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Tézisek 1

A retina egy közismert jellemvonása a változó mintavételezési s¶r¶ség: a kö-
zépen lev® nagyfelbontású rész (fovea), a periféria irányába haladva log-polár
struktúrával leírható környezettel párosul. Az az általános vélekedés, hogy a
log-polár szerkezet els®dleges oka a mozgásfelismerésben van: az idegrendszer
el®nyben részesíti ezt a nemlineáris transzformációt, hogy a fontos mozgások,
mint például a közeledés (nagyítás), elfordulás (forgás) során fellép® változá-
sokat egyszer¶ transzlációval (eltolással) közelíthesse.

Dolgozatomban azt a kérdést vizsgáltam meg, hogy a retina ismertetett tulaj-
donsága alapján kialakított mintavételés okoz-e számottev® hatékonyságbeli
romlást. Tesztfeladatul a viselkedés szempontjából fontos, arckomponens de-
tektálási feladatot választottam.

(1) A létrehozott biologilag motivált mintavételezési technikát a f®kompo-
nens analízis (PCA) eszköztárával összekötve, arckomponens felismer®
rendszert építettem és a nyilvános FERET arc-adatbázison teszteltem.

(2) Önálló értékelési elveken alapuló összehasonlító eljárással vizsgáltam a
retina alapú módszer, a log-polár illetve az egyenletes mintavételezési
módok hatékonyságát. (A változó fovea méret két extrém esetének te-
kinthet® a log-polár és az egyenletes mintavételezési mód.)

(3) Eredményül azt kaptam, hogy a kérdéses biológia analógiára épül® minta-
vételezés alkalmazása nem okoz jelent®s romlást, s®t az általam vizsgált
feladat esetén el®nyösnek bizonyult. Az elforgatás és transzláció invariáns
log-polár módszert felülmúlta, az egyenletes technika eredményességét
megtartotta, helyenként javította.

(4) A javasolt módszer kis képterületeken hatékony keresést valósít meg, egy-
fajta hasonlósági mértéket nyújt, így lehet®vé téve sztochasztikus sz¶r®s
keretbe való integrálását, amely speciálisan arcrészek esetén valós idej¶
követésre alkalmazható.

1 A szakdolgozat magvát képez® cikk az Image and Vision Computing szaklapba
lett beküldve.
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Does retina based architecture cause signi�cant
drawback in face component recognition?

Zoltán Szabó a, Botond Szatmáry a, András L®rincz a,∗
aEötvös Loránd University, Department of Information Systems, Pázmány Péter

sétány 1/C, Budapest, Hungary H-1117

Abstract

We examine a combined sampling technique suggested by well-known properties
of the human retina, such as the greatest visual acuity in the center (fovea) and
exponentially decreasing resolution toward the periphery. We modelled the high
resolution part with uniform sampling, and log-polar sampling was applied at the
periphery. The aim of the paper is to investigate whether this retinotopic sampling
gives rise to a considerable deterioration in e�ciency compared with the commonly
used uniform and log-polar techniques in case of face component recognition task on
the FERET database. We have found that it certainly does not have considerable
drawbacks, moreover it seems to be favourable in the present task.

Key words: retinotopic sampling, uniform fovea with log-polar periphery, face
component detection, PCA reconstruction

1 Introduction

The make-up of the retina proposes a sampling structure that has a high res-
olution central region and a less detailed periphery. A number of approaches
approximate this property and describe the sampling method of the retina with
log-polar technique (Wilson (1983); Boluda and Domingo (2001); Bernardino
et al. (2002); Koh et al. (2002); Smeraldi and Bigun (2002)). The log-polar
construction can be mainly rooted in motion detection according to the com-
mon view. It has been widely accepted that the nervous system prefers this
∗ Corresponding author
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nonlinear transformation, because it allows important operations, such as ro-
tation and scaling generated changes to be approximated by translations. We
compare the e�ciency of a combined sampling method, `uniform fovea with
log-polar periphery' (UFLP) with the commonly used log-polar and uniform
sampling techniques in a face component recognition task on the FERET face
database 1 (Phillips et al. (1998)).

The organization of the paper is as follows. In Section 2 the basic features of
the applied mathematical transformation are reviewed, the examined sampling
techniques are presented, the preprocessing and the training methods are also
described. Testing results are shown in Section 3. Section 4 summarizes the
paper.

2 Methods

2.1 Log-polar representation

Log-polar transformation (L) is a mapping from the Cartesian plane onto the
cortical plane:

L(x, y) =



log

(√
x2 + y2

)

arctan (y/x)


 =



log r(x, y)

ϕ(x, y)


 .

The major advantage a�orded by the space-invariant log-polar geometry is
the coarser representation near the periphery of the grid, in other words it has
exponentially decreasing resolution towards its edge. Moreover it has other
attractive features: By its e�ective data reduction ability the volume of cal-
culations can be diminished; It also allows multi-resolution analysis, which,
together with divergency handling and the wide �eld of view supplied by the
periphery, play a substantial role in motion detection (Juday and Weiman
(1990); Ferrari et al. (1995)).

2.2 Sampling

Sampling was performed in a 85 × 85 pixel size image window to completely
cover the examined face components. We compared three di�erent sampling
1 In our work, three face components are investigated, namely right eye, left eye
and nose.
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(A) (B) (C)

Figure 1. The compared sampling strategies. In the �rst row the distribution of the
sampling points for di�erent sampling techniques are displayed: (A) log-polar sam-
pling, (B) `uniform fovea with log-polar periphery' sampling, (C) uniform sampling.
In the second row the sampled pixels of a right eye are shown.

techniques with �xed sampling point numbers (the number of sampling points
was 1368): (i) In case of log-polar sampling 12 circles with the same center
and exponentially increasing radii were laid on the inspected area and 114
sampling points were placed on each circle uniformly (Fig. 1(A)). The radius of
the outside circle was 42 (in pixel units); (ii) The UFLP method approximates
the retinotopic distribution: 684 uniformly distributed sampling points were
settled in the middle of the inspected area in a circle with r = 21 pixel
units, corresponding to the fovea, and the rest 684 points were placed on
the anchoring ring (Fig. 1(B)) to get log-polar representation (6 circles, 114
point on each circle); (iii) In the third case all the 1368 sampling points were
uniformly distributed in a circle with 2r = 42 pixel units (Fig. 1(C)).

2.3 Database

We used the frontal images of the FacE Recognition Technology (FERET)
database (Phillips et al. (1998)) for learning and testing. Every image in this
collection is 8-bit gray-scale, has a 384× 256 pixel size, containing a centered
human head. In order to reduce the e�ect of variation in illumination on these
images, histogram equalization was employed as a preprocessing step. The
goal of this method is to achieve uniform distribution on the gray-level values
of the original image.
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Figure 2. A test grid was placed around the exact position of the studied face com-
ponent (FERET database provides this data). For testing the di�erent sampling
techniques, in every node of the grid a probability value was calculated expressing
the chance (probability) of being the center of the actual face component.

2.4 Training

Principle component analysis (PCA) was used in our face component recog-
nition task, i.e., principal components were derived for the di�erent face com-
ponents on the histogram equalized images employing the presented sampling
techniques using intensity values of the images. PCA is a projection technique
(employing orthonormal basis), it is computationally e�cient, it has e�ective
data reduction capability and it provides naturally de�ned similarity measure
(L2 norm) between the original and the reconstructed image. For details about
PCA the interested reader is referred to Movellan (1997).

For this training process 2061 frontal images were chosen from the FERET
database. In the database, the true location of the face components are also
available making it unnecessary to �nd them manually. These face components
were cut from the faces, sampled according to the already described sampling
methods, then principal components were developed on them.

2.5 Testing principles

Around the center of the inspected face component 2 a quadratic test grid was
laid down with step = 4 pixel in both directions (see Fig. 2). The nodes of the
grid were used to �nd the approximate position of the requested component 3 .
In every node a certain �tting examination was executed utilizing the recon-
struction property of PCA: an image window was used around the grid points,
this image underwent histogram equalization, it was sampled according to the
2 Similar results were obtained for left and right eye. From now on, eye stands for
both left and right eyes.
3 The grid with step = 4 pixel unit was satisfactory and computationally e�cient.
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di�erent sampling methods, and it was �ltered and reconstructed by means
of the previously trained PCA basis. A natural similarity measure between
the original and the reconstructed image o�ered by PCA is the reconstruction
error:

re :=
∥∥∥X− X̂

∥∥∥
2
,

where X stands for the original, and X̂ for the reconstructed image.

An error surface was created using the above described reconstruction error.
Around every node of the grid three di�erent image window was cut: (1) one
with 85× 85 pixel size (as introduced in Subsection Sampling), (2) a 68× 68
pixel size one and (3) a 102 × 102 pixel size one. The smaller and greater
image windows were resized to 85× 85, so we obtained three images with the
same size representing three di�erent scales (80%, 100%, 120%). For these
three images the reconstruction error values were calculated and the minima
of these error values was assigned to the corresponding node. This technique
made it possible to rectify the scaling variation being present in the FERET
database.

The values of the error surface were linearly rescaled to interval [0,1] and
then `1 - error surface' was computed. All the further analysis were carried
out on the obtained surface, whose points can be interpreted as probability
values. High probability suggests the presence of the desired face component
at around the corresponding node, whereas low probability proposes the op-
posite. Henceforth the received surface is referred to as probability surface.
The examined image window is accepted to be a face component candidate, if
the probability value of its correspondent node is strict local maxima on the
probability surface and if it is above a prede�ned threshold.

In our simulations, reconstruction with the �rst three principal components
were studied (Koh et al. (2002) applied 2-4 basis vectors for face reconstruc-
tion) and the threshold value was 0.9.

3 Results

500 randomly chosen frontal images of the FERET database were used to
compare the performance of the UFLP method with standard log-polar and
uniform sampling techniques. The probability surface and the potential face
components were calculated for each image.

After ordering the potential face component candidates on the ground of their
probability values, the distance between the most probable position (�rst can-
didate) and the true location was evaluated. According to Fig. 3, the retina
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Figure 3. The average distance between the position of the best candidate (the
candidate with the lowest reconstruction error) and the true location of the searched
component are plotted as a function of the chosen representation. The black and
white bars correspond to eye and nose, respectively. The retina-like UFLP sampling
method has favorable properties (is more precise) on the face component task.

based UFLP sampling structure has considerable advantages over log-polar
sampling and is better by a small margin than the uniform method.

The average number of candidates were also evaluated yielding similar re-
sults (see Fig. 4). The UFLP sampling method doesn't seem to su�er from
serious disadvantages. It considerably surpasses the log-polar technique, and
proposes on average 1.6 candidates for eye, and 1.2 for nose, likewise the uni-
form method. The larger average number of candidates for eye than for nose
is due to the glasses: people with glasses were not excluded from the training
and testing phases.

The average probability surfaces are plotted in Fig. 5, re�ecting all the dis-
cussed features. The retina-like UFLP sampling structure has smoother prob-
ability surfaces than the log-polar sampling. Peaks are steepest at the exact
location of the face components, suggesting more accurate estimation for the
position of the searched component.

4 Discussion

Our experiments were based on widely known properties of the human retina:
it has high resolution at the center, called the fovea, and the sampling density
(i.e. the actual resolution) falls-o� quickly towards the edges. The approxi-
mately log-polar structure of the periphery approximates essential transfor-
mations, such as rotation and scaling, by simple translations. We have studied
if a uniform fovea with log-polar periphery exhibits considerable changes on
the reconstruction abilities.

As a test bed, face component recognition problem was chosen using the

11



0

1

2

3

4

Sampling technique

A
ve

ra
ge

 c
an

di
da

te
 n

o.

1 2 3 4 5
0

100

200

300

400

500

Candidate number

N
um

be
r 

of
 p

ic
tu

re
s

0

0.5

1

1.5

2

A
ve

ra
ge

 c
an

di
da

te
 n

o.

Sampling technique
1 2 3 4 5

0

100

200

300

400

500

Candidate number

N
um

be
r 

of
 p

ic
tu

re
s

log−polar
UFLP
uniform

(A) 
eye 

(B) 
nose 

> = 

> = 

Figure 4. Left hand side: the number of average eye candidates compared for di�er-
ent � log-polar, UFLP and uniform � sampling techniques. Right hand side: Same
with more details. The histograms show the number of pictures, where 1, 2, 3, 4,≥ 5
candidates were predicted. Gray scales indicate di�erent sampling methods. (A) and
(B) refer to eye and nose.

FERET gallery. According to the estimation error concerning the exact loca-
tion of the face part and the number of the potential candidates, the e�ciency
of the retina based sampling was compared to log-polar and uniform tech-
niques. It was found that the biologically motivated UFLP approach seems
favourable on face component recognition. As it was demonstrated, the UFLP
sampling technique combined with PCA provided an e�cient similarity mea-
sure for face components.
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ability value is the lightest, whereas the darkest pixel denotes the smallest chance.
Results for eye and nose are shown for all three sampling methods.
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A Appendix

A.1 Object (particularly face) detection

The current evolution of computer technologies has created an accelerating
world with machines employing arti�cial intelligence to facilitate human life.
An essential task in these systems is object, or particularly face (part) detec-
tion, which is one of the visual tasks which humans can do absolutely e�ort-
lessly, however in computer vision terms it is not really easy. Anyone can put
the question: how these methods work, or �rst of all what kind of techniques
exist?

A.1.1 A short historical review

Labeled Graph Matching (LGM) from von der Malsburg and L. Shams (1988),
is a well-known algorithm addressing object detection as a general recognition
task. LGM represents each pattern as a labeled graph, where labels encode
features, and links between nodes express topological relationships. In this for-
mulation of visual pattern, an input can be recognized by �nding the best, ap-
proximate neighbourhood and feature preserving correspondence with a stored
graph. In most of the implementations, magnitudes (see von der Malsburg
et al. (1998)) of Gabor wavelets (for details, study Grossmann and Mortlett
(1985)) with di�erent orientations and frequencies constitute the labels of the
nodes in the superimposed graph. The explanation of Gabor wavelets beyond
its biologically motivation, is the ability that it encodes local gray level distri-
bution of an image with greater emphasis.

Neural implementation of LGM is exempli�ed in the Dynamic Link Architec-
ture (DLA) by von der Malsburg (1981) with great success in object recogni-
tion.

An extension of the standard LGM, called LGM+ with direct biological anal-
ogy (based on �ndings of the visual cortex) has been introduced by Shams
et al. (2001) and successfully tested on the task of �nding 3-D stochastically
generated, digital embryos in complex scenes. It is compared to a statistical
approach called Mutual Information Maximization (MIM), which has enjoyed
much attention in recent years and has been adopted by several groups (for
example, see Viola (1995); McGarry et al. (1997); Pluim et al. (2000)). From
the wide spectrum of other statistical approaches to the problem of pattern
recognition Shannon information as described by Becker (1995), description
length applied by Bienenstock and von der Malsburg (1987), and support vec-
tor machines (SVM) introduced by Vapnik (1995) cover three more examples.
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The problem of facial feature detection is solved with employing multiscale
and multiorientation Gabor kernel on a log-polar grid combined with SVM
to model the Saccadic Search strategy by Smeraldi and Bigun (2002). Also
Gabor decomposition is a basis of an eye detection and Saccade modelling
system demonstrated by Smeraldi and Bigün (1998). While in the aforemen-
tioned studies all the Gabor kernels obtained uni�ed role, a method has been
developed by Kalocsai et al. (2000) to weight the contribution of the these
kernels according to their predicting power and been evaluated in a special,
facial object recognition task.

Neural networks, which are more than simply Multilayer perceptrons (MLP),
have become a popular technique for pattern recognition problems. Modu-
lar architectures, autoassociative and compression networks, network evolved
with genetic algorithms are all examples of their widespread use in this topic.
The �rst neural approaches were based on MLPs implemented by Burel and
Carel (1994); Juell and Marsh (1996); Propp and Samal (1992). To see more
examples, Lin et al. (1997) created a fully automatic recognition system based
on probabilistic decision-based neural network (PDNN), and a new learning
architecture called SNoW (sparse network of winnows) by Roth (1999) was
successfully applied to face detection task.

A naturally emerging idea is to conceive to a kind of object as it is lying in
the overall image space. To represent this subspace, standard multivariate ap-
proaches can be applied including independent component analysis (ICA) to
extract features (for discussion, examine Hyvarinen (1999)), or factor analy-
sis (FA) as proposed by Yang et al. (2000), or principal component analysis
(PCA), where each individual `face' is approximated by the linear combina-
tion of the so called eigenvectors, using appropriate weights, as a it has been
done in the present work.

As it can be seen recognition of faces (or face components) is a rapidly pro-
gressing research area and its application �eld covers a quite broad spectrum.

A.1.2 Possible application areas of object detection

A.1.2.1 Biometrics Among the recently emerging technologies used in
arti�cial intelligence, biometrics (which intensively makes use of the various
object detection solutions) is one of the most exciting and appealing one. Some
signi�cant advantages a�orded by an ideal biometric system are the followings:

• All members of a population possess several unique keys, such as irises or
�ngerprints.

• These unique features provide biometric passwords, which can't be stolen,
forgotten or lost.
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Plenty of biometric security systems have been actively used in our life (for
details, see Phillips et al. (2000)). Fingerprint or iris pattern recognition based
biometric identi�cation can be imagined in high-level security buildings (these
biometric passwords exchange their traditional alphanumeric counterparts).
Protection of private information carried in mobile electronic devices are also
ideal test-bed for similar techniques (e.g. face recognition screen-savers in com-
mercial handhold devices, i.e., laptops). The dramatically decreasing size of
the �ngerprint-capture device (not larger than a postage map) and its cost
(less than $100) make this technique more widely spread in the private sector
(next to the earlier, exclusive government applications), where convenience
and security are both signi�cant standpoints.

A bit futuristic, but practical solution for personal �ngerprint authentication
would be a universal key facilitating the access to everything from front doors
to car doors, bank machines and computers.

Police is also employing biometric based techniques, such as recognition of
subjects from mug-shots, passport photos and scanned �ngerprint, or from
latent �ngerprint left at a crime scene.

A.1.2.2 FACS The objective description of facial behaviour from a video,
or specially facial expression recognition, is a widely known and challenging
problem in computer society. For example, measurements of facial behaviour
at the level of detail of FACS 4 provide information for detection of deceit,
including information about whether an expression is posed or genuine and
leakage of emotional signals that an individual is only attempting to suppress
(for complete discussion, see Ekmann (2001)).

I mention two more interesting facts:

• Recognition of `Duchene` and non Duchene smiles can also be handled in
this framework. Genuine, happy smiles can be di�erentated from posed, or
elsewhere called social smiles by the contradiction of muscles (encoded by
the action unit 6) circling eyes.

• An experiment was carried out to test the e�ciency of FACS in lie detection.
Surprisingly the detection rate based on this technique was signi�cantly
higher than the detection rate of both naive human subjects and police
o�cers watching the same video.

Among the numerous applications of object (human face) recognition, the
followings are further examples:
4 FACS is the abbreviation of Face Action Coding System, which decomposes facial
motion into component actions, i.e., describes face motions as it was generated by
approximately independent muscles.
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• Automatic visual surveillance systems.
• Monitoring of the alertness and anxiety of a pilot.
• Indexing of image and video databases.
• Nowadays, repelling of terrorist attacks has also unfortunately got to the

center of attention, consisting of the task of picking out faces from crowd,
or in other words searching for faces and extracting them from crowded
pictures.

• In intelligent human-computer interfaces (HCI), detection and tracking of
faces is the �rst step in building up interaction between the human and the
computer.

• The wide spreading of Internet commerce and tele-banking require privi-
leged and remote access to resources. In this environment, face authentica-
tion is a naturally emerging idea comprising the problem of face detection.

• Face detection technology can be useful and necessary in video conferencing,
where there is a need to control the camera in such a way that the current
speaker always has the focus.

A.2 Description of the employed mathematical procedures

A.2.1 Principal component analysis (PCA)

A key problem in statistical pattern recognition is that of feature selection or
extraction. This task refers to a process, where the original data space is trans-
formed into the so called feature space, which has exactly the same dimension
as the original input space. The purpose is to �nd a coordinate transform,
so that with reduced number of features the intrinsic information in the data
can still be retained, supplying an informative and compact description of the
inputs. The problem can be formulated and considered in several ways:

(1) The basic idea behind the PCA method is the following. Possessing a
random variable X with mean µ 5 and variance matrix Σ, given a constant
k, the purpose is to �nd a k dimension linear subspace denoted by S
and an orthonormal basis (called principal components) in it with the
property that the projection of X into S (indicated with X̂) minimizes
the reconstruction error in least-squares sense:

min
S:dim(S)=k

E
∥∥∥X − X̂

∥∥∥
2, where X̂ = U · UT ·X.

The columns of matrix U are the orthonormal basis vectors and E denotes
the statistical expectation operator. An interesting fact, that regardless of
the distribution of X the optimal solution can be achieved using only the

5 For simplicity of notations, without loss of generality, we can assume that µ = 0.
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mentioned �rst and the second order statistics of X, declares Movellan
(1997), where the reader can also �nd more details about PCA.

(2) Let's suppose an n dimension random variable X with zero mean 6 and
variance matrix Σ. Let's denote u a unit vector (‖u‖2 = uT · u = 1) with
the same dimension as X. Taken the projection of X onto u, we get a
random variable a:

a = uT ·X = XT · u,

with mean and variance related to the original data vector. Its mean value
is zero, indeed:

E(a) = E(uT ·X) = uT · E(X) = 0.

Consequently, the variance of a is equal to its second momentum, which
has the implication, that

ψ(u) := σ2 = E(a2) = E((uT ·X) · (XT · u)) = uT · E(X ·XT ) · u
= uT · E(X ·XT ) · u = uT · Σ · u.

Now our purpose is to �nd the extremal or stationary values of ψ. As it
can be seen, this is a quadratic optimization problem with constraints, in
other words, we are to look for the extreme values of a quadratic form on
the unit sphere in Rn. Asking for the help of the method of the Lagrange
multipliers, the following equation governs the optimal solution:

Σ · u = λ · u,

in which the eigenvalue problem can recognized, commonly encountered
in linear algebra. The nontrivial solutions of this problem (i.e., u 6= 0)
exist only for special values of λ (these numbers are called the eigenvalues
(λi) of Σ), with the associated eigenvectors (ui), which are unique, if
the eigenvalues are di�erent (as it's further assumed) 7 . Introducing the
notation

U = [u1, . . . , un],

an interesting fact, that U is orthogonal (UT · U = I).
To reconstruct the original data vector (X) from the ai principal com-

ponents, we combine them to a vector

a = [a1, . . . an],

and get
x = U · a = U · UT ·X =

n∑

i=1

ai · ui,

6 If X has non zero mean, then we simply subtract the mean from it and continue
the analysis with the resulting variable.
7 The extreme values of the variances (ψ) are equal to λi.
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which can be viewed as the synthesis formula. In this sense, ui are the
basis vectors of the data space with the correspondent basis coe�cients
(ai), or in other words the X data point has been transformed into an a
point lying in the feature space.

The number of features can be reduced, by discarding components
inducing small variances (σi). Indeed, recovering the data using only the
�rst m principal components 8

p∑

i=m+1

σ2
i =

p∑

i=m+1

λi

total variance occurs for the approximating vector, so the closer these
eigenvalues are to 0 (the variance of X is only concentrated into few
directions), the more e�ective data reduction can be achieved.

As an illustration, I show, how PCA can accomplish image compression
in practise. The test image was divided into small square pathes with side
of 15 pixels, constituting the input samples of the random variable X.
The experimental variance matrix was determined, and all the patches
(consequently the full image) were recovered using di�erent number of
principal components (see Fig. A.1) achieving dimension reduction.

(3) We can look at the sketched compression problem from a neural network
point of view too (see Fig. A.2). An input pattern (X) is transformed into
a set of activations (a) in the hidden layer. The weight matrix UT make
up the connections between the input and the hidden layer (a = UT ·X),
and U creates the activation of the output layer from the hidden values
(X̂ = U · a). The path to the hidden can be seen as the analysis, while
from the hidden to the output as the reconstruction step. The goal in
this linear feed-forward network is to reconstruct the input data, as well
as it is possible through the optimal U matrix (in mean square sense).

As PCA based reconstruction of face components serves as a basis of this work,
for the sake of illustration of the eigenvectors, I have developed PCA compo-
nents for images depicting human eyes using all the pixels in the sampling
square (see Fig. A.3).

A.2.2 Log-polar transformation

In the examined, biologically inspired retina model, the periphery of the visual
�eld around the fovea in the human visual system was represented involving
log-polar transformation (see Fig. 1). As it was de�ned earlier, it's a mapping
(L) from the points of the Cartesian plane to the cortical plane:

8 Without loss of generality it can be assumed, that λi-s are arranged in decreasing
order.
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(A) (B) (C)

(D) (E) (F) 

Figure A.1. I have executed PCA based image compression on the test picture (A),
representing an exciting illusion (Can you �nd the hidden �gures by staring at
it? Never mind, it's not easy.). Square patches of (A) constituted the basis of the
training procedure, as it can be inspected in (B). Using 1,2,5,10,20% of the developed
principal components for recovery, respectively, I could achieve compression with
percentage rates of 1,2,5,10,20% (B,C,D,E,F). As it can be seen, with the ratio of
20% (×5 compression) almost perfect reconstruction is possible.

X : Input 

a : hidden values 

Reconstructed input 

U 

U

T 

Figure A.2. Neural network interpretation of the compression problem

L(x, y) =



log

(√
x2 + y2

)

arctan (y/x)


 =



log r(x, y)

ϕ(x, y)


 .

In fact, it's a coordinate transform, in other words, it makes possible to de-
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Figure A.3. This �gure serves as an illustration of the eigenvectors (specially
eigeneyes). Here, I have developed principal components from images containing
eyes, and ordered them on the grounds of the corresponding eigenvalues (decreas-
ingly) in row wise manner (the �rst 18 can be investigated). These are the perpen-
dicular directions, which preserve most of the information content of the input data,
i.e., give the best (linear) approximation in L2 sense.

Original image Log−polar representation

Angle

Lo
g(

ra
di

us
)

(A) (B) 

Figure A.4. A sample image (A) is plotted with its log-polar representation (B), for
the sake of better understanding.
scribe or handle an f function (an image) by the use of a new coordinate
system (example can be seen in Fig. A.4):

f(x, y) = f(er · cos(ϕ), er · sin(ϕ)).

Log-polar mapping has appealing properties:

• It provides a one-to-one correspondence with space varying geometry.
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• Two fundamental transformations, namely scaling and rotation is converted
to translation.

A.3 Biological analogy

A.3.1 Anatomy of the eye (retina)

Since the examined sampling technique was born on grounds of biological
analogy, it's important to understand some essential concepts in connection
with the human eye and become acquainted with the fundamental features of
the retina.

The retina is a light-sensitive, complex layer at the back of the eye covering
about 65 percent of the interior surface. Photosensitive cells (photoreceptors)
called rods and cones in the retina convert incident light energy into signals
that are carried to the brain by the optic nerve (see Fig. A.5). Making a study
of rods and cones, the following can be declared:

• The rods are most sensitive to light and dark changes, shape and movement
and only contain one type of light-sensitive pigment. Rods are not good
for color vision (in a dim room, we use mainly our rods, but we are `color
blind'). Rods are more numerous than cones in the periphery of the retina.
There are about 120 million rods in the human retina.

• The cones are not as sensitive to light as the rods. However, cones are most
sensitive to one of three di�erent colors (green, red or blue) and they only
work in bright light. That's why you cannot see color very well in dark
places. So, the cones are used for color vision and are better suited for
detecting �ne details. There are about 6 million cones in the human retina.
Some people cannot tell some colors from others (`color blinds'). They don't
not have a particular type of cone in the retina or one type of cone may be
weak 9 .

Cones and rods intermingle nonuniformly over the retina. At the edge of the
retina there are only rodes (which are responsible for light-dark and motion de-
tection). Coming closer to the center, we can �nd less rodes, while the number
of the cones are growing, which results an increasing color sensitivity and aug-
menting resolution. In the middle of the retina there is a small dimple called
the fovea (only cones) with quite high resolution and most color perception
(Fig. A.6).

Summarizing, the retina is very di�erent in terms of scene digitization from

9 In the general population, about 8% of all males and 0.5% of all females are color
blind.
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Figure A.5. The layered structure of the retina can be observed in the �gure. Sur-
prisingly, in most of the retina the cells responsible for capturing light and initiating
neural signals � rod and cone photoreceptors � lie underneath a dense network of
blood vessels and neurons. In other words, light must pass through several layers
before it can be captured by the receptors.

Figure A.6. The varying color sensitivity, resolution and photoreceptor distribution
is plotted in the �gure with the location of the fovea.
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(A) (B)

Figure A.7. Seeing the world through the retina. The original image from CCD
camera (uniform sampling) can be inspected in (A), with the same image seen with
a retina (right eye, �xation at center) in (B), where it's illustrated, that retina images
with a very high resolution at the center (fovea) and the sampling density (i.e., the
actual resolution) falls-o� quickly towards the periphery.

a CCD camera which uniformly samples a visual scene. The retina with its
specialized central region (fovea) images the immediate neighborhood of the
point of �xation with a much higher resolution than peripheral regions of the
visual �eld (see Fig. A.7).

A.3.2 Neurobiological analogy

The fovea is the area of the retina with the greatest acuity. It has the great-
est density of ganglion cells and therefore has a much larger representation.
Approximately half of the neural mass in the lateral geniculate nucleus and
in the primary visual cortex represent the fovea and the region just around
it, while the peripheral portion of the retina is less well represented, claims
Kandel et al. (1991).

Summarizing, the examined retina based sampling technique was created con-
sidering the outlined biological constraints:

• Varying sampling density (depending on the spatial position of the sampling
points, i.e., decreasing resolution towards the periphery).

• Representation of the retina (fovea and surrounding region) in the primary
visual cortex.

A.4 Future work

As the studied, `arti�cial retina` provides similarity measure for face compo-
nents, instead of the direct, deterministic, candidate-like approach, it would
be possible to integrate this `sensor' into a stochastic �ltering framework (see
Isard (1998)), which performs signi�cantly better than the most robust de-
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Fovea 

Left Right 

Visual Field 

Primary Visual Cortex 

Figure A.8. Areas in the primary visual cortex are devoted to speci�c parts of the
visual �eld, as indicated by the corresponding numbers (1, 2, 3, 4 ↔ fovea, 5− 12 ↔
peripheral part). The striking aspect of this map is that about half of the neural
mass is devoted to representation of the fovea and the region just around it, which
has the greatest visual acuity.

terministic algorithms in numerous object vision tasks (for example, study
Bartlett et al. (2001)). This constitutes the essence of my future research.
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