx

I Possible without accessing ∇ log π(x), and accessing π(x) only through samples: x := {xi}t
i=1

Ĵ(f ) =
1

|x|
∑
x∈x

d∑
`=1

[
∂2f (x)

∂x2
`

+
1

2

(
∂f (x)

∂x`

)2
]

Expensive: Closed form full solution requires solving (td + 1)-dimensional linear system.

Approximation I: KMC Lite

Assume that the model takes the form (Gaussian kernel k with bandwidth σ)

flite(x) =
n∑

i=1

αik(zi , x)

I z ⊆ x is a random sub-sample, α ∈ Rn are real valued parameters.

I Solution flite lies in smaller RKHS sub-space than original model, yet grows with n� t.

I Compute α from linear system

α̂λ = −σ
2

(C + λI )−1b

where C ∈ Rn×n, b ∈ Rn depend on kernel matrix, and λ > 0.

I Costs O(n3 + n2d). Can further reduce with low-rank approximations and conjugate gradient.

Approximation II: KMC finite

Assume that the model takes the form
ffinite(x) = θ>φx

I φx ∈ Rm is approximate feature map such that φ>x φy ≈ k(x , y), c.f. Random Fourier Features.

I θ ∈ Rm can be computed from
θ̂λ := (C + λI )−1b

where

b := −1

n

t∑
i=1

d∑
`=1

φ̈`xi
∈ Rm C :=

1

n

t∑
i=1

d∑
`=1

φ̇`xi

(
φ̇`xi

)T
∈ Rm×m

where φ̇`x := ∂
∂x`
φx and φ̈`x := ∂2

∂x2
`

φx and λ > 0.

I C , b are running averages. On-line updates cost O(dm2).

Lite vs. Finite: geometric ergodicity & the tails

I KMC lite is geometrically ergodic on log-concave targets (fast convergence).

I KMC finite updates fast and uses all Markov chain history. Caveat: need to initialise correctly.

I Gradient norm of a Gaussian KMC Lite KMC Finite

Stability in growing dimensions

I Fit surrogate on n oracle samples, increase d and n.

I Compute acceptance rate along random HMC trajectories.

I Small step-size, optimal value is 1.

I Red: KMC efficient, blue: KMC inefficient.

A challenging Gaussian target (top):

I Eigenvalues: λi ∼ Exp(1).

I Covariance: diag(λ1, . . . , λd ), randomly rotate.

I Use Rational Quadratic kernel to account for resulting highly
‘non-singular’ length-scales.

I KMC scales up to d ≈ 30.

An easy, isotropic Gaussian target (bottom):

I More smoothness allows KMC to scale up to d ≈ 100.
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Mixing on synthetic 8-dimensional Banana [5]
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KMC behaves like HMC as number n of oracle samples increases.

Gaussian Process Classification on UCI data

I Standard GPC model

p(f, y, θ) = p(θ)p(f|θ)p(y|f)

where p(f|θ) is a GP and with a sigmoidal likelihood p(y|f).

I Goal: sample from p(θ|y) ∝ p(θ)p(y|θ).

I Unbiased estimate of p̂(y|θ) via importance sampling.

I No access to likelihood or gradient. 0 1000 2000 3000 4000 5000

Iterations
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Significant mixing improvements over state-of-the-art.

Approximate Bayesian Computation on a Skew-Normal model

I Likelihood free MCMC for ABC via
simulation from likelihood.

I Can fit (Gaussian) synthetic likelihoods.

I This often induces bias, simple example:

p(y|θ) = 2N (y|θ, I ) Φ
(
α>y

)
with Gaussian CDF Φ and skewness
α = 10 · 1>.

Compared to Hamiltonian ABC
(gradients by stochastic finite differences):

I KMC uses surrogate for ABC posterior.

I No synthetic likelihood.

I No stochastic gradients.
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No additional bias and reduced number of likelihood simulations.
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